
Layered Direct Policy Search for Learning Hierarchical Skills

Felix End1, Riad Akrour2, Jan Peters3 and Gerhard Neumann4

Abstract— Solutions to real world robotic tasks often require
complex behaviors in high dimensional continuous state and
action spaces. Reinforcement Learning (RL) is aimed at learn-
ing such behaviors but often fails for lack of scalability. To
address this issue, Hierarchical RL (HRL) algorithms leverage
hierarchical policies to exploit the structure of a task. However,
many HRL algorithms rely on task specific knowledge such
as a set of predefined sub-policies or sub-goals. In this paper
we propose a new HRL algorithm based on information
theoretic principles to autonomously uncover a diverse set
of sub-policies and their activation policies. Moreover, the
learning process mirrors the policys structure and is thus also
hierarchical, consisting of a set of independent optimization
problems. The hierarchical structure of the learning process
allows us to control the learning rate of the sub-policies and
the gating individually and add specific information theoretic
constraints to each layer to ensure the diversification of the sub-
policies. We evaluate our algorithm on two high dimensional
continuous tasks and experimentally demonstrate its ability to
autonomously discover a rich set of sub-policies.

I. INTRODUCTION

Reinforcement Learning (RL) algorithms are aimed at
solving complex robotic tasks autonomously by interacting
with the environment; circumventing the reliance on hand
coded policies and human intervention. However, for many
tasks ’flat’ RL algorithms are ill suited as they are unable to
uncover and exploit the structure of high dimensional state
and action spaces. For example, to play table tennis, a robot
needs to be able to execute several strokes such as backhand
and forehand strokes. From a flat RL perspective this task
requires to find an appropriate trade-off between i) policy
complexity to encompass the various strokes and ii) data
efficiency as simpler policies are more data efficient. How-
ever, a Hierarchical RL (HRL) approach can use hierarchy to
decompose such complex behavior into simple sub-policies
for each stroke and a simple gating network to choose
the correct stroke. Such a structure also allows learning
multiple kinds of forehand and backhands strokes. Having
multiple solutions for the same sub-task gives us backup
solution should the optimal sub-policy become inadequate
(e.g. because of wear or damage to a robot). However, to
use the solutions as effective backup we need them to be
diverse.

1Felix End is a computer science student at the TU Darmstadt, Germany
felix.end@stud.tu-darmstadt.de

2Riad Akrour is with the CLAS lab, TU Darmstadt, Germany
akrour@ias.tu-darmstadt.de

3Jan Peters is with the IAS lab, TU Darmstadt, Germany and
the Max Planck Institute for Intelligent Systems, Tuebingen, Germany
peters@ias.tu-darmstadt.de

4Gerhard Neumann is with the School of Computer Science, University
of Lincoln, United Kingdom and the CLAS lab, TU Darmstadt, Germany
gneumann@lincoln.ac.uk

Many HRL methods have been proposed in order to reduce
the complexity of the task [1]–[4]. The HAM framework [5]
can learn complex hierarchical sub-routines. The MAXQ
framework uses hierarchically sub-tasks with sub-goals to
learn a hierarchical policy. Whereas HAM and MAXQ are
for discrete domains the work of Morimoto et al. [3] and
the Hierarchical Policy Gradient Algorithms [6] have shown
ways to decompose a task into sub-tasks and learning a hier-
archical policy for these sub-tasks in continuous domains. A
disadvantage of these algorithms is that their decomposition
in sub-tasks or their policy needs to be tailored to the task
consequently they cannot be easily applied to new tasks.

Other hierarchical approaches such as Hierarchical Rel-
ative Entropy Policy Search (HiREPS) [7] use more flex-
ible hierarchical policies that are not handcrafted for one
specific task. The policy HiREPS optimizes is a mixture
model consisting of sub-policies which solve the task and
a gating network which chooses which sub-policy to use.
A disadvantage of HiREPS is that it is not hierarchical in
the learning process. Impeding the control of properties like
diversity and the individual learning rates of the gating and
sub-policies. This lack of control often leads HiREPS to stop
optimizing all sub-policies except one.

