
Start State Selection for Control Policy Learning from Optimal
Trajectories

Christoph Zelch1, Jan Peters2, Oskar von Stryk3

Abstract— Combination of optimal control methods and ma-
chine learning approaches allows to profit from complementary
benefits of each field in control of robotic systems. Data from
optimal trajectories provides valuable information that can be
used to learn a near-optimal state-dependent control policy. To
obtain high-quality learning data, careful selection of optimal
trajectories, determined by a set of start states, is essential to
achieve a good learning performance.

In this paper, we extend previous work with new comple-
menting strategies to generate start points. These methods
complement the existing approach, as they introduce new
criteria to identify relevant regions in joint space that need
coverage by new trajectories. It is demonstrated that the
extensions significantly improve the overall performance of
the previous method in simulation on full nonlinear dynamics
model of the industrial Manutec robot arm.

Further, it is demonstrated that it suffices to learn a policy
that reaches the proximity of the goal state, from where a
PI controller can be used for stable control reaching the final
system state.

I. INTRODUCTION

With the offline computation of optimal trajectories, pre-
existing knowledge about the potentially large-scale and
typically non-linear dynamic behavior of systems and its
(non-)linear constraints on state and control variables can be
utilized to produce movements that are optimal with respect
to performance criteria formulated using cost functions. Ap-
plied in practice, model inaccuracies or external disturbances
lead to deviations from the optimal trajectory which require
additional procedures that are often sub-optimal.

In contrast, reinforcement learning approaches, which are
often used in this context, are designed to adapt to unforeseen
situations and learn relations previously unknown to the user
that are required to achieve some defined goal. However,
these methods typically need large amounts of data and many
interactions between agent and system, the consideration of
non-linear constraints, e.g. implicitly in the reward function,
is often cumbersome. Thus, the combination of methods
from optimal control theory and machine learning to benefit
from the complementing advantages of both fields, seems
promising.

In [1], we have proposed an approach to iteratively collect
data from optimal trajectories to learn a near-optimal state-
dependent control policy using a Gaussian process (GP).

1,3Christoph Zelch and Oskar von Stryk are with the Simulation, Sys-
tems, Optimization and Robotics Group, Department of Computer Science,
TU Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany {zelch,
stryk}@sim.tu-darmstadt.de

2Jan Peters is with the Intelligent Autonomous Systems Group, De-
partment of Computer Science, TU Darmstadt, Hochschulstr. 10, 64289
Darmstadt, Germany jan.peters@tu-darmstadt.de

Special focus has been on the identification of useful start
states for the optimal trajectories.

The insight that motivates this paper is that more than one
strategy is required for the selection of new trajectory start
states, as large co-state values are not the only reasonable
criterion for a good start state. The main contribution of this
work is the proposition of new approaches to determine good
start positions in joint space for useful new trajectories that
provide information suitable to supplement the data that is
used to train a GP. Further, we use a more sophisticated
method to filter linearly dependent data points that produce
noise in the kernel matrix of the GP. Both improvements
allow us to generate more meaningful data to the GP, which
enables a more precise approximation of the near-optimal
policy. Finally, we demonstrate that it is not necessary to
reach the exact goal state with the learned control. Instead,
it suffices to reach a ball around the goal state, from which
control is passed to a traditional PI controller that guides
towards and stabilizes around the goal state.

The paper is organized as follows. We start with a
discussion of related work and subsequently introduce the
problem considered in this paper. In Section II, we propose
the extensions and improvements of [1] outlined above. The
evaluation of the presented approach is described in Section
III. We end with concluding remarks in Section IV.

A. Related Work

The various existing approaches to generalize a control
policy from optimized trajectories use different approaches
to select start states for the trajectories used. Approaches
that do not rely on an iterative approach but decide before
any optimization on the set of start states typically rely
on a fixed grid [2]–[4] or on uniform random sampling
[5], [6]. Random sampling is also used very frequently in
iterative approaches, like Latin Hypercube sampling in [7]
or (uniform or Gaussian) random sampling with acceptance
criteria in [8].

