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Abstract Learning a complex task such as table tennis

is a challenging problem for both robots and humans.

Even after acquiring the necessary motor skills, a strat-

egy is needed to choose where and how to return the

ball to the opponent’s court in order to win the game.

The data-driven identification of basic strategies in in-

teractive tasks, such as table tennis is a largely unex-

plored problem. In this paper, we suggest a computa-

tional model for representing and inferring strategies,

based on a Markov Decision Problem (MDP), where

the reward function models the goal of the task as well

as the strategic information. We show how this reward

function can be discovered from demonstrations of table

tennis matches using model-free inverse reinforcement

learning. The resulting framework allows to identify ba-

sic elements on which the selection of striking move-
ments is based. We tested our approach on data col-
lected from players with different playing styles and un-
der different playing conditions. The estimated reward
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Fig. 1 Considered Scenario. Two people playing a competi-
tive match of table tennis. The movements of the player and
the ball were recorded with a VICON motion capture system
and analyzed afterwards.

function was able to capture expert-specific strategic in-
formation that sufficed to distinguish the expert among
players with different skill levels as well as different

playing styles.

Keywords Computational models of decision pro-

cesses · Table tennis · Inverse reinforcement learning

1 Introduction

Understanding the complex interplay between learn-

ing, decision making and motion generation is crucial

both for creating versatile, intelligent robot systems

as well as for understanding human motor control. To
make headway towards this goal, parsimonious models
that “sculpt motor commands” based on a notion of
optimal performances are needed (Braitenberg et al.,

1997). Braitenberg (1984) showed more than 25 years

ago that the key to understand this complex interplay



2 Katharina Muelling et al.

is to create simple, elementary structures, such as his

Braitenberg Vehicles, that nevertheless allow synthesiz-
ing complex behavior. Braitenberg Vehicles correspond

to control policies in reinforcement learning, which we

can by today learn from demonstrations and by self-

improvement. In the last decade, such approaches have

matured in the robot learning context and led to robot

systems that can learn the complex motor skills includ-
ing even basic robot table tennis (Muelling et al., 2013;
Kober et al., 2012).

In complex competitive and cooperative motor tasks,

mastering the task is not merely a matter of perfect ex-

ecution of a specific movement pattern. For example, in

table tennis, a player usually cannot win the game by

always returning the ball safely to the same position.

Instead, players need a good strategy that defines where

and how to return the ball to the opponent’s court. An
action should always be chosen to have a high proba-
bility to successfully return the ball as well as to make

the task of the opponent harder, i.e., it should improve

the chance to win the game. In this paper, we want

to make a first step towards understanding the deci-

sion processes underlying such a behavior. We follow

Braitenberg’s example of finding straightforward syn-
thetic constituents of strategies rather than using com-
plex physical models of the world. To accomplish this

goal, we create a simplified model of human-human ta-

ble tennis and study how basic strategic elements can

be extracted from a game-play.

In racket science, researcher identified so called win-

ning patterns in tennis video sequences in order to help

trainers analyze their game (Wang et al., 2004; Wang

and Parameswaran, 2005; Vis et al., 2010). Here, spe-

cific repetitive movement patterns of both the play-

ers and the ball were turned into tactical templates.

In table tennis, Hohmann et al. (2004) determined the

transition probabilities of different stroke positions, di-

rections and types individually. Such transition prob-

abilities allow identifying the components that were

used most efficiently. Diaz et al. (2013), showed that

memory-based information is used for predictive eye

movements in racquetball, and Seve et al. (2004) showed
that such memory-based information is also used for
strategies in table tennis. Seve et al. (2004) concluded
from interviews with professional table tennis players

that those selected their actions in a match not only

based on the current situation, but also on the knowl-

edge of sequences that have proven to be effective in

the past in similar situations. Rather than identifying

the frequencies and effectiveness of specific movement

patterns in large data sets, we want to model this sit-

uation based knowledge from a computational point of

view and extract it from collected table tennis data.

Such an approach would enable us to yield a better in-

sight into the reasons for choosing a given action in a

specific state and to use the learned model for artificial

systems, such as table tennis robots (Muelling et al.,

2013). Creating a model that accounts for the complex-

ity of this task can easily lead to an intractable problem

formulation. For this reason, we use a straightforward

approximation to this problem and only consider basic

features available to the player as well as perfect knowl-
edge about the environment. In particular, we account
for positional features of the players and the ball, but

not for opponent specific strategies, changes in such an

opponent specific strategy and spin. As a result we are

able to model this decision process as a Markov Deci-

sion Problem (MDP, Puterman (1994))†

In an MDP framework, an agent interacts with a

dynamic environment. It chooses and executes an ac-

tion that will change the state of the agent and its

environment (see Fig. 2). The agent can observe this

state change and may receive a reward for its action.

A strategy defines the general plan of choosing actions
in specific states in order to achieve a goal. A strategy
in the MDP framework is usually called a policy and is

denoted by π. Given a MDP model, one can find an op-

timal policy using optimal control techniques (Sutton
and Barto, 1998; Powell, 2011). The goal is to find a
policy that maximizes the expected reward. The reward

thus, encodes the goal of the task. While it is possible
to learn a policy directly from demonstrations using
supervised learning (Schaal, 1999; Argall et al., 2009),

such behavioral cloning approaches usually have limited

generalization abilities since they are restricted to the

demonstrated scenarios. As they do not consider the

underlying dynamics, they cannot be applied in a task

with altered or constantly changing dynamics. In table
tennis, the dynamics of the environment changes as the
opponent changes. The player may also encounter new

states, and hence need to learn new strategic elements

while his experience increases with training. Therefore,

blindly following the strategy of an observed expert will

not lead to a successful strategy. In this paper, we do

not intend to mimic an observed strategy, instead we

want to learn an underlying reward function that con-

nects the information available to the player with his

chosen actions.

Given an exact model, simple reward functions that

only specify an immediate positive reward for winning,

a negative one for losing a rally, and zero reward of

non-terminal actions may be sufficient. However, such

†Note that in order to include such uncertain state infor-
mation as assumptions about the strategy of the opponent
or spin, a problem formulation in form of partial observable
MDPs would be necessary.
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(a) (b)

Fig. 2 Considered scenario: A table tennis player (agent) plays a game of table tennis. At time point t, he has to decide how
to return the approaching ball to the opponents court such that the chance of winning the point will increase. Returning the
ball to a specific goal on the opponent’s court (with a specific orientation and velocity) corresponds to an action at executed
by the agent. The player chooses this action based on his current state st (Fig. 2a). Due to this action, the system will transfer
to the state st+1 defining a new situation for the player (Fig. 2b).