In this paper, we propose a new episodic hierarchical
policy search algorithm named Layered Direct Policy Search
(LaDiPS). LaDiPS combines the advantages of a hierarchical
policy and a hierarchical learning process. The policy that
LaDiPS uses, is a Gaussian mixture model. The mixture
model is optimized in two layers which mimics the hier-
archy of the policy. The first layer optimizes the mixture
components also called sub-policies while the second layer
optimizes the gating. This decomposition allows us to control
the exploration for each sub-policy and the gating individu-
ally and also gives us a way to control the diversity of the
mixture model. To optimize the sub-policies and gating, we
use information theoretic policy updates.

II. PRELIMINARIES

This section introduces the formal notations (Sec. II-A),
compares LaDiPS to other HRL algorithms (Sec. II-B) and
describes the HiREPS algorithm (Sec. II-C) in more details.
The HiREPS algorithm bears similarities with LaDiPS and its
presentation better highlights the contributions of this paper.

A. Problem Formulation and Notation

LaDiPS is a Policy Search (PS) algorithm for contextual
tasks and follows the formalism described in [8]. A context
vector x characterizes the initial configuration of the task and
is drawn at the start of each episode from a fixed probability

distribution. For a policy parameter θ ∈ Θ (e.g. θ can be
the gains of a PD-controller or the paramters of a motion
primitive such as [9]), r(x,θ) gives the reward of choosing
parameter θ under context x. The goal of PS is to find a
stochastic policy π(θ|x) that maximizes the policy return
J(π) = Eθ∼π(θ|x)[r(x,θ)].

LaDiPS is an iterative algorithm. At iteration t, N pairs
(x[i],θ[i]) are generated by observing the context x[i] and
drawing parameter θ[i] from policy πt(·|x[i]). The samples
D = {(θ[i],x[i], r(x[i],θ[i]))|i = 1, . . . , N} are used to
update the old policy πt to the new policy πt+1. In the
remaining paper we will denote πt and probabilities derived
from πt by q, πt+1 by π and probabilities derive from πt+1

by p.

B. Related Work

Out of the HRL algorithms MAXQ [5], Hierarchies of
Machines (HAM) [10], Morimoto et al.’s algorithm [3]
and Hierarchical Policy Gradient Algorithms (HPG) [6],
HPG is the most closely related to LaDiPS as HPG is
aimed at solving continuous problems (unlike MAXQ and
HAM) and it is more general than the work of Morimoto
et al. HPG is a framework for solving complex tasks
with hierarchical policies. The task has to be divided
into sub-tasks which have their own sub-goals. The lower
level sub-tasks are learned with policy gradient methods
whereas the high level sub-tasks are learned with value
function based methods. Defining sub-tasks by hand
allows for the use of more complex hierarchies than the
hierarchy of LaDiPS. However, a new hierarchy has to be
defined for every new task and defining useful sub-goals
requires that the programmer already knows the structure
of a good solution. Additionally, good solutions that the
programmer did not think of cannot be found if these
solutions do not optimize the sub-goals. In the LaDiPS
algorithm we do not define sub-tasks which means the
algorithm can find the best sub-policies for the overall tasks.

The mixture of motor primitives (MoMP) [4] is a HRL
algorithm that uses a very different hierarchical approach.
MoMP first learns sub-policies (called motor primitives) and
then learns a gating network to generate new movements
by combining the sub-policies. There are two important
ways in which MoMP is different from LaDiPS. First,
MoMP mixes the sub-policies whereas LaDiPS only uses
the gating network to choose one of the sub-policies. The
second difference is that MoMP learns the lower layer of
the hierarchy (the sub-policies) independently of the gating.
After the sub-policies are learned, the upper layer (the
gating network) is learned independently. A disadvantage
of learning the upper layer with a fixed lower layer is that
the lower layer cannot adapt to better suit the needs of the
higher layer of the hierarchy. In contrast, LaDiPS learns
both layers simultaneously which allows the sub-policies
and gating network to adapt to each other.