Another approach to obtain state-feedback controllers con-
siders parameterized skills to solve families of control tasks.
Bayesian optimization with a specially designed acquisition
function is used in [9] to select new training tasks that max-
imize expected improvement in overall skill performance.
Since they solve families of control tasks instead of a policy
for a single task, they can reuse unsuccessful policies that
appeared during training as training samples for a different
goal [10]. Levine et al. [11] focus on regions with high
reward and use the results of Iterative LQR to create samples
that guide their policy search algorithm into these regions.



Special focus on the selection of new training tasks for
learning parameterized policies for families of tasks is in
[12]. The authors present a detailed algorithm to generate
new training tasks to explore the task space. The self-
generation of new tasks is based on a measure of interest,
defined as variation of competence, which is related to the
number of efficient attempts to reach a goal.

It should be noted, that in this paper, we aim for iden-
tifying start states of trajectories, such that these, once
optimized, provide useful data to improve the learned control
policy, and not for good initial guesses to warm-start trajec-
tory optimization as done e.g. in [13], [14] or [15]. These are
different types of problems and must not be interchanged.

B. Problem Formulation

We consider continuous time nonlinear dynamic systems

ẋ(t) = f(x(t), u(t)) (1)

that model robot dynamics with state x ∈ Rnx and control
u ∈ Rnu vectors. In general, we assume that there are
constraints on the joint states and velocities xmin ≤ x ≤ xmax
and also on the control values umin ≤ u ≤ umax. It should
be noted that the approach presented in this paper can be
extended to cover also nonlinear state and control constraints.

We define the cost function

J (x, u) := Φ (x(tf ), u(tf ), tf ) +

∫ tf

0

L (x(τ), u(τ), τ) dτ

with terminal cost Φ and running cost L.
The control function ũ and the resulting trajectory x̃ solve

an optimal control problem if they minimize the given cost
function J and satisfy the motion dynamics (1), the limits
on state and control variables and, if existent, other nonlinear
state and control constraints. The state at final and end time
as well as the finite end time tf ∈ R of the optimal control
problem can be free or fixed.

In this article, we aim to find some approximation of
the state-dependent feedback control π(x(t), t), such that its
application, starting from some feasible initial states x0 ∈ X ,
leads to an optimal trajectory x̃ such that (x̃(t), π(x̃(t), t))
minimizes J . We consider only problems without contact
situation.

II. DESCRIPTION OF THE METHOD

Extending our method presented in [1] which we briefly
recapitulate in the first subsection, we present three new start
state generation strategies, that focus on different aspects.
We continue with the description of some improvements
concerning the rejection of linearly dependent data points.
In the last subsection, we describe the switch-over to a LQR
controller in the neighborhood of the goal state.

A. Existing Method

In an iterative approach, we collect data from several
optimal trajectories to learn a state-dependent control policy
using a Gaussian process (GP). The start point for a new
trajectory is not determined a priori but selected in each

Computation
of optimal
trajectories

Discretization
of computed
trajectory

Update of the
control policy
approximation

Selection of
new start

state

problem descr.
start state

IN

near optimal
control policy

OUT

Fig. 1: The four main steps of our method in [1].

iteration based on information from previously computed
trajectories and the current state of the GP. A flowchart that
shows the four major steps is given in Figure 1.

In a first step, we solve a given optimal control problem
as defined in Subsection I-B for some initial start state using
DIRCOL [16]. The resulting trajectory is discretized into
a grid of data points in a second step. These data points
are added to the training data of the GP, which is retrained
afterwards. In a last step, we compute new candidate start
states from the new trajectory and select a new start state
from all candidates based on the current variance of the
learned GP. With the new start state, we repeat the four steps,
refining the learned control policy, until some exit condition
is fulfilled.