simplified rewards will cause slow convergence rates for

behavior generation as the system will need to pass

through several state-action pairs before receiving a re-

ward. Although winning the game remains a driving

factor in their behavior, it remains unclear whether a
simple winning strategy explains human playing be-
havior or whether humans learn subgoals leading to

win. In artificial systems however, such simplified re-

ward functions are unsuited for learning table tennis

due to the curse of dimensionality. Instead of pre-

defining the reward function, we seek to identify it from

human game-play. Such an approach will also allow us
to reveal memory based knowledge and individual pref-
erences of table tennis players. The process of determin-

ing the reward function from an expert demonstration

is referred to as Inverse Reinforcement Learning (IRL)

or inverse optimal control (Boyd et al., 1994; Ng and

Russel, 2000). IRL has been applied to many problems

such as helicopter control (Abbeel et al., 2010), park-

ing lot navigation (Abbeel et al., 2008), navigating a

quadruped robot across different terrains (Kolter and

Ng, 2011), human navigation behavior (Rothkopf and

Ballard, 2013), routing preferences of drivers (Ziebart

et al., 2008), modeling goal directed trajectories of pedes-

trians (Ziebart et al., 2009), and user simulation in spo-

ken dialog management systems (Chandramohan et al.,

2011). In most of these approaches, the underlying dy-

namics of the system is assumed to be known. However,
the dynamics of human behavior is usually difficult to
model. We avoid modeling these complex dynamics by
learning the strategies directly from human demonstra-

tion. Thus, the dynamics model underlying the task

is implicitly encoded in the observed data. To collect

demonstrations, we asked skilled and naive table tennis

players to compete in several matches. We recorded the

ball trajectories as well as the Cartesian position and

orientation of the upper body joints for all players with

a VICON motion capture system (see Fig. 1).

This paper does not focus on the introduction of

new IRL methods for solving this kind of problem. We

rather intend to apply existing methods on this new

challenging problem. During the course of this paper,

we will answer the following questions: (1) Can we in-

fer a reward function that captures expert-specific in-

formation using model-free inverse reinforcement learn-

ing? (2) Using this reward function, can we distinguish

players with different playing styles and skill levels? (3)

Which parts of the sensory information are the key el-

ements for selecting the movement parameters?

In the remainder of this paper, we will proceed as

follows. In Section 2, we present the theoretical back-

ground for modeling decision processes, including MDPs

and the used IRL algorithms. We present the experi-

mental setup and evaluations in Section 3. In Section
4, we summarize our approach and the results.

2 Modeling Human Strategies

As discussed in the introduction, we use model-free In-

verse Reinforcement Learning (IRL) to learn human

strategies. Here, we will first introduce the notation

and basic elements necessary for the table tennis model.

Subsequently, we will discuss different model-free IRL

approaches and show how the states, actions and re-

ward features in the table tennis task can be repre-

sented.
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2.1 Preliminaries

To employ IRL, the problem at hand needs to be mod-
eled as a Markov Decision Problem (MDP). Formally, a

MDP is a tuple (S,A, T , R, d0, γ), where S is the state

space, A is the action space, and T is a transition func-

tion

T (st,at, st+1) = Pr(st+1|st,at),

with states st, st+1 ∈ S and actions at ∈ A. The func-
tion R(s,a) defines the reward for executing action a

in state s, the initial state distribution d0(s) models
the start conditions, and the discount factor γ ∈ [0, 1)

determines the effective planning horizon.

A deterministic policy π is a mapping: S 7→ A and

defines which action is chosen in a state s ∈ S. A
stochastic policy is a probability distribution over ac-

tions in a given state s and is defined as π(s|a) =
Pr(a|s). The performance of a policy is measured with

the so-called value function V π(s). The value function

of a policy π evaluated at state s is given by

V π(s) = E

[

∞
∑

t=0

γtR(st,at)

∣

∣

∣

∣

π, T , s0 = s

]

,

and corresponds to the expected reward following pol-

icy π starting from state s. The optimal value function

is defined by V ∗(s) = maxπ V
π(s) ∀s ∈ S . The goal

of an agent in a MDP is to find the optimal policy π∗,

i.e., a policy that maximizes the value for every s ∈ S.

We assume that the reward function R is given by

a linear combination of m feature functions fi with
weights wi. The reward function is therefore defined

by

R(s,a) =
m
∑

i=1

wifi(s,a) = wTf(s,a),

where w ∈ R
m and f(s,a) ∈ R

m. The features fi are

fixed, known, bounded basis functions mapping from
S ×A into R. For a given trajectory τ = s1a1, ..., sTaT
the feature counts are given by fτ

i =
∑H

t=1 γ
tfi(st,at).

Similarly to the value function, we can define the fea-

ture count fπ
i under policy π by

fπ
i (s) = E

[

∞
∑

t=0

γtfi(st, at)

∣

∣

∣

∣

π, T , s0 = s

]

as the expected features observed when following policy

π. Since the reward function can be represented as a

linear combination of features fi, the expected return

of policy π can be written as

V π
w
(s) =

m
∑

i=1

wif
π
i (s) = wTfπ(s),

where fπ ∈ R
m is a vector containing the single feature

counts fπ
i (s) as entries.

2.2 Learning the Reward Function

The reward function is a crucial part of the MDP as
it defines the goal of the task and shapes the policy
optimization process. Usually, it is assumed that the

reward function is given. However, it is hard to specify

the reward function for solving a complex task before-

hand and the learned behavior is sensitive to the pro-

vided reward function. This problem is especially evi-

dent when the task requires modeling the dynamics of

human actions. The problem of designing the right re-

ward function led to the development of IRL methods.

Given the actions of an agent that is assumed to behave

in an optimal manner, the available sensory information

about the environment and, if possible, a model of the

environment, the goal of IRL is to determine a reward
function that can (mostly) justify the demonstrated be-
havior.

The IRL problem was originally formulated within

the MDP framework by Ng and Russel (2000). Many
researches provided further refinements in order to im-

prove the original algorithms suggested by Ng and Rus-
sel (2000) and Abbeel and Ng (2004). For example,
Ratliff et al. (2006) suggested a maximum margin plan-
ning approach. Ziebart et al. (2008) suggested an al-

gorithm where the principle of maximum entropy was

exploited. Ramachandran and Amir (2007) modeled the

uncertainties involved as probabilities where the demon-

strations are treated as evidence of the unknown reward
function. Rothkopf and Dimitrakakis (2011) extended
this approach by suggesting a general Bayesian formu-

lation. Levine et al. (2011) used GPs to model the re-

ward as a non-linear function of the features. A recent

review of IRL algorithms can be found in (Zhifei and

Joo, 2012).

However, most IRL approaches rely on a given model

of the environment T or assume that it can be ac-

curately learned from the demonstrations. The reward

function is found by first computing a policy that op-

timizes a reward function for an initial weight vector

w. Subsequently, the expected feature count of the new

policy fπ can be computed. Based on this feature count,
a new weight vector that separates the values of the ex-

pert feature fπE and the features of the current policy

fπ can be computed. These steps are repeated until

the weight vector converges. This general algorithm is

displayed in Algorithm 1. Generally, a model of the dy-

namics is used to iteratively generate optimal trajecto-

ries (optimization step in Algorithm 1) under different
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Algorithm 1 General IRL Algorithm

Input: DE = {τ}Pp=1 expert demonstrations

Initialize: reward feature weights w0, j = 1
expert feature counts fπE = 1

P

∑
τ∈DE fτ

repeat

Optimize πj based on wj−1

Estimate fπj

Update wj such that (wj)T fπj < wjfπE

j ← j + 1
until ‖wj −wj−1‖2 < ε

reward functions until the generated trajectories match
the ones provided by the expert.