C. Hierarchical Relative Entropy Policy Search

The Hierarchical Relative Entropy Policy Search
(HiREPS) [7] algorithm is closely related to LaDiPS. Both
algorithms learn a mixture model policy and use information
theoretic principles to update this policy. However, the
crucial difference between HiREPS and LaDiPS is how
the policy is updated. While, HiREPS optimizes a single
constrained optimization problem, grouping the gating
network and the sub-policies together, LaDiPS adopts a
more decentralized approach by optimizing each layer
separately. The benefits of disentangling the optimization
problem and breaking it into smaller sub-problems are
two fold. First, constraints on the information loss can be
added to each layer individually allowing different learning
rates for the gating network and the sub-policies. Secondly,
additional information theoretic constraints can be integrated
to the layers in order to better control the exploration of
the sub-policies and to force a number of sub-policies
to stay ’active’ (i.e., have nonzero probability), allowing
the algorithm to explore additional modes of the reward
function. HiREPS lacks such control mechanisms causing it
to frequently only learn a single sub-policy as the activation
of the other sub-policies decreased to zero.

To update its policy HiREPS optimizes an optimization
problem. The objective of the optimization problem is max-
imizing the average reward of the policy. This objective is
optimized with four constraints of which the first two are
interesting to us. The first constraint bounds the information
loss between the current policy p and the previous policy
q; a common practice in the RL community [11]–[13] and
is also used by LaDiPS. The second constraint ensures sub-
policies are diverse. However, this constraint is often not
effective because HiREPS lacks a way to ensure that multiple
sub-policies retain some probability. When all sub-policies
except one converge to zero probability during the first few
iterations of training, then only one sub-policy ends up being
properly trained, making the diversity of the other poorly
trained sub-policies irrelevant.

In LaDiPS diversity is enforced differently. LaDiPS learns
a reward model for each sub-policy with weighted ridge
regression. The weights are chosen to ensure that the reward
models are diverse. Additionally, LaDiPS uses the decentral-
ized structure of its layers to add a constraint to the gating
layer which controls how many sub-policies have to retain
some probability. The combination of this constraint with
the diverse reward models allows LaDiPS to learn diverse
solutions more reliably than HiREPS.

III. LAYERED DIRECT POLICY SEARCH (LADIPS)

This section explains LaDiPS by first giving an overview
of the algorithm (Sec. III-A) before elaborating on the
optimization process of the sub-policies (Sec. III-B) and the
gating network (Sec. III-C).

A. LaDiPS Overview

LaDiPS is a reinforcement learning algorithm to optimize
a mixture model policy, given by

π(θ|x) =

K∑
j=1

πj(θ|x)π(j|x).

The gating π(j|x) selects the sub-policy index j. As gating
network we use a softmax policy, given by

π(j|x) =
exp

(
ρTj φ(x)

)∑K
l=1 exp

(
ρTl φ(x)

) .
The sub-policy πj(θ|x) selects the parameter vector θ. For
the sub-policy we use

πj(θ|x) = N (θ|µj(x),Σj),

where the mean of the Gaussian mixture component is given
by

µj(x) = ΥT
j ψ(x).

The functions φ(x) and ψ(x) are a feature functions. The
weights of the softmax policy ρj , the weights of the Gaussian
Υj and the covariance Σj are the parameters we want to
learn. The number of sub-policies K is not learned.

LaDiPS optimizes each layer of the policy individually.
The optimization consist of the same two steps for both
layers. First, a reward model is learned for each policy.
Second, the reward models are used to update the policies
of the layer. The two layers influence each other through
the sample weights that are used for the reward estimation.
The probability q(j|x) is used in the estimation of the sub-
policy reward models and the probability πj(θ|x) is used
in the estimation of the gating reward model. The whole
optimization process with its different steps can be seen in
Fig. 1. The following sections will explain the different steps
in more detail.

Estimate
RK(x,θ)

Estimate
R1(x,θ) . . .

. . .

Estimate
R2(x,θ)

R1(x,θ) R2(x,θ) RK(x,θ)

Update
πK(θ|x)

Update
π1(θ|x)

Update
π2(θ|x)

Estimate
Rj(x)

Update
π(j|x)

π1(θ|x) π2(θ|x) πK(θ|x)

Rj(x)

Sub-Policy Layer

Gating
Layer

Fig. 1: LaDiPS overview showing the sub-policy layer (yellow, Sec.
III-B) and gating layer (blue, Sec. III-C). Both layers consist of the
same two steps which are reward model estimation (lighter color)
and policy updates (darker color). The two layers influence each
other through the probability from the previous iteration q(j|x),
which is used in the sub-policy reward Rj(x,θ) estimation (not
displayed) and through the updated sub-policies πj(θ|x), which
are used in the gating reward Rj(x) estimation.