The four steps of the algorithm can be replaced by other
approaches. Instead of DIRCOL, one can use some other
optimal control solver (e.g. Bocop [17]), further, the GP that
acts as control policy approximator can e.g. be replaced by
an artificial neural network. However, the replacement of the
approximator must provide some estimate of the uncertainty
of the estimation. Several methods exist to provide neural
networks with this ability [18], [19], since for our method
only epistemic uncertainty is relevant, one can use Monte
Carlo dropout [20], [21]. An in-depth comparison of the
performance of different approximators in this framework
is beyond the scope of this paper and will be considered as
another study.

The selection of start positions for new trajectories is
crucial, as it determines the data that is added to the learning
routine. For the method to be successful, there must be
enough information in the relevant region. This requires the
optimal trajectories that provide the data to be distributed
such that the learned policy is able to deal with unexpected
deviations from the original path.

In [1], we used co-state values to indicate parts of the
trajectory where some deviation has considerable impact on
its cost at the end point. For a given trajectory (x(t))t∈[0,tf ]

,
we used local maxima of the co-states

λ(t) =
∂V (x(t), t)

∂x(t)
(2)

to compute new candidate start states that accumulate accross
iterations. In each iteration, we selected the one at which the
GP has the highest variance.



B. New Strategies for Start State Selection

Our focus on the co-state variables that identify parts
of the trajectory where deviations have a high impact on
the cost, ignores other aspects that are also important for
an accurate approximation of the optimal control policy. In
the following, we will introduce various start point selection
strategies intended to complement each other as well as the
method based on co-states variables. The strategies reflect the
different requirements on the trajectories that provide data to
learn the near-optimal policy.

1) Sensitivity-based: While the examination of co-states
indicates regions in the state space with a high impact on the
resulting trajectory cost, it is also important to focus on data
in regions, where small deviations in the control value may
lead to large changes in the state and thus notably change
the trajectory from this point.

In the following, we will need a notion of the relative
perturbation error, or sensitivity of the state variables, which
we define following [22]. Let x(t0+ t) = M t

f (x(t0)) denote
the numerical time integration of the differential equation
f(x, u), representing the dynamical system, starting from
state x(t0).

For ε > 0 small, a fixed time window δt > 0 and the j-th
column vector of the identity matrix ej , we define with

P
Mf ,δt,ε
j (x) =

M δt
f (x+ εej)−M δt

f (x)

ε
, (3)

the partial sensitivity approximation of f at state x. Let
further be

pMf ,δt,ε(x) =
(
∥PMf ,δt,ε

1 (x)∥, · · · , ∥PMf ,δt,ε
n (x)∥

)
(4)

the sensitivity vector that holds the normed perturbation for
all partial derivatives.

Note that the absolute error of the numerical integration
scheme with respect to the perturbation error ε must be
sufficiently small to provide a meaningful approximation of
the sensitivity. For a given trajectory (xref(t))t∈[0,tf ]

with end
time tf , we use a coarse time grid Γ = {t0, t1, . . . , tk} with
t0 = 0 and tk = tf .

Assume that there is a distinguished peak at tp ∈ Γ in the
sequence pMf ,δt,ε(x(t0)), . . . , pMf ,δt,ε(x(tf )), and Γ ∋ tv <
tp such that ∥pMf ,δt,ε(x(ti))∥ is increasing for tv ≤ ti ≤ tp.
Then we add the two points

xref(tv)± µsens
pMf ,δt,ε(x(tv))

∥pMf ,δt,ε(x(tv))∥
(5)

to a strategy-specific set of candidate start states for new
trajectories.