Since modeling the dynamics of the table tennis task

is highly challenging, we adopt in this paper a slightly
different methodology. The policy optimization step in
Algorithm 1 is performed by searching in a finite set

of policies and retaining the policy with the highest

average value. Each one of these policies is obtained by

recording the state-action trajectories of a particular

player. The skills of the players vary from novice to
expert.

Only few model-free IRL methods have been sug-

gested: Boularias et al. (2011) derived a relative entropy
(RE) approach which was evaluated on a ball-in-a-cup

scenario. Mori et al. (2011) used Least Squares Policy
Iteration and Least Squares Temporal Difference learn-
ing and applied their algorithm on human impedance

control. We apply both RE-IRL and the method sug-

gested by Abbeel and Ng (2004) to solve this prob-

lem and compare their performances. Boularias et al.

(2011) already used the same sample-based technique

described in the previous paragraph. We use the same

methodology to obtain a model-free variant of Abbeel

and Ng (2004).

We use both expert and non-optimal data to com-

pute the weight vector w∗ that maximizes the differ-

ences between the non-expert and the expert reward

values. Here, we assume that the actions chosen by

the expert are to be favored over those chosen by the

less skilled players as they enable the player to win the

game. The demonstrations given by the less skilled play-

ers under different playing conditions and goals provide

arbitrary and sub-optimal policies that stand in con-

trast with the policy demonstrated by the expert. To

compute the reward weights, we tested three different

methods, where the results can be found in Section 3.2.
The first two evaluated methods that are based on the
max-margin method of Abbeel and Ng (2004), while

the third algorithm is the model-free IRL algorithm of

Boularias et al. (2011). In the following sections, we as-

sume that we are given a set of expert demonstrations

DE = {τp}
P
p=1, where τp = s

p
1a

p
1, ..., s

p
Tp
a
p
Tp

corresponds

to one rally (i.e., state-action trajectory), as well as a

Algorithm 2 Maximum Margin for Game Values

Input: DE = {τ}Pp=1 expert demonstrations

DN = {τ}L
l=1 non-optimal demonstrations

Initialize: fπE = 1
P

∑
τ∈DE fτ

fπi = 1
L

∑
τ∈DNi

fτ with DNi ⊂ DN

w0 = 0, j = 1
repeat

i = argmini (wj−1)T (fπE − fπi)
f j−1 = fπi

Computef̄
j−1

, the projection of fπE on (f̄
j−2

, f j−1)

wj = fπE − f̄
j−1

∆f = ‖fπE − f̄
j−1
‖2

j ← j + 1
until ∆f < ε

set of non-optimal demonstrations DN = {τl}
L
l=1. Here,

Tp is the number of volleys (i.e., state-action pairs) in

the observed rally τp.

Please note that the following IRL methods are only

discussed briefly to illustrate how the chosen IRL meth-

ods were applied in this (model-free) context. The reader

is referred to the original literature as referenced in the

following for a detailed description and analysis of the

presented approaches.

2.2.1 Model Free Max-Margin for Game Values

The max-margin method of Abbeel and Ng (2004) aims

at finding a policy π that has an expected return close

to that of the expert, i.e., maxw |V π
w
(s)− V πE

w
(s)| ≤ ǫ,

where ‖w‖2 ≤ 1. As the value is a linear function of the

reward, it suffices to find an optimal policy π that has

feature counts close to the ones of the expert’s trajec-

tories, i.e., ‖fπ − fπE‖2 ≤ ǫ. The policy π needs to be

chosen from the set of previously recorded non-optimal

policies due to the lack of a model for generating poli-

cies. We use the projection algorithm of Abbeel and Ng

(2004) to solve the following optimization problem

max
ξ,w

ξ s.t. wT fπE ≥ wT fπj + ξ, ‖w‖ ≤ 2,

where ξ is the difference of the value of the expert and
the value of the non-expert, and πj are the policies of

non-expert players. fπj therefore corresponds to the av-
erage feature count for all rallies demonstrated by a

player in one game. The corresponding algorithm is dis-

played in Algorithm 2. In the following, we will refer to

this algorithm as MMG (Maximum Margin for Game

values).

2.2.2 Model Free Maximum Margin of States Values

Using the maximum margin method of Abbeel and Ng

(2004) in a model-free setup as described above has one

drawback. We assume that the initial state of the rally
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Algorithm 3 Maximum Margin of States

Input: DE = {τp}Pp=1 expert demonstrations

DN = {τl}Ll=1 non-optimal demonstrations
Initialize: n = 1
for all p ∈ DE do

for all s
p
t ∈ τp do

[FπE ]n: =
∑H

p
t

i=t f(s
p
t ,a

p
t )

Compute k-nearest neighbors Nk(s
p
t )

[FπN ]n: =
1
k

∑
s
l
t∈Nk(s

p
t )

∑Hl
t

i=t f(s
l
i,a

l
i)

n← n+ 1
end for

end for

w = argmaxw w(FπE − FπN )− λ||w||2

largely defines all following state-actions pairs. How-

ever, in table tennis, it is unlikely that any player plans

the strokes for more than only a few steps ahead. Com-

puting the value function based on only a few state-

action pairs after the initial serve would cause the agent

to lose important information that led to winning or

losing the rally. To avoid this information loss, we need

to compare the values of the expert in every state in

the recorded trajectories to the ones of the non-experts

in the same state. As the states are continuous, it is

unlikely that exactly the same state is encountered in

both the expert and non-expert trajectories. Neverthe-

less, we can find the weight vector w by solving the

quadratic optimization problem

max
w

P
∑

p=1

Tp
∑

t=0

(

V πE
w

(spt )− V̂ πN
w

(spt )
)

− λ||w||2, (1)

where V̂ πN
w

(spt ) is an estimated value of the non-expert
players in the current state spt of the expert. Estimating

the value V̂ πN in a given state s is a regression prob-
lem that we propose to solve by using the k-nearest

neighbors method,

V̂ πN
w

(s) =
1

k

∑

s′∈Nk(s)

V πN
w

(s′),

whereNk(s) is the set of k-nearest neighbors of s among
all the states that have been observed in trajectories of

the non-expert players‡. The metric used to find the
k-nearest neighbours is a Gaussian kernel K(s, s′) =

exp(−(s− s′)TΣ−1(s− s′)T) that defines the similarity

measure between states. The diagonal matrix Σ con-

tains the measured standard deviation of the data. Note

that one can also use other non-parametric methods,

such as kernel regression.

‡Please note that the performance of k-NN regression de-
pends on the density of the data. In the table tennis context,
most of the data were adequately concentrated in a small
region.

Algorithm 4 Relative Entropy IRL Algorithm

Input: DE = {τp}Pp=1 expert demonstration

DN = {τl}Ll=1 non-optimal demonstration
Initialize: fπE = 1

P

∑
τ∈DE fτ

w0 = 0, j = 1
repeat

Compute P(τ |wj−1) =
Q(τ) exp(

∑m
i=1 w

j−1

i
fi)

∑
τ∈DN Q(τ) exp(

∑
m
i=1

w
j−1

i
fi)

for all τ ∈ DN

for all features fi do
∂

∂wi
g(w) = f

πE
i −

∑
τ∈DN P(τ |wj−1)fi(τ)− αiλi

w
j
i = w

j−1
i + ∂

∂wi
g(w)

end for

∆w = ‖wj−1 −wj‖2
j ← j + 1

until ∆w < ε

The value functions V πE and V πN of the expert’s

policy πE and non-experts policies πN are computed as

V π
w
(spt ) =

1

H
p
t − t+ 1

H
p
t

∑

i=t

wTfπ(spi ,a
p
i ),

where H
p
t = min{t+H − 1, Tp} and H is the planning

horizon, i.e., the number of steps we look into the fu-
ture. The corresponding algorithm is displayed in Algo-
rithm 3. In the following, we will refer to this algorithm
as MMS (Maximum Margin of State values).