B. Learning on the Sub-Policy Layer

The sub-policy optimization is an extension of Model-
Based Relative Entropy Stochastic Search (MORE) [14].
Both algorithms consist of the two steps: first estimating
a reward model and second updating the (sub-)policy. The
main differences between the sub-policy optimization and
MORE are that the sub-policy optimization is formulated
for contextual problems and that it optimizes multiple sub-
policies by doing both reward model estimation and sub-
policy update for each sub-policy individually. In compar-
ison, MORE is not context dependent and only estimates
one reward model and updates one policy. To explain the
sub-policy optimization of LaDiPS, we introduce the policy
update step first to highlight why we estimate a reward
function and explain the reward estimation step second.

Policy Update. To update the policy, we solve the opti-
mization problem given by

max
πj(θ|x)

∫∫
πj(θ|x)p(x|j)Rj(x,θ) dθ dx, (1)

s.t. ξ ≥ E
x∼p(x|j)

[KL (πj(θ|x)||q(θ|x, j))] , (2)

β ≤ E
x∼p(x|j)

[H [πj(θ|x)]] , (3)

1 =

∫
πj(θ|x) dθ for all contexts x. (4)

The term (1) defines the average reward maximized by
sub-policy j. Constraint (2) limits the information loss w.r.t.
to the previous sub-policy qj . The information loss is
calculated with the Kullback-Leibler divergence KL (·||·).
Constraint (3) controls how much the sub-policy explores
in each iteration. The parameter β is calculated from the
previous policy qj with

β = H[q(θ|x, j)]− h,

where h is a hyper parameter that is chosen such that the
entropy H[·] does not decrease too fast and consequently
the policy only slowly reduces the amount of exploration.
Constraint (4) ensures that the policy is correctly normalized.

The optimization problem is solved with the Lagrangian
multipliers method [15]. The dual function is given by

g(ηj , ωj) = ξηj − βωj +

∫
p(x|j) ln Ij(x) dx

where

Ij(x) =

∫
q(θ|x, j)

ηj
ηj+ωj exp

(
Rj(x,θ)

ηj + ωj

)
dθ.

The parameter ηj is the Lagrangian multiplier to constraint
(2) and the parameter ωj is the Lagrangian multiplier to con-
straint (3). The Lagrangian multiplier of the last constraint
(4) cancel out by using the constraint in the derivation.

Note that Ij(x) is actually Ij(x, ηj , ωj), however we sup-
press the dependence on ηj and ωj to shorten the equations.
The same is true for the functions Aj(x), Bj ,Fj ,fj(x)
which are introduced in the following paragraph.

We can calculate the integral Ij(x) analytically for our
Gaussian sub-policies if we use a reward model Rj(x,θ) that
is quadratic in parameters and context features (θ,ψ(x)). To
keep the parameters of the reward model low we use linear
features ψ(x) = (xT , 1)T . Using these features and the
aforementioned reward function model the analytic solution
of the integral is given by

Ij(x) = exp(Aj(x) +Bj)

with

Aj(x) = fj(x)TFjfj(x)− ηjµj(x)TΣ−1j µj(x)

+ 2cj(x),

Bj = −ηj ln (|2πΣj |)
+ (ηj + ωj) ln (|2π(ηj + ωj)Fj |) ,

Fj = (ηjΣ
−1
j − 2Qj

θθ)−1,

fj(x) = ηjΣ
−1
j ΥT

j ψ(x) + 2Qj
θxx+ rjθ.

The matrix Σj is the variance of the old distribution
q(θ|x, j) and the vector µj(x) is its mean. The term cj(x)
is independent from the Lagrangian multipliers which means
we can ignore it in the dual function. The terms Qj

θθ and
Qj
θx come from the quadratic reward model. The reward

model is given by

Rj(x,θ) = θTQj
θθθ + 2θTQj

θxx+ xTQj
xxx

+ θTrjθ + xTrjx + %j . (5)

If we approximate p(x|j) with a Gaussian distribution,
we can also compute the integral over x in g analytically
because Aj(x) +Bj is a quadratic function in x.