2) Simulation-based: For a given trajectory xref(t) with
control uref(t) at times t ∈ [0, tf ], we simulate the trajectory
that results from the currently learned control, starting from
the same state as the reference trajectory xref(0). We compare
the resulting trajectory (xsim(t), uGP(t)) on a fine grid Γ
with the reference trajectory and identify the time at which
the maximum deviation occurs. In this comparison, we

compensate for some time offset τ between optimal and
simulated trajectory.

di = d(ti) = xref(ti)− xsim(ti − τ), ti ∈ Γ

and ∆i = ∆(ti) = ∥di∥ where τ minimizes the sum of all
deviations ∆i at the grid points in Γ.

Identify, if existent, a distinguished peak at tp ∈ Γ in the
sequence of deviations di and let again Γ ∋ tv < tp be the
time from which this peak starts growing, i.e., ∆(ti+1) >
∆(ti) for all tv ≤ ti < tp. A new candidate start state is
then given as

xref(tv) + µsim
d(tv)

∆(tv)
, (6)

at a user-defined distance µsim from the reference trajectory
in the direction d(tv) of the deviation occurring in simula-
tion.

3) Around the Initial State: The start positions generated
from one of the two previously described methods are
typically closer to the goal position than the start state of the
original trajectory. To get some longer trajectories, we choose
start states in the proximity of the initial, user provided
start state x0 of the first trajectory. To keep our method
deterministic, we use the quasi-random Halton sequence [23]
to compute start positions for new trajectories:

x0 + µH
Hi

∥Hi∥
. (7)

Again, µH is some user-defined parameter that denotes the
desired distance from x0, Hi is the i-th element of the multi-
dimensional Halton-sequence.

For this strategy, we ignore variance information from the
learner and always choose the next iterate in the Halton
sequence. Note that, in contrast to the other approaches, this
start point generation method does not use information from
already computed trajectories.

4) Combination of the Variants: All variants make sure
that every new start position they provide is feasible, by
either reducing the distance to the original state or adapting
the direction that points from the original state. The strategies
that build a set of candidate points use all optimal trajectories
that have been computed to enlarge this set. For the selection
of a new start state used in the next iteration, the four start
point generation methods are used sequentially, one in each
iteration.

C. Discretization and Training

Given some learning data (x̃i, ũi)i=1,...,N , predictions
of Gaussian processes require the inversion of a matrix(
K + σ2I

)
, where I is the identity matrix of suitable size,

σ2 some positive noise constant and K is the Gramian matrix
of the vectors {x̃1, . . . , x̃N} with respect to the selected
GP kernel function [24]. The Gramian K is positive semi-
definite by construction and positive definite if and only if
the vectors x̃i are linearly independent. To get an invertible
matrix

(
K + σ2I

)
with the noise σ as small as possible, it is

necessary to have only relevant and unique training data. In
[1], a new data point (x̃N+1, ũN+1) is rejected if its distance



to an other data point in the existing learning data falls below
some constant c > 0, i.e.,

min
i=1,...,N

{∥x̃N+1 − x̃i∥} < c. (8)

However, the parameter c must be chosen conservatively to
avoid a reduction in quality of the GP’s performance during
execution of the algorithm. Instead, we now add the new
training data from a trajectory, compute the resulting kernel
matrix K and use a QR decomposition1 to identify a linearly
independent subset of columns C ⊆ {1, . . . , N} in K. We
restrict the set of training data to (x̃i, ũi)i∈C , which ensures
that the kernel matrix K stays invertible despite the addition
of arbitrary new data points2.

The new approach more reliably filters training data that
would lead to high noise, which allows us to add more
training data per trajectory.

D. LQR Control near the Goal State

Exact convergence towards and stabilization around the
goal state xf is difficult to achieve with our learned con-
trol, as learning data becomes sparse in its close vicinity.
However, there are more appropriate methods to stabilize a
control system around some goal state.

We linearize the error system around xf and use a linear
quadratic regulator (LQR) approach to design a PI control
law around the goal state. To deal with steady state errors
(e.g. caused by model errors), we augment the system to
implement an integral action control. Like this, the learned
control needs not to reach the exact goal position but only
some ball around the final state, from which control is passed
to the computed PI controller.