2.2.3 Relative Entropy Method

The relative entropy IRL method (Boularias et al., 2011)

finds a distribution P over trajectories that minimizes
the KL-divergence to a reference distribution Q, while

ensuring that the feature counts under P are similar

to the feature counts in the expert trajectories. The

reference distribution Q encodes prior preferences and

constraints of the learned behavior, which makes this

method well-suited for transferring the expert’s policy

to a robot. The solution to this problem takes the fol-
lowing form

P(τ |w) =
1

Z(w)
Q(τ) exp

(

wT fτ
i

)

,

where Z(w) =
∑

τ Q(τ) exp
(

wT fτ
i

)

. The reward weight

vector w is found by solving the optimization problem

max
w

wT fπE − lnZ(w)− λ‖w‖1. (2)

The gradient of this objective function is calculated by

re-using the expert and non-expert trajectories with im-

portance sampling. For our experiments, we choose the

reference distribution Q to be uniform, as we are mainly

interested in extracting the most informative reward

function and not in transferring the expert’s policy. The

corresponding algorithm is displayed in Algorithm 4. In

the following, we will refer to this algorithm as RE (Rel-

ative Entropy).
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Fig. 3 The state of the system is defined by the relative posi-
tion of the agent (dsx, dsy) and the the relative position (dox,
doy) and velocity (vo) of the opponent towards the table, as
well as the the position (dbx, dby) and velocity (vb) of the ball
when bouncing on the table.

2.3 Computational Model for Representing Strategies

in Table Tennis

In the previous sections, we have given a general de-

scription of how the decision processes in table tennis
can be modeled as a MDP. We also showed several ap-
proaches for obtaining the reward function from the

table tennis player’s demonstrations. As a next step,

we now need to specify the states, actions and reward

features of the table tennis task.

2.3.1 States

Ideally the state of the system would contain all in-

formation experienced by the agent. However, such an

approach is not feasible for two reasons: First, we do

not have access to all information. For example, we do

not now what kind of assumptions the player makes

about the opponent’s strategy or the spin of the ball.

Modeling such hidden and uncertain information in the

state space leads to the formulation of partial observ-

able MDPs (PoMDPs, (Monahan, 1982)). Second, mod-

eling such high-dimensional continuous state domains

in the context of PoMDPs requires a large data set and

is likely to be intractable. Hence, we approximate the

problem by assuming perfect knowledge about the en-

vironment and remove redundant and irrelevant infor-

mation. We assume that the player has to decide where

and how to hit the ball when the hitting movement is

initiated and that the decision depends on the follow-
ing information: the planar Cartesian position of the
agent ds = [dsx, dsy], the opponent’s position do =

[dox, doy] and velocity vo, the state of the rally g ∈
{player serve, opponent serve, not served}, the elbow po-

sition of the opponent eo = [eox , eoy ] as well as the ball

position db = [dbx, dby], velocity |vb| and direction given

by the angles θpy and θpz (see Fig. 3).

Fig. 4 In order to compute the table preferences on the op-
ponent’s court the table was divided into nine cells. Each cell
was assigned a center (red points) ci.

Thus, the state can be represented by the param-

eters si = [db, |vb|, θpy, θpz,ds,do, eo,vo,g]. The vari-

ables θpy and θpz are defined as the horizontal and ver-
tical bouncing angles of the ball at the moment of im-

pact on the player’s side of the table, respectively. θpz
defines the bouncing angle in the xz-plane and therefore

corresponds to how flat the ball was played. θpy defines

the bouncing angle in the xy-plane (see Fig. 5). Playing

the ball diagonal to the backhand area of the opponent

results in a smaller negative angle for θpy, while play-
ing the ball diagonal to the forehand area results in an

increased angle. Playing the ball straight corresponds
to an angle of zero. Additionally, we define a set of ter-
minal states sT ∈ {W,L}. A rally will end when either

the subject won the rally (sT = W ), or the subject lost

the rally (sT = L).

2.3.2 Actions

To perform a hitting movement, the system needs the

following information: (i) where and when to hit the

ball, (ii) the velocity of the racket and (iii) the orienta-

tion of the racket at impact. While the first may directly

result from the current state of the system, the second

and third points are determined by where and how

the player decides to return the ball to the opponent’s

court. This decision includes the desired bouncing point

pb of the ball on the opponent’s court, the correspond-

ing bouncing angles θoy and θoz, the overall velocity of

the ball ||vb|| and the spin of the ball. Here, the de-
sired bouncing point refers to the bouncing point on

the opponent’s court desired by the player. Since the

different kinds of spin are hard to capture without an

expert classifying the sampled data, we discard the spin

and use only basic strategic elements. Therefore, an ac-

tion can be defined as a = [pb, ||vb||, θoy, θoz]. We do

not distinguish between serves and non-serves for the
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(a) θy (b) θz

Fig. 5 The bouncing angles θy and θz in the xy- and xz-surface define the orientation of the ball. While θz corresponds to the
horizontal bouncing angle, θy corresponds to the direction of the ball and thereby defines if the ball is played cross to the left,
cross to the right or straight.

actions, as the first bounce of the serve will be fully
described by the second bounce.

2.3.3 Reward Features

In order to estimate the desired unknown reward func-

tion, we assume that the reward function is given by a

linear combination of observable reward features. Usu-
ally those reward features a chosen manually by the ex-
perimenter. An automatic approach for choosing these
reward features was suggested by Levine et al. (2010).

Here, it was suggested to construct the features from a

logical combinations of components that are the most

relevant to the task. Nevertheless, this approach also

requires the definition of the most relevant components
of the state space beforehand. Even if it would be pos-
sible to consider the whole state space as components,

some features might be the result of a non-trivial com-

bination of these elements. Other feature combinations

might be redundant and could dominate the behavior

due to their multiple occurrences. Therefore, we choose

the features manually taking into account the logical
combination of state components that seemed most rel-
evant for the task.

We choose the features as a combination of the state

information of the ball and the position of the oppo-
nent. In order to be able to distinguish whatever the
relevant features depend on the opponent or not we

choose features that depend only on the state informa-
tion of the ball but are independent of the opponent
and features that depend on the state information of

the ball and the opponent. In the following we list the

chosen reward features fi(s,a).

Position on the table. This feature corresponds

to the bouncing point of the ball in the opponent’s

court. Players do not usually target a particular point

on the table but rather a small region. Therefore, we

discretize the court into nine regions(see Fig. 4). Each
region i is identified by its center ci. We use as features

the relative distances between the observed bouncing

point pb of the ball on the opponent’s court and each

center ci, given by

pci =
exp(−‖pb − ci‖2)

∑

j exp(−‖pb − cj‖2)
.