The dual function g is minimized for ηj > 0 and ωj > 0.
Since the dual function is convex [15], we can minimize
it efficiently with a convex optimizer. Once ηj and ωj are
obtained the policy is updated by maximizing the Lagrangian
of the optimization problem w.r.t. the policy. The new policy
is again a Gaussian distribution with mean Fjfj(x) and
variance (ηj + ωj)Fj .

Reward Estimation. We want each quadratic reward
model (5) to be accurate for those samples which have high
probability to be generated by its corresponding sub-policy
j. To make the reward model adapt to its sub-policy, we
minimize the expected distance between the true reward and
the model, given by

E
(x,θ)∼q(x,θ|j)

[(r(x,θ)−Rj(x,θ))2].

However, we also want to use the samples of all sub-
policies which we can achieve with importance weighting.
The resulting objective function is given by

E
(x,θ)∼q(x,θ|j)

[(r(x,θ)−Rj(x,θ))2]

≈ 1

|D|

|D|∑
i=1

q(x[i],θ[i]|j)
q(x[i],θ[i])

[
r(x[i],θ[i])−Rj(x[i],θ[i])

]2
,

(6)

where D is the data introduced in section II-A. Looking at
the weights q(x[i],θ[i]|j)/q(x[i],θ[i]), we see that samples
that are specific to only one sub-policy will have a high
enumerator and relatively low denominator. These weights
cause the sub-policies to diversify as each reward model
Rj(x,θ) focuses more on rewards that are unique to its
corresponding sub-policy. However, each sub-policy only
diversifies w.r.t. the other sub-policies from the previous
iteration. To make the sub-policies diversify w.r.t. each other
we optimize the sub-policies in sequence, which allows us
to compute the probability weighting for the next sub-policy
based on the already updated sub-policies.

Additionally, we also multiply

bi =
1∣∣r[i] −maxi(r[i]) + 0.01(maxi(r[i])−mini(r[i]))

∣∣
as extra weightings inside the sum (6) to make the reward
model adapt more to samples with high reward as these
samples are more important. The term r[i] is the reward
r(x[i],θ[i]). We also use an extra penalty term for high
parameters of Rj(x,θ), which makes the optimization an
instance of weighted ridge regression.

Since the reward model is used to update the covariance
matrix (ηj +ωj)Fj of the new policy, the block matrix Qj

θθ

of the reward model needs to be negative semi-definite. To
ensure that Qj

θθ is negative semi-definite, we replace the
positive eigenvalues of the quadratic part of Rj(x,θ), given
by

Qj =

(
Qj
θθ,Q

j
θx

Qj
θx,Q

j
xx

)
with zero. With the new quadratic part Qj fixed, we max-
imize the expectation again for rjθ, rjx and %j . The new
parameters give us a negative semi-definite reward model.
Theoretically, it would be enough to only remove the posi-
tive eigenvalues from Qj

θθ, however, removing the positive
eigenvalues of Qj has shown better results in experiments.

C. Learning on the Gating Policy Layer

The gating optimization problem also consists of a policy
update and a reward estimation step. Both steps are similar to
their counterparts in the sub-policy optimization from section
III-B. The main differences for the policy update are the
softmax policy instead of the Gaussian policy and the use
of the entropy constraint parameter. While for the sub-policy
optimization the entropy constraint parameter β is decreased,
the corresponding parameter of the gating optimization α
stays constant over all iterations. The main differences for
the reward estimation are the use of a different reward model
which does not depend on θ and that we do not need to
enforce certain constraints on the reward model like the
negative semi-definite constraint on Qj

θθ .
Policy Update. The policy is updated by solving the

optimization problem given by

max
π(j|x)

∫ K∑
j=1

π(j|x)p(x)Rj(x) dx, (7)

s.t. ε ≥ E
x∼p(x)

[KL (π(j|x)||q(j|x))], (8)

α ≤ E
x∼p(x)

[H[π(j|x)]], (9)

1 =

K∑
j=1

π(j|x) for all contexts x. (10)

Equation (7), (8) and (10) fulfill the same role as (1), (2)
and (4) in section III-B.