This renders the use of additional short trajectories around
the goal state as described in [1] unnecessary.

III. EVALUATION

The improvements detailed in the previous section have
been evaluated in simulation to have exact information about
the behavior of the investigated system available. We use the
same system as in [1], the Manutec r3 robot arm, to allow a
comparison of the results.

The problem specific cost function

J (x, u, tf ) = tf + ρ

∫ tf

0

3∑
i=1

ui(t)
2 dt (9)

with ρ = 10−3 from [25] leads to contact-free energy-
minimal movements with an additional penalty for the end
time. We use the first three joints of the arm, which deter-
mine the position of the end-effector. The highly non-linear
dynamic model of the robot arm can be found in [26].

We consider point-to-point movements from the initial
joint position x0 =

(
0,−1.5, 0, 0, 0, 0

)
to the final joint

position xf =
(
1,−1.95, 1, 0, 0, 0

)
. The state and control

1Matt J (2022). Extract linearly independent subset of matrix columns,
MATLAB Central File Exchange

2This approach is inspired by a forum post by Jack Fitzsimons: https:
//stats.stackexchange.com/q/189816 (version: 2016-01-08).

variables are constrained by the box constraints xmax =
(2.97, 2.01, 2.86, 3.1, 1.5, 5.2), xmin = −xmax and umax =
(7.5, 7.5, 7.5), umin = −umax. In simulate, we tolerate small
violations of the state constraints and increase the box
constraints by five percent. If the learned controller exceeds
the control bounds, the value is set to the boundary of the
feasible region.

Our method is implemented and run in Matlab 2021b, we
use the implementation of Gaussian processes provided by
package GPmat written by Lawrence et al [27], the Fortran
implementation of DIRCOL [16] is interfaced using mex-
files. Simulations are performed using the ode45 routine
included in Matlab, which is based on the Dormand-Prince
integration method (relative error tolerance 10−8, absolute
error tolerance 10−9).

A. Performance of the Start Point Generation Strategies

We analyze the contribution of each new start point gen-
eration strategy to the resulting learned control. We compare
the performance of the GP approximation that has been
trained using all four proposed strategies with the learned
near-optimal control that has been trained alike but with a
single start point strategy missing. In the following, we will
refer to these five scenarios as full, noAdj, noSens, noSim
and noHalt. For each scenario, we stop the training after use
of 30 trajectories, such that the number of trajectories used
for training is approximately as large as in [1].

For each optimal trajectory (xref(t), uref(t))t∈[0,tf ]
of the

test set, we simulate the movement of the robot arm, using
all five learned control policies one after another. For this
evaluation, we do not use the LQR control close to the
end state xgoal to avoid tampering the result. Instead, for
a simulated trajectory xsim(t), we consider the time

t′f,sim := argmin
t

∥xsim(t)− xgoal∥ (10)

as final time of the simulated trajectory. The distance at
the final simulation state to the goal state is given by
d := ∥xsim(t

′
f,sim) − xgoal∥. We call a simulation successful,

if d < 0.2.
To allow a fair comparison between simulated and optimal

trajectory, we define the time at which the optimal reference
trajectory has the same distance to the goal state as the
simulated trajectory at its final state:

t′f,ref : ∥xref(t
′
f,ref)− xgoal∥ = ∥xsim(t

′
f,sim)− xgoal∥. (11)

For the comparison of the five learned control policies, we
consider the following two performance criteria:

1) Distance of final simulation state from the goal state:

∥xsim(t
′
f,sim)− xgoal∥ (12)

2) Ratio of terminal times:

t′f,sim/t
′
f,ref (13)

We use a test set of 300 optimal reference trajectories
from random start positions with defined distance to the joint
state x0 to evaluate the performance of the five scenarios



introduced above. The test set consists of six groups of
50 trajectories, where the start state of all trajectories in a
group has the same distance from the initial start state. The
Euclidean distances are 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3.
The results for each scenario are summarized in Figure 2.
The bar plot shows the number of successfully solved test
instances. The two box plots visualize the result with respect
to the final trajectory distance to the goal state (see (12)) and
the ratio of simulated to optimal trajectory time (see (13)).