This computation is based on the euclidean distance

between pb the cell center ci. pb corresponds here to

choosen action of the player.

Bouncing angles. We computed two bouncing

angles θoz and θoy which define the direction of the ball

when bouncing on the opponent’s side of the court (see

Fig. 5). This feature allows us to tell whether the ball

was played rather cross or straight, or if there where
any preferences in how flat the ball was played.

Distance to the edges of the table. We pro-
vided two features defining the proximity of the bounc-
ing point pb to the edge of the table et. One for the

x-direction δtx = exp(−1.5|etx − pbx |) and one for the

y-direction δty = exp(−1.5|ety − pby |). These features

were chosen in order to see whether the expert plays in

general closer to the edges than the naive player.

Velocity of the ball. The velocity of the ball ‖vb‖
in meters per second was used as another feature.

Smash. One of the features defined whether the

ball was a smash. When the ball velocity was higher

than 10 m/s, this feature was set to one, otherwise this

feature was set to zero. The velocity of 10 m/s was

defined empirically.

Distance to the opponent. Two features define

the distance of the bouncing point of the ball on the op-

ponent’s court and the right hand of the opponent. One
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of the features is defined by the distance in x-direction

δox = |pox −pbx |, while the second is defined by the dis-
tance in y-direction δoy = |poy−pby |. This feature allows
to evaluate whether the skilled player chose the bounc-

ing point such that the distance between the player and

the ball are maximized or not.

Elbow. One feature is the closeness of the ball to

the elbow and, therefore, it measures if the ball was

played to the elbow of the opponent eo. It is defined by

δelbow = exp(−|eoy − pby + tan(θy)(eox − pbx |)), where
tan(θy)(eox − pbx) is an extrapolation of the ball posi-

tion. This feature also provides a measurement of how

close the ball bounces relative to the opponent. Playing

the ball close to the opponent makes it harder for the

opponent to return the ball.

Movement direction of the opponent. One

feature was derived in order to define the velocity of

the opponent and the ball in y-direction. It is defined

by vo = (poy − pby )voy ,. This feature indicates whether
the ball was played in the opposite moving direction of

the opponent.

Winning and Loosing. One binary feature was

used to assign a reward to the terminal states (i.e., win-

ning and losing). For all non-terminal states, this fea-

ture was set to zero. For the terminal states, a value of

one was assigned to the feature for sT = W and a value
of −1 for sT = L.

All features are scaled to lie in an interval of [0 1],

except for the direction sensitive features θoy and vo
which lie in an interval of [-1 1]. Some of the features

reflect aspects of other features. For example: the po-

sition of the bouncing point on the table can reflect a

preference of a bouncing angle. The position on the ta-
ble might depend on the position of the opponent or op-
ponent specific weakness. Nevertheless, we choose these
feature since each of them seemed to be likely to be a

strategic component and as they allow us to analyze

the influences of the state components individually.

3 Experiments and Evaluations

To validate the suitability of using IRL algorithms in

order to extract basic strategic elements, we recorded

table tennis players with various skill levels. The sub-

jects played under three different conditions. This data

was used to compute the reward feature weights and to

validate the potential reward functions.

In the following, we will first describe the experi-

ment and the data processing procedure. Subsequently,
we will present the results.

3.1 Experimental Setup and Data Collection

The purpose of the experiment was to investigate basic

strategic elements in table tennis (excluding all types

of spin which are difficult to capture), using inverse re-

inforcement learning techniques. Therefore, a data set

with expert demonstrations, and a data set with differ-

ent sub-optimal policies were collected. In this study,

there were both participants serving as subjects who
rarely played table tennis, as well as subjects who played
on a regular basis in a table tennis club.

3.1.1 Participants

Eight healthy right-handed subjects of all genders (seven

males, one female) participated in this study. The mean

age of the participants was 26.25 years (standard de-

viation (SD) 3.38 years). All subjects had normal or

corrected-to-normal eye sight. All participants gave their

consent prior to the experiment and completed a form
about their playing skills according to which they were
grouped in one of two classes: 1) naive players and 2)

skilled players.

The group of naive players consisted of five subjects

(four males and one female) with a mean age of 28.4

years (SD 1.14 years). The subjects were recruited from

the Max Planck Campus in Tübingen and the Univer-

sity of Tübingen. All naive players fulfilled the follow-

ing requirements: (i) never played in a table tennis club,

(ii) did not train on a regular basis (weekly or daily) in

the last five years, (iii) did not participate in table ten-

nis tournaments and (iv) did not play any other racket

sports on a regular basis. The group of skilled players

consisted of three subjects (all male) with a mean age of

22.67 years (SD 2.08 years). The subjects were recruited

from a local table tennis club and fulfilled the following

requirements: (i) played for at least eight years in a ta-
ble tennis club, (ii) trained on a weekly basis (at least
twice a week) and (iii) participated regularly in table
tennis competitions.

One of the skilled players was used as a permanent

fixed opponent and, therefore, was not considered part

of the subject set. Furthermore, only one of the skilled
subjects was used for the expert demonstrations since

the other skilled player was not able to win against the

opponent. All other subjects were used as non-optimal

demonstrations. Due to the fact that the non-optimal

data set also contains a skilled player, we have the pos-

sibility to test the approach not only to detect the dif-

ferences between naive and skilled players, but also be-

tween skilled players which have the same level of train-
ing.
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Fig. 6 Experimental setup. A naive player (right side) plays
against an expert opponent (left side). The upper body of
both players, as well as the ball are tracked by a motion
capture system.

3.1.2 Apparatus

In order to collect information about the position of the

participants, the table and the ball during the game, we

used a VICON motion capture system (VICON MX-

13 with the VICON IQ 2.5 Software, 16 cameras, 120

frames per second). Therefore, 25 VICON infrared re-

flecting markers were attached to the hands, wrists, el-

bows, shoulders, hips and the back and front of the par-

ticipants. With this setup and a 3D kinematic model of

the upper body of each individual, we could capture

their whole body movement during the game. To iden-

tify the table and the net, we placed four markers at

each corner of the table and one marker on one of the

edges of the net. A standard table tennis table (length

2.74 m, width 1.53 m and height 0.76 m) and rackets

conform with the rules of the International Table Ten-

nis Federation (2011) were used. The surfaces of the
rackets were chosen such that they did not allow for
spin on both sides. The table tennis ball was covered

with a gray-green infrared reflecting powder in order

to detect it with the VICON system. As a result the

ball had an additional weight of 2 grams. This coating

slightly changed its physical properties (e.g., it addi-

tionally reduced the spin during the game). Addition-
ally, the subjects were recorded with two video cameras.
The experimental setup is also shown in Fig. 6.

3.1.3 Procedure

The participants were asked to play a game of table

tennis under three different conditions.

Condition 1. The subject played a cooperative

game of table tennis. The goal for the subjects is to

maximize the number of returns in a rally for a ten

minute period.

Condition 2. The subject was told to perform a

competitive game of table tennis, while the opponent

was instructed to return the ball “nicely” (i.e., the op-

ponent was instructed to play towards the subject when

possible in a cooperative way).

Condition 3. Both the subject and the opponent

were instructed to play a competitive game of table

tennis.

Each of the seven subjects played against the op-
ponent one game under each of the three conditions.