However, (9) is used very differently to (3). Whereas β is
decreased over the iterations to slowly reduce exploration, α
is used to control how many sub-policy indices have to retain
some probability and consequently α is not changed over the
iterations. The larger α is, the more sub-policy indices have
to have some probability. The biggest value α can be set to
is ln(K), where K is the total number of sub-policies used.
At this point the constraint (3) can only be fulfilled if the
gating network is the uniform distribution.

The optimization problem is solved with the method of
Lagrangian multipliers [15], which yields the solution

π(j|x) ∝ q(j|x)
η

η+ω exp

(
Rj(x)

η + ω

)
.

The parameter η is the Lagrangian multiplier to the KL-
divergence constraint (8) and the parameter ω is the La-
grangian multiplier to the entropy constraint (9). The La-
grangian multipliers of the last constraints (10) cancel out.

Since q(j|x) has the form

q(j|x) =
exp

(
ρj
Tφ(x)

)∑K
l exp (ρlTφ(x))

,

we can compute the new policy π(j|x) directly if we choose
Rj(x) = ρ̄Tj φ(x), where φ is the same feature function used
for q(j|x). For this reward model, the direct update for the
new policy π(j|x) is

π(j|x) =
exp

(
ρ∗j

Tφ(x)
)

∑K
l exp

(
ρ∗l

Tφ(x)
)

with
ρ∗j =

ηρj + ρ̄j
η + ω

.

The variable ρj is the parameter from the old distribution
q(j|x). The variable ρ̄j is the feature weight of Rj(x).

The parameters η and ω are obtained by minimizing the
dual function

g(η, ω) = εη − αω + (η + ω)

∫
p(x) lnA(x, η, ω) dx

with

A(x, η, ω) =
∑
j

q(j|x)
η

η+ω exp

(
Rj(x)

η + ω

)

for η > 0 and ω > 0. The integral over p(x) lnA(x, η, ω)
is approximated with samples. As before, the dual function
g is convex, therefore we can minimize it efficiently.

Reward Estimation. We want the reward model given by

Rj(x) = ρ̄Tj φ(x)

to be accurate for samples which have a high probability
to be generated by the gating network. To achieve this
adaptation, we can use the same minimization which we used
for the Reward Estimation in section III-B, given by

E
(x,θ)∼p(x,θ|j)

[(r(x,θ)−Rj(x))2]

≈ 1

|D|

|D|∑
i=1

p(x[i],θ[i]|j)
p(x[i],θ[i])

[
r(x[i],θ[i])−Rj(x[i])

]2
.

However, in our experiments we have seen that using
πj(θ

[i]|x[i], j) as weights for the gating reward yields better
results than using p(x[i],θ[i]|j)/p(x[i],θ[i]). Minimizing the
objective function is an instance of weighted ridge regres-
sion.

IV. EXPERIMENTS

To evaluate the LaDiPS algorithm, we compare it to
HiREPS on a planar reaching task and a simulated table
tennis task. For each task, we first explain how the task is
set up and what are the hyper parameters for the learning
algorithm. Second, we compare the performance of the two
algorithms as well as examine the diversity of the found
solutions. We want to show that LaDiPS can learn a diverse
set of solutions and learn high quality solutions.

A. Experiment Setup Reaching Point Task

The experiment is set up such that the learning algorithm
can find multiple sub-policies to solve the task. The task
we use is a planar reaching task. The goal is to move the
end effector of a three joint, three link robot arm to certain
positions at certain time points. The first time point is at time
step 50 and the second time point is at time step 100. They
can be seen in Fig. 2 as blue and red dots respectively. At
each of these times the robot has to reach one of the possible
reaching points. Fig. 2 shows one learned solutions. After the
movement is executed, a score is given based on the squared
distance of the end effector to the closest reaching point at
the specified time.