The scenario noHalt gives the highest number of successes
and the second best end positions. However, the end times are
very far from optimal, which justifies the use of the Halton
based strategy. The sensitivity-based strategy seems to have
the largest impact on the performance of the method, as the
extremely low number of successfully solved trajectories in
noSens implies. By far the worst final distances from the
goal are reached without the co-state variable based strategy
(noAdj), which underlines its usefulness.

The scenario including all start state selection strategies
(full) gives a reasonable trade-off between the evaluated
performance criteria (12) and (13). In the evaluation of the
distance from the goal state, scenario noSim shows the best
results, as in the mean the end positions are much closer
to the goal state. Its ratio of end times is nearly optimal.
Consequently, it turns out that the simulation based strategy
has the lowest impact on the overall performance. For this
reason, we use the learned control generated with the noSim
scenario in the subsequent evaluation.

B. Comparison with previous results

To show that our new start state selection strategies im-
prove the results achieved in [1], we evaluate the learned con-
trol created for the noSim scenario on the test set constructed
in there. This test set consists of 200 optimal trajectories
whose start states’ distance from x0 ranges from 0.1 to 0.3.
Further, we use the evaluation code from our previous work.
It must be noted that in [1], 9 distinct trajectories around the
goal state xf have been added to improve convergence. In
this paper, these goal state trajectories are omitted in favor
of a PI control close to the goal state. This PI control is left
out here and evaluated in the next subsection.

We simulate the movement from the start states in the
test set using the learned control and evaluate the shortest
distance from the goal state that is reached by the simulated
arm. Further, we consider the ratio of times for the opti-
mal and simulated movement. The results are presented in
Figure 3. The new start state selection strategies significantly
improve, apart from some outliers, the costs and end times of
the simulated trajectories. Some of the cost ratios are slightly
below 1.0. This is not a flaw in the trajectory optimizer
DIRCOL, but results from the fact that, by accepting all
trajectories that reach some region around the goal state, we
have relaxed the original problem formulation. This makes
it possible that some simulation results ”outperform” the
optimal solution that actually reaches the goal state.

The closest distance to the goal state is worse than in [1],
which can be attributed to the missing goal state trajectories.

This underlines the importance of a PI control around the
goal state, which is evaluated in the next subsection.

C. LQR Control near the Goal State
In this subsection, we evaluate the performance of the

learned control policy combined with a linear feedback con-
troller around the goal state xgoal. We use a linear quadratic
regulator (LQR) to design PI gains that can be applied
in the close proximity of xgoal. To compensate for steady
state errors, we augment the system with additional states
to integrate the state error over time. The augmented LQR
problem is given by

min
u

∫ ∞

0

x̂TQxx̂+ ûTQuû+ ẑTQiẑ dt (14)

s.t. ẋ = Ax̂+Bû, ż = x̂[”states”], z(0) = 0

x̂ := x− xg, û := u− ug

A =
∂f(x, u)

∂x

∣∣∣∣
(xg,ug)

, B =
∂f(x, u)

∂u

∣∣∣∣
(xg,ug)

where z is the integrated error that augments the system, xg
and ug are short notations for xgoal and ugoal. State vector
x contains three joint states and three corresponding joint
velocities. The weight matrices Qx, Qu and Qi are diagonal
matrices with values as follows:

Qx = diag
([
80, 350, 100, 0, 0, 0

])
Qu = diag

([
1.0, 1.0, 1.0

])
Qi = diag

([
10, 4500, 800, 0, 0, 0

])
We use Matlab’s routine lqr to solve the resulting alge-

braic Riccati equation and get the gain matrices K and Ki

that determine the state space controller

u(t) = ugoal −K(x(t)− xgoal)−Kiz(t). (15)

For each trajectory in the test set, we start with the trained
controller evaluating the GP and switch to the PI controller
(15) as soon as the normed distance of the joint states from
the goal state falls below some threshold cin. Once the system
switched to the linear controller, we only switch back to the
GP controller if the normed distance of the full system state
to the goal state exceeds cout.