The participants were required to play table tennis ac-

cording to the standard table tennis rules defined by

the International Table Tennis Federation (2011) with

the following exceptions: (i) The players did not switch

sides after a game, (ii) the expedite system§ did not

apply during the game, and (iii) the first serve of the

match was always executed by the subject (never by

the opponent). A game consisted of the best of five

matches, i.e., the game was won by the player who first

won three matches. Before the experiment started, the

subjects played a friendly game with the opponent for

10 minutes in order to get used to the slightly altered

bouncing properties of the table tennis ball (due to the
coating with reflective powder). Each subject was re-
quired to read the rules before the experiment. The

current score of the game in Condition 2 and 3 were

displayed on a scoreboard visible for both of the two

players. In each game, a referee ensured that the game

was conducted in accordance with the rules. The score

was protocolled by two of the experimenters indepen-
dently and reconciled afterwards.

3.1.4 Data Processing

The captured motion was post-processed using the VI-

CON IQ 2.5 software. The marker labels were auto-

matically assigned to each marker using the VICON

IQ 2.5 trajectory labeler. Errors that occurred dur-
ing this automatic labeling process were manually cor-
rected afterwards. The ball had to be labeled manually
as it was tracked similar to a single VICON marker.

The VICON IQ 2.5 kinematic fitting function computed

the 3D kinematic information of the subjects automati-

cally. Bouncing and hitting events for all data were then

automatically labeled during another MATLAB post-

processing step and manually reassigned if necessary.

For each point, the score was automatically computed

based on this information and reconciled with the score

§Expedite system: additional rules to discourage slow play
in a table tennis match. It is used after 10 minutes of play or
if requested by both players.
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Method Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Cooperative

Average reward difference MMG 1.01 0.28 0.90 1.16 0.69 0.49 0.55
with respect to the expert MMS 1.16 0.07 1.24 0.86 0.71 0.33 0.50

RE 0.70 0.11 0.60 0.80 0.42 0.31 0.55
Scores in Condition 2 5:33 12:33 2:33 5:33 2:33 21:34
Scores in Condition 3 13:33 17:33 10:33 5:33 17:33 20:33

Table 1 Summary of the results of the evaluations for the different methods. The differences in the average rewards with
respect to the expert, define the differences between the reward of the expert and the spared test subject of the non-expert
data set. The feature of winning and loosing the rally were not included. MMG corresponds to the model-free maximum-
margin of game values, MMS corresponds to the model-free maximum margin of states values with an horizon of three and
RE corresponds to the relative entropy method (see Section 2.2).

information recorded by the experimenters. Finally, for
each time where the ball was hit by the subject, the
corresponding state and reward features were extracted

and saved in a MATLAB file.

3.2 Results and Discussion

Only one of the subjects was able to win against the

opponent in the competitive game under Condition 3.

All other games were won by the skilled opponent. The

scoring results of the subjects that lost the game can be

found in Table 1. The skilled player who won the game

in Condition 3 was able to win 41 out of 75 rallies.

Based on these results, the data was divided into two

subsets: (1) a non-expert data set and (2) an expert

data set. The non-expert data set included all games

of the subjects who lost against the fixed opponent,

i.e., all naive subjects and one of the skilled players,

as well as all cooperative games. We will refer to the

players that lost as Naive 1 to 5 and Skilled 1. The

expert data set consisted of all rallies in the competitive

game (Condition 3) played by the skilled player that

won against the opponent. We will refer to this player

as Expert. When asked which player performed worst,

the opponent stated that Naive 3 was the worst.

We tested all three IRL methods as described in Sec-

tion 2.2. To evaluate the potential reward functions, we
performed a leave-one-subject-out testing scheme. We

computed the reward feature weights for each of the
three methods seven times. Every time leaving out all
rallies (i.e., state-action trajectories) of one of the sub-
jects that lost or the rallies of the cooperative game of

the Expert respectively. We also excluded 20 rallies of

the Expert for the validations. To this spared data of

the Expert and the Naive players we refer to as spared

test data. The obtained reward functions were tested

for the different skill levels of the subjects using the ex-

cluded rallies demonstrated in the game under Condi-

tion 3 only and the different styles using the cooperative

game of the Expert.

All resulting reward functions yielded the highest
rewards for the feature of the terminal state for losing

or winning the rally. Winning the rally was therefore

highly desirable for the agent while losing should be

avoided. For the evaluations, we did not consider this

feature in order to see how well we can distinguish the

subjects based on the other strategic elements.

Analyzing the scores yielded by the subjects in Con-
dition 2 and Condition 3, one can see that the scores

yielded by the Naive players are higher in Condition 3

than in Condition 2. This might seem contradicting on

a first glance. While the opponent was playing always

nicely back towards the subject in Condition 2 there

was a lower chance of making a fault. In Condition 3

however, the opponent played the ball such that there
is a higher chance that the subject is not able to return
the ball. By doing so, he also takes a higher risk of mak-

ing a fault. It seems reasonable to assume that a player

takes a higher risk when he has a reasonable advance

or is quite certain that he can beat his opponent. This

assumption seems to be reflected in the data, where it

can be observed that the opponent loses more points
in Condition 3 when his opponent was not as good (as
reflected in Condition 2).

Statistical significance values can be computed by

repeating the game of each player several times. How-
ever, it is anticipated that the behavior of the individual
players will change over time due to his increased ex-

perience and knowledge of the opponent. Consequently,
also their expected feature counts will change over time.
Significance tests might not be able to capture such
time varying behaviors of contestants during an ex-

tended match.

Due to the complex and multidimensional nature
of the task, the feature scores within a game usually

have a large variance. For this reason, we reported only
the average reward for each player. From the results
reported in Table 1, it can be concluded that the pre-
dicted performance (average reward) of each player is

correlated to the observed performance (actual score).
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horizon Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Cooperative

Average reward difference 1 1.30 0.04 1.17 0.91 0.74 0.30 0.43
with respect to the expert 2 1.20 0.07 1.22 0.87 0.72 0.33 0.47

3 1.16 0.07 1.24 0.86 0.71 0.33 0.50
Average reward differences 2 0.91 -0.21 0.92 0.57 0.38 -0.12 0.23
directly before terminal state 3 1.12 0.04 1.23 0.89 0.76 0.24 0.53

Table 2 Summary of the results for the different horizons with Algorithm 3. The differences in the average reward with respect
to the expert trained with the different horizons. The differences in the average reward directly before the terminal, define the
differences of the reward of the expert and the spared test subject for the state before the terminal or the average reward of
the two states before the terminal for the horizons 2 and 3 respectively.

In the following, we will first present the overall re-
sults of the three methods showing that we were able to

distinguish between different playing skills and styles.

Subsequently, we will discuss the influence of the hori-

zon for the MMS algorithm. Finally, we discuss the re-

sults for all features separately.

3.2.1 Classifying the Skill Levels of the Players

We computed the differences in the average reward for

a state-action pair of the spared expert and non-expert

data for the reward functions obtained from the three

methods described in Section 2.2 abbreviated as before
as MMG, MMS, and RE. The results in terms of the dif-
ferences in the average reward between expert and non-

expert are displayed in Table 1. All three reward func-

tions were able to distinguish between the non-expert

games and the expert game, as well as between the dif-

ferent playing styles of the expert (competitive vs coop-

erative). In general the average reward for each player
reflected the skill level of the players with the exception
of Naive 2. For all naive players except Naive 2, the dif-

ferences were high, while the difference between Skilled

1 and the Expert was moderate. These differences were

more distinctive for the MMS algorithm.