To generate a trajectory, we use Dynamic Movement
Primitives (DMP) [9]. We use one DMP for each joint. The
DMPs generate the desired angles of the joints. The goal
position of the DMP is set such that the arm reaches to the
red point. Each DMP uses five basis functions. The linear
weights of these five basis functions compose the parameter
vector θ. To track the generated trajectory, we use a PD
controller with a feedforward term. The initial context x is
the angle at the base of the robot. It is uniformly distributed
between −0.5 and +0.5 radians. The other two angles are
set to zero. If all angles are zero, then the robot stands up
straight and touches the red reaching point.

x-axis [m]

y-
ax

is
 [m

]

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Fig. 2: The left plot is an illustration of a successful trajectory of the three link, three joint robot arm. The different shades of grey
show the different positions of the robot over time. The center left plot shows the average reward for the best sub-policy of HiREPS and
LaDiPS on the reaching point task. The center right plot shows how far the sub-policies are away from the reaching points. The right
plot shows the average reward on the table tennis task.

For the experiments, 20 trials are evaluated with each trial
consisting of 100 iterations. In each iteration, 500 samples
(rollouts) are generated. For LaDiPS, we set ξ, ε and the
reduction h of the parameter β to 1, 0.5 and 2 respectively.
The parameter α is set to ln(1) to achieve one sub-policy
with very high reward and we test another setting with α
set to ln(9.9) to achieve high diversity. For HiREPS, the
parameter ε is set to 0.5 and κ is set to 98% of the entropy
of the previous iteration [7]. These parameter gave the best
performance for HiREPS. The mixture model used for both
learners is a mixture model with softmax gating and 10
Gaussian sub-policies. The features of the Gaussian sub-
policies are linear and for the gating network the features
are quadratic.

B. Results Reaching Point Task

First, we compare the quality of the found sub-policies.
The center left plot of Fig. 2 shows the average reward over
all trials of the best sub-policy1 of HiREPS and LaDiPS. The
plot shows that the best sub-policy of LaDiPS for α = ln(1)
is slightly better than the best sub-policy of HiREPS, whereas
the best sub-policy for α = ln(9.9) is worse.

Next, we compare the diversity of the found sub-policies.
The diversity is evaluated by generating 10 samples from
each sub-policy and computing for each reaching point the
average distance to the samples from each sub-policy. We
take for each reaching point the smallest average distance to
a sub-policy. We cap this distance at 0.25 (half the distance
between two close reaching points) and sum these distances
over all reaching points. This distance measure represents
diversity well as it is small only if many reaching points
have one sub-policy that reliably comes close to each of
these reaching points. The distance is plotted in the center
right plot of Fig. 2. We can see that for α = ln(1) LaDiPS
is slightly less diverse than HiREPS. However, LaDiPS with
α = ln(9.9) is much more diverse than the other two.

C. Experiment Setup Table Tennis Task

The goal of the simulated table tennis task is to return a
ball using a robot arm with a racket as its end effector. The
arm itself has 6 degrees of freedom and is attached to a base
that can move in all 3 dimensions. To generate a trajectory

1The plot for the best sub-policy shows the average reward of the sub-
policy that has the best reward in the last iteration.

for the robot we use 9 Dynamic Movement Primitives (DMP)
[9] one for each degree of freedom. The ball is shot from the
center of the opponents side to the robot. The point to which
the ball is shot varies by ±42.5cm on the x-axis2 around the
initial end effector position. On the y-axis2 and z-axis2 the
ball only varies around the initial end effector position by
±0.01cm. The context x is the initial velocity of the ball
when it is shot from the opponents side. The reward is given
based on how close the ball is played to one of the opponents
corners or how close to the opponents net.

The parameters of the policy are the goal position of the
DMP. We use a mixture model with 8 Gaussians as sub-
policies and a softmax as gating network. The features are
the same as in the Reaching Point Task. The weights of the
DMP and the initial mean of the Gaussian sub-policies are set
by imitation learning from one forehand and one backhand
trajectory. The imitation learning trajectories are shown in
the additional video. The DMP weights are kept fixed after
the imitation learning. Half the sub-policies use the DMP
weights learned from the backhand stroke and the other half
use the DMP weights learned from the forehand stroke.