• Start LQR control if ∥x1,2,3(t)− xgoal,1,2,3∥ ≤ cin
• Leave LQR control if ∥x(t)− xgoal∥ > cout

We say that the system approaches the goal state if the
distance between system state and goal state falls below cin,
and reaches the goal state if the error is smaller than 10−3.
As soon as the simulated system leaves the area around the
goal state that is covered by the LQR controller (15), we
stop the simulation and mark this instance as failed.

We simulate the movement of the robot arm starting from
the start states of the trajectories in our test set from [1]
and compare the time needed to reach the goal state. The
values cin = 0.15 and cout = 0.6 turned out to be viable.
The results are given in Figure 3. The trajectories reach
the goal state (distance below 10−3), improving the final
distance compared to the simulation without LQR control
by two orders of magnitude. This comes with an increased
cost and end time.



(a) Number of successful simulations (in blue). (b) Distance at closest state (c) Ratio of end times

Fig. 2: Comparison of the five learned control policies with all start state generation strategies and with one strategy missing.
The results are computed on the test set described in Subsec. III-A. The bar plot visualizes the number of successes for six
different distances of start states from the initial start state. The two box plots presents two important performance criteria.
The boxes encompass the interquartile range (IQR), the maximal whisker length is 1.5 · IQR, outliers are marked by ◦.

Fig. 3: Comparison of results in [1] (Previous) with results
of this approach with and without LQR control ((GP+LQR),
(GP), see Subsec. III-C and III-B). From left to right: Closest
distance to the goal state, ratio of Lagrange cost term of
simulated to optimal trajectory, and end time in simulation.

IV. CONCLUSION

Applying the changes described in this work, we are able
to improve the performance of our method presented in [1].
We have developed three new strategies to identify start states
for new trajectories such that they provide useful information
to train the near-optimal control policy. The simulation based
strategy does not show the expected results. Nevertheless,
our evaluation demonstrates that the sensitivity based and
the Halton based start state generators are valuable strategies
improving the method developed in the previous work. This
underlines the importance of a sensible selection of start
states for new trajectories and justifies our effort in this sub-
ject. Further, we have examined the switch-over in proximity
to the goal state from the learned near-optimal control to a
stabilizing LQR controller. Although this impacts optimality,
it is a crucial complement for the learned controller to make

the system reach the goal state.

REFERENCES

[1] C. Zelch, J. Peters, and O. von Stryk, “Learning control policies
from optimal trajectories,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 2529–2535.

[2] H. J. Pesch, I. Gabler, S. Miesbach, and M. H. Breitner, “Synthesis of
optimal strategies for differential games by neural networks,” in New
Trends in Dynamic Games and Applications. Birkhäuser Boston,
1995, pp. 111–141.

[3] M. H. Breitner, “Robust optimal onboard reentry guidance of a space
shuttle: Dynamic game approach and guidance synthesis via neural
networks,” J. of Optim. Theory and Appl., vol. 107, no. 3, pp. 481–
503, 2000.

[4] M. Hardt, “Multibody dynamical algorithms, numerical optimal con-
trol, with detailed studies in the control of jet engine compressors and
biped walking,” phdthesis, University of California, 1999.

[5] T. A. Howell, C. Fu, and Z. Manchester, “Direct policy optimization
using deterministic sampling and collocation,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5324–5331, 2021.

[6] M. P. Deisenroth, C. E. Rasmussen, and J. Peters, “Gaussian process
dynamic programming,” Neurocomputing, vol. 72, no. 7, pp. 1508–
1524, 2009.