The player Naive 2 yielded similar scores as the Ex-

pert and the player Skilled 1 with respect to the ana-

lyzed features (see Table 1 and Fig. 8). Although the
subject did not yield as many points as player Skilled
1, he did achieve a better feature score. There are two

possible explanation for this result. First, it can be ar-

gued that the subject did use a similar strategy as the

Expert, but suffered from an inaccurate movement ex-

ecution due to his lack of practice. As a consequence

he made many mistakes as playing the ball into the
net or missing the court. Second, it is possible that we
are missing features that would distinguish the Naive

and the Expert. However, Naive 2 was the best of the

naive players and came close to the score observed for

the skilled player. Given the high scores in Condition 2

and 3 (compared to Skilled 1), it seems reasonable to

assume that player Naive 2 choose his actions based on

the same principles as the Expert in a game without

spin In comparison, Skilled 1 has a very good move-

ment execution due to his long training and experience.
However, he was not able to win against the opponent,
although this player had the most experience in terms
of years. This suggests that Skilled 1 was a very good

player in terms of playing the ball successfully back to

the opponent, but was not efficient in choosing his ac-

tions without the strategic element of spin.

The close feature scores of the subject Naive 2 and
the Expert also show that all tested algorithms are able

to deal with data sets where the non-optimal data con-
tains data were strategies similar to the expert are ob-
served.

3.2.2 Comparison of the tested IRL Methods

All three reward functions obtained in the evaluation

show a very small difference in the average reward of the

Expert and Naive 2, followed by Skilled 1 and Naive 5.

Furthermore, all three methods showed relatively large

differences between the Expert and the players Naive

1, Naive 3 and Naive 4. However, they disagree in the

ranking of these three players. While the reward func-

tion obtained by the MMG and RE algorithm show the

highest difference for the Expert and Naive 4, the re-

ward function obtained by the MMS algorithm yield

the highest difference between the Expert and Naive 3.

Naive 4 being the worst player is in compliance with the

scoring results of Experiment 3, while Naive 3 being the

worst player is in compliance with the statement of the

permanent opponent.

3.2.3 Influence of the Planning Horizon

For the maximum margin of the state values algorithm

given by the MMS algorithm, we evaluated the setup

with three different horizons. We chose the horizons of

H = 1, H = 2 and H = 3. The horizon of one only

considers one state-action pair. The horizon of two also

considers the state-action pair presented directly after
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(c) Average reward differences
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(d) Reward differences features at different time steps

Fig. 7 Resulting parameter values for the individual features. Figure (a) shows the resulting reward function of the table
preferences for Algorithm 3 (MM). Figure (b) shows the weights of all other features for Algorithm 3 (MM) and Algorithm 4
(RE), respectively. Figure (c) shows the differences of the average reward of the expert and the naive player for each feature
separately using the reward function of the maximum margin algorithm (green) and the relative entropy algorithm (yellow).
Figure (d) shows the differences of the average rewards for the most important features at different time steps before the
terminal state (win or loss) for the reward function yield with the maximum margin algorithm.

the current one. A horizon of three means that we con-
sider up to two state-action pairs following the current

one.

The results of the average reward differences of the

non-optimal policies and the expert for the whole game

and the states directly before the terminal are displayed

in Table 2. In general, the average reward difference was

reduced slightly with increasing horizon, while the aver-

age reward difference for the last H−1 states before the

terminal state increases with growing planning horizon,

reaching its maximum with a horizon of three. Horizons

larger than three did not improve the differences in the

reward.

3.2.4 Individual Reward Features

Analyzing the reward weights individually, the different

methods showed similar weights for the most important
features (i.e., the features with the highest weights and
highest resulting reward differences). The largest influ-

ence resulted from the bouncing angles θy and θz, the

table preferences and the distance between the desired

bouncing point and the racket of the opponent. For sim-

plicity, we will only discuss the parameter values for the

individual features of the reward functions obtained by

the MMS and RE algorithm (MMG had the worst per-

formance in terms of individual feature classification).

The reward weights for the individual features are

displayed in Figure 7a and b. We also showed the aver-
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Fig. 8 Individual player preferences. Histogram of the average reward differences between the expert and non-optimal players
for each player and each feature individually. The reward function was received by the MMS algorithm with a horizon of three.

age reward differences for the spared test data sets for

each feature individually in Figure 7b and for the differ-

ent time steps in Figure 7c. The individual differences

of each player are displayed in 7d. Figure 8 shows the

various characteristics of the features for each subjects

individually. We will discuss all features in the next sec-
tions.

A paired t-test was performed on the average re-

wards of the expert and the non-exert subject for each

feature (Figure 8). The results are reported below.

3.2.5 Goal Preferences on the Table

The preferences of the locations on the table are inde-

pendent from the state information of the opponent,

but they do reflect parts of the strategy that will also

be covered by other features. The resulting reward func-

tions of the different algorithms showed a preference for

the areas where the opponent would have to return the

ball using the backhand, while the areas that are suited

for returning the ball with the forehand and the ar-

eas directly after the net are often rather avoided (see
Figure 7a). The differences in the average reward for
the goal preferences on the table were significant for

both MMS (t(4)=-4.22, p=0.008) and RE (t(4)=-3.06,

p=0.03).

3.2.6 Distance to the Edges of the Table

The distance of the bouncing point of the ball to the

edges of the table had only a small positive influence

in the reward function yielded by the maximum mar-

gin algorithm. The reward function yield by the RE

algorithm assigned a little negative reward for play-

ing the ball close to the edge in the y-direction (i.e.,

along the width of the table) and a relatively high

negative reward for playing the ball close to the edge

in the x-direction (direction towards the player). The
average reward differences in the evaluations indicate
that the reward assigned by the reward function of the

RE method is to be favored (see Figure 7b). However,

the average reward differences in x and y-direction are

not significant for both MMS (t(4) = 2.07, p = 0.09;

t4) = 1.18, p = 0.29) and RE (t(4) = −1.85, p = 0.12;

t(4) = −0.91, p = 0.40).

3.2.7 Distance to the Opponent

Maximizing the difference between the position of the

bouncing point and the position of the opponent in

the x-direction (i.e., direction towards the opponent)

received only a small reward (Figure 7a) and also had

only a small effect in the evaluations (Figure 7b). While

the reward function of the maximum margin algorithm

assigned a slightly positive reward for maximizing this

distance, the reward function yielded by the relative

entropy algorithm assigned a slightly negative reward.

The evaluations on the spared test data were in fa-

vor for the positive reward weights. The differences in

the average reward were not significant for both MMS

(t(4) = −1.5, p = 0.19) and RE (t(4) = 1.25, p = 0.26).