For the experiments, 10 trials are run for each algorithm
with each trial consisting of 100 iterations. In each iteration
50 samples (rollouts) are generated, however, we use impor-
tance weighting to reuse up to 1000 samples. The parameters
used for learning LaDiPS are 0.01 for ε and 0.5 for ξ. For
the parameter β, the reduction h was 3 and α was set to
ln(3). For HiREPS, the parameter ε is set to 0.5 and κ is
set to 98% of the entropy of the previous iteration. These
parameter gave the best performance for HiREPS.

D. Results Table Tennis Task

For the table tennis task, we are interested if we can find
diverse solutions. To examine the diversity of the solutions,
we compare the single backhand stroke used for the initial
imitation learning with two backhand strokes that were
learned by LaDiPS (Fig. 3). We can see that for the initial
backhand stroke mostly the arm is moved while the base only
moves slightly. For the learned trajectories, the base moves
a lot more. The first learned stroke (Fig. 3 middle row) uses
the base movement to catch a ball played to the forehand

2From the players perspective standing in front of the table the x-axis is
left and right, the y-axis is forward and backward and the z-axis is up and
down

Fig. 3: Each row shows a backhand stroke. The first row is the single stroke used in the initial imitation learning and the second and
third rows are learned strokes.

side far outside the range of the backhand trajectory for
imitation learning. The second learned stroke (Fig. 3 bottom
row) moves the base towards the ball using the momentum
of the base as part of the swing. The additional video shows
three different learned solution where each solution hits the
ball to one of the three high reward point (the two far corners
and the center close to the net). From these examples, we see
that LaDiPS can learn diverse solutions even on complex task
like this table tennis simulation. In terms of quality of the
policy, we see in Fig. 2 that LaDiPS outperforms HiREPS.

V. CONCLUSION

In this paper, we proposed a novel hierarchical reinforce-
ment learning framework that learns on both layers of a
hierarchical policy that is composed of a gating policy and
several sub-policies.

Our new algorithm optimizes a mixture model using indi-
vidual learning processes for the gating and the sub-policies.
Both layers are connected by regression problems that are
used to estimate the corresponding reward models. While
we implemented learning algorithms that are based on the
Model-Based Relative Entropy Stochastic Search (MORE)
[14] algorithm for the individual layers, the whole framework
is more general and other algorithms could be used that allow
for the use of sample reweighting with importance weights.

In the experiments, we showed that LaDiPS can control
the diversity of the policy to find more solutions than other
Hierarchical Reinforcement Learning algorithms. Addition-
ally, LaDiPS could find diverse solutions on complex task
such as the simulated table tennis task.

In the future, we want to add more layers to the LaDiPS
framework and experiment with different algorithms on the

different layers. Moreover, we will apply our algorithms to
more complex tasks and real robot applications.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” IJRR, p. 0278364913495721, 2013.

[2] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems, vol. 13,
no. 4, pp. 341–379, 2003.

[3] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning,” Robotics and
Autonomous Systems, vol. 36, no. 1, pp. 37–51, 2001.

[4] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select
and generalize striking movements in robot table tennis,” IJRR, vol. 32,
no. 3, pp. 263–279, 2013.

[5] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” JAIR, vol. 13, pp. 227–303, 2000.

[6] M. Ghavamzadeh and S. Mahadevan, “Hierarchical policy gradient
algorithms,” in ICML, 2003, pp. 226–233.

[7] C. Daniel, G. Neumann, and J. R. Peters, “Hierarchical relative entropy
policy search,” in AISTATS, 2012, pp. 273–281.

[8] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy
search for robotics.” Foundations and Trends in Robotics, vol. 2, no.
1-2, pp. 1–142, 2013.

[9] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive Motion of
Animals and Machines. Springer, 2006, pp. 261–280.

[10] R. Parr and S. Russell, “Reinforcement learning with hierarchies of
machines,” NIPS, pp. 1043–1049, 1998.

[11] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[12] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search,”
in AAAI. Atlanta, 2010.

[13] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in NIPS, 2014, pp.
1071–1079.

[14] A. Abdolmaleki, R. Lioutikov, J. R. Peters, N. Lau, L. P. Reis, and
G. Neumann, “Model-based relative entropy stochastic search,” in
NIPS, 2015, pp. 3523–3531.

[15] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