[7] P. Ghosh and B. A. Conway, “Near-optimal feedback strategies syn-
thesized using a spatial statistical approach,” Journal of Guidance,
Control, and Dynamics, vol. 36, no. 4, pp. 905–919, 2013.

[8] C. Atkeson and B. Stephens, “Random sampling of states in dynamic
programming,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 38, no. 4, pp. 924–929, 2008.

[9] B. Da Silva, G. Konidaris, and A. Barto, “Active learning of param-
eterized skills,” in Proc. of the 31st Int. Conf. on Mach. Learn., ser.
Proc. of Mach. Learn. Res., vol. 32, no. 2. PMLR, 2014, pp. 1737–
1745.

[10] B. da Silva, G. Baldassarre, G. Konidaris, and A. Barto, “Learning
parameterized motor skills on a humanoid robot,” in 2014 IEEE Int.
Conf. on Robot. and Automat. (ICRA), May 2014, pp. 5239–5244.

[11] S. Levine and V. Koltun, “Guided policy search,” in Proc. of the 30th
Int. Conf. on Mach. Learn., ser. Proc. of Mach. Learn. Res., vol. 28,
no. 3. PMLR, 17–19 Jun 2013, pp. 1–9.

[12] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

[13] T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of
motion for warm-starting trajectory optimization,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2594–2601, 2020.

[14] N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a memory of motion to efficiently warm-start a nonlinear
predictive controller,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 2986–2993.



[15] W. X. Merkt, V. Ivan, T. Dinev, I. Havoutis, and S. Vijayakumar,
“Memory clustering using persistent homology for multimodality- and
discontinuity-sensitive learning of optimal control warm-starts,” IEEE
Transactions on Robotics, vol. 37, no. 5, pp. 1649–1660, 2021.

[16] O. v. Stryk and R. Bulirsch, “Direct and indirect methods for trajectory
optimization,” Ann. of Oper. Res., vol. 37, no. 1, pp. 357–373, 1992.

[17] J. Bonnans, Frederic, D. Giorgi, V. Grelard, B. Heymann,
S. Maindrault, P. Martinon, O. Tissot, and J. Liu, “Bocop –
a collection of examples,” INRIA, Tech. Rep., 2017. [Online].
Available: http://www.bocop.org

[18] M. Valdenegro-Toro and D. S. Mori, “A deeper look into aleatoric
and epistemic uncertainty disentanglement,” in 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2022, pp. 1508–1516.

[19] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” in Advances in Neural Infor-
mation Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.
Curran Associates, Inc., 2017.

[20] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings
of The 33rd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. F. Balcan and K. Q.
Weinberger, Eds., vol. 48. New York, New York, USA: PMLR, 20–22
Jun 2016, pp. 1050–1059.

[21] ——, “A theoretically grounded application of dropout in recurrent
neural networks,” in Advances in Neural Information Processing
Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
Eds., vol. 29. Curran Associates, Inc., 2016.

[22] E. Kalnay, Atmospheric modeling, data assimilation and predictability.
Cambridge university press, 2003.

[23] J. H. Halton, “On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals,” Numerische Mathe-
matik, vol. 2, no. 1, pp. 84–90, 1960.

[24] C. Rasmussen and K. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[25] O. v. Stryk and M. Schlemmer, “Optimal control of the industrial robot
manutec r3,” in Comput. Optimal Control, Int. Ser. of Numer. Math.,
vol. 115. Basel: Birkhäuser, 1994, pp. 367–382.

[26] M. Otter and S. Türk, “The DFVLR models 1 and 2 of the manutec
r3 robot,” DFVLR-Mitt. 88-13, Institut für Dynamik und der Flugsys-
teme, Oberpfaffenhofen, Germany, Tech. Rep., 1988.

[27] N. Lawrence et al. (2015) Matlab gpmat toolbox. University of
Sheffield. [Online]. Available: https://github.com/SheffieldML/GPmat