The distance in y-direction (i.e., along the width of

the table) between the bouncing point and the racket
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Fig. 9 Possible strategy that distinguished the expert player that won the game, from the non-expert players that lost the
game against the opponent. If the expert had the chance, he would play the ball very cross to the backhand area (Figure a).
As a result the opponent was forced to move more into the left corner. The expert could then play the ball to the forehand
area in order to increase the distance between the ball and the opponent.

of the opponent resulted in a high reward in both re-

ward functions. This feature also influences the differ-

ences in the reward yield by the naive and expert table

tennis player. The difference in the average reward of

the expert and the subjects were significant for both

MMS (t(4) = −2.67, p = 0.044) and RE(t(4) = −2.69,

p = 0.046).

The overall performance on average only increased

by ∼ [0.05|0.08]¶. The differences in the average re-
ward for the features before a terminal state, increased

dramatically by ∼ [0.26|0.40] and became a dominant

factor in the reward function (see Figure 7d). The dif-

ferences between the average reward two states before

the terminal was below average. This observation sug-

gests that the chance of winning a point increases with

an increasing distance between the bouncing point and

the racket between the player.

3.2.8 Proximity to the Elbow

Playing towards the elbow of the opponent had a neg-
ative effect. The weights for the elbow features were
negative and increased the differences in the average re-

ward between non-expert players and the expert player

(see Figure 7b). The differences in the average rewards

between expert and subjects were significant for RE

(t(4) = −3.01, p = 0.03), but not for MMS (t(4) =
−2.47, p = 0.06).

3.2.9 Velocity of the Ball and Opponent

The feature for the velocity of the ball had only a

small positive weight and almost no influence on the

¶In the following, the first value will correspond to the re-
ward differences obtained by MMS algorithm and the second
value will correspond to the reward differences obtained by
the RE algorithm

difference between the players (see Figure 7a and b)

in the evaluations. This feature was also not signifi-

cant for both MMS (t(4) = −2.24, p = 0.07) and RE

(t(4) = −2.25, p = 0.07).

The movement direction of the opponent relative

to the ball had a moderate positive weight (see Figure

7a), but only a small influence in the evaluations on the

differences between the non-expert and expert data set.

These differences were significant in both MMS (t(4) =
−4.7, p = 0.005) and RE (t(4) = −3.8, p = 0.01). This

observation indicates that this feature was used by the

Expert but did not dominate his behavior.

3.2.10 Direction of the Ball

We evaluated the direction of the ball by means of two
angles: θz and θy. The horizontal angle θz had a high

negative reward value, i.e., smaller angles were pre-

ferred. The overall difference in the performance be-

tween the Expert and the naive players did increase

the overall reward difference only slightly. Hence, the

ball was in general played in a slightly flatter manner

by the expert. However, this feature was not signifi-
cant for both MMS (t(4) = −1.26, p = 0.26) and RE

(t(4) = −0.35, p = 0.73).

The angle θy also had a high negative weight, i.e.,
playing the ball cross to the backhand area was pre-
ferred to playing the ball cross towards the forehand
area. These results are conform with the table prefer-

ences as displayed in Figure 7a. This feature was one

of the dominating factors in the reward function and

in the evaluations of the excluded subjects. The av-

erage difference between expert and naive players for

the state right before the terminal state was only de-

creased by ∼ [0.02|0.01]. The average reward two states

before the terminal state on the other side were much

higher than the overall average reward (∼ [0.48|0.25]).
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The differences in the average reward of the expert and

the subjects were significant for this feature for both

MMS (t(4) = −3.46, p = 0.018) and RE (t(4) = −3.56,

p = 0.016).

This observation together with the results of the dis-

tance of the bouncing point and the racket, suggests the

following strategy successfully applied by the Expert.

When playing the ball very cross to the outer back-
hand area of the opponent, the opponent was forced to
move to his left. The expert used this opportunity to

play the ball to the other side of the table in order to

increase the distance between the ball and the oppo-

nent, although he usually did not play to the forehand

area (see Figure 9).

The observation that the overall difference in the re-

ward between the Expert and Naive 2 and the Expert

and Skilled 1 are not high, indicates that these two

players use similar techniques in terms of playing the

ball cross to the backhand area. However, when com-

paring the results in the last hits before the terminal

state, we notice that i) the expert usually plays the ball

more cross in the backhand area, forcing the opponent

to move further in this direction and ii) the other two

players did not play the ball into the other direction

afterwards in order to increase the distance.

4 Conclusion

In this paper, we modeled table tennis games as a Markov

Decision Problem. We have shown that it is possible

to automatically extract expert knowledge on effective

elements of basic strategy in the form of a reward func-

tion using model-free Inverse Reinforcement Learning

(IRL). To accomplish this step, we collected data from

humans playing table tennis using a motion capture

system. Participants with different skill levels played in

both a competitive and a cooperative game during this

study. Based on their performance, we divided the data

into an expert and a non-optimal data set. These data
sets have been used to infer and evaluate the reward
functions.

We have tested three different model-free inverse re-

inforcement learning methods. Two were derived from
the model-based IRL method of Abbeel and Ng (2004).
The third algorithm was the model-free relative entropy

method of Boularias et al. (2011). The resulting reward
functions were evaluated successfully in a leave-one-
subject-out testing scheme. All learned reward func-

tions were able to distinguish strategic information of

players with different playing skills and styles. The find-

ings of all tested IRL methods suport each other and

demonstrate that they are all suitable for the challeng-

ing task context presented in this paper.

The presented approach used information about the

position of the player and the opponent as well as the
ball position, velocity and orientation. However, assump-
tions made by the player about the spin or the strategy

of the opponent were not included in this setup. The

reward function was able to capture the goal of the

task, in terms of winning the rally while avoiding to

lose it. The key elements revealed by the model were

(i) playing cross to the backhand area of the opponent,

(ii) maximizing the distance of the bouncing point of

the ball and the opponent, and (iii) playing the ball in

a flat manner. Other elements as playing against the

moving direction and the velocity of the ball were also

positively correlated.

The presented approach is not limited to analyzing

individual preferences of players and successful strate-

gic components against a specific opponent. Rather,

the learned reward function can also be used within
the MDP framework for artificial systems such as ta-
ble tennis robots or virtual reality-based table tennis
games. Thus, the robot can learn a strategy against a

human opponent. The described method allows an ar-

tificial system to analyze the strategy of the opponent

and as a result, the system will be able to anticipate

the actions of its opponent. Such anticipation can al-

low artificial systems to adapt their own strategies to

improve their chances‖.

In this paper, we modeled table tennis as an MDP,
assuming the task consists of one agent that has per-

fect knowledge about its environment. This approach is

a good starting point, but might be an overly strong as-

sumption. In the current model, we did not account for

the opponent’s personal weaknesses, his strategy, spin

of the ball and the possibility of imperfect sensory in-
formation. Here, PoMDPs could be useful. In contrast
to modeling the task using a MDP, PoMDPs assume
that the agent cannot completely observe its environ-

ment. PoMDPs model uncertainty of the state the agent

is currently in such that we are able to include beliefs

about the intentions of the opponent. Here, it should be

investigated whether it is possible to extend the model-
free methods presented in this paper to PoMDPs.

In future work, we will also investigate if it is pos-

sible to use the Kinect cameras instead of the VICON
system in order to track the players. Furthermore, we
plan to integrate the results of this study into a robot

table tennis setup.

‖Please note, such a reward function could also contain
agent specific intrinsic cost, which might not straightforward
to transfer to an artificial system.
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