
MACHINE LEARNING OF MOTOR SKILLS FOR ROBOTICS

by

Jan Reinhard Peters

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

April 2007

Copyright 2007 Jan Reinhard Peters

Dedication

Für meinen Opa, dessen Vorbild Disziplin und Geradlinigkeit lehrte,

für meinen Vater, der mich zum Denken und als Wissenschaftler aufzog,

für meine Mutter, die mir Kraft, Liebe und Kreativität auf den Weg gab,

für meine Freundin, die mich jeden Tag wieder glücklich macht,

für die beste Schwester, die ich mir vorstellen könnte,

und für meinen viel zu netten wissenschaftlichen “grossen Bruder”

zum Dank für die letzten fünf Jahre.

ii

Acknowledgments

First of all, I have to thank the wonderful people at the University of Southern Califor-

nia. This thesis would have never been possible without initiation, continuing encour-

agement, coordination, supervision and understanding help of Stefan Schaal. He is a

great ‘sensei’ and has endured my research roller-coaster ride from my masters thesis

to today. Another thanks goes to Firdaus Udwadia and Sethu Vijayakumar from whom

both I learned a lot on analytical dynamics and machine learning, respectively. I am also

very grateful to the committee members, i.e., Stefan Schaal, Gaurav Sukhatme, Firdaus

Udwadia and Chris Atkeson for reading my thesis and participating in the defense. I am

indebted to Mitsuo Kawato and Gordon Cheng who made two stays in 2000 and 2003

at the Advanced Telecommunication Research Center ATR in Kyoto, Japan, possible.

Without the first visit in 2000, I would have never met Stefan Schaal and my life would

have taken a very different turn. A special thanks goes to Evangelos Theodorou and

Jun Nakanishi who have helped me a lot by reading this thesis. Finally, I have to thank

all my friends and family for leading me to a career in science and continuing support.

My girl-friend Ayşenur Altingül for her understanding and love. Another thanks goes

to my friends from USC learning labs i.e., Aaron d’Souza, Aude Billard, Auke Ijspeert,

Dimitris Pongas, Michael Mistry, Nerses Ohanyan, Peyman Mohajerian, Rick Cory,

Sethu Viyahakumar, Srideep Musuvathy and Vidhya Navalpakkam for all the advice,

support, help, and . . . the good times and great parties!

iii

Contents

Dedication ii

Acknowledgments iii

List Of Tables vii

List Of Figures viii

Abstract xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objective and Approach . 2

1.2.1 Essential Components . 3

1.2.2 Resulting Approach . 4

1.3 Major Contributions . 5

1.3.1 General, Unifying Framework 5

1.3.2 Novel Learning Algorithms 6

1.3.3 Robot Application . 7

1.4 Thesis Outline . 8

2 A Unifying Framework for Robot Control

with Redundant Degrees of Freedom 10

2.1 Introduction . 11

2.2 A Unifying Methodology for Robot Control 12

2.2.1 Formulating Robot Control Problems 12

2.2.2 Point-wise Optimal Control Framework 13

2.2.3 Necessary Conditions for Stability 14

2.2.4 Hierachical Extension . 18

2.3 Robot Control Laws . 19

iv

2.3.1 Joint-Space Trajectory Control 20

2.3.2 End-effector Trajectory Control 21

2.3.3 Controlling Constrained Manipulators: Impedance & Hybrid

Control . 24

2.4 Evaluations . 27

2.5 Conclusion & Discussion . 30

2.5.1 Contributions of the Chapter 30

2.5.2 Extension to Infinite Horizon Optimality 32

2.5.3 Future Work . 35

3 Learning Tracking Control in Operational Space 37

3.1 Introduction . 38

3.1.1 Notation and Remarks . 38

3.1.2 Operational Space Control as an Optimal Control Problem . . . 39

3.1.3 Why should we learn Operational Space Control? 42

3.2 Learning Methods for Operational Space Control 43

3.2.1 Can Operational Space Control be learned? 43

3.2.2 Combining the Local Controllers and Ensuring Consistent Res-

olution of Redundancy . 45

3.3 Reformulation as Reinforcement Learning Problem 47

3.3.1 Reward Transformation . 49

3.3.2 EM Reinforcement Learning with Reward Transformation . . . 50

3.3.3 Reinforcement Learning by Reward-Weighted Regression . . . 52

3.4 Evaluations . 53

3.5 Conclusion & Discussion . 55

3.5.1 Contributions of this Chapter 55

3.5.2 Future Work: Using Intertia-based Metrics in Learning 56

4 Policy Gradient Methods for Motor Primitives and Robotics 58

4.1 Introduction . 59

4.1.1 General Assumptions and Problem Statement 61

4.1.2 Motor Primitive Policies . 62

4.2 Policy Gradient Approaches for Parameterized Motor Primitives 64

4.2.1 Finite-difference Methods . 65

4.2.2 Likelihood Ratio Methods and REINFORCE 66

4.3 ‘Vanilla’ Policy Gradient Approaches 68

4.3.1 Policy gradient theorem and G(PO)MDP 69

4.3.2 Optimal Baselines . 71

4.3.3 Compatible Function Approximation 72

4.4 Natural Actor-Critic . 74

v

4.4.1 Motivation . 74

4.4.2 Connection to the Compatible Function Approximation 76

4.4.3 Natural Actor Critic Algorithms 78

4.5 Properties of Natural Actor-Critic . 82

4.5.1 On the Covariance of Natural Policy Gradients 84

4.5.2 NAC’s Relation to previous Algorithms 84

4.6 Experiments & Results . 86

4.6.1 Comparing Policy Gradient Methods on Motor Primitives . . . 86

4.6.2 Robot Application: Motor Primitive Learning for Baseball . . . 88

4.7 Conclusion & Discussion . 88

4.7.1 Contributions of this Chapter 88

4.7.2 Relation to EM-based Approaches 89

4.7.3 Future Work: Motor Primitive Iteration 90

5 Conclusion 92

5.1 Summary of the Contributions . 92

5.2 Discussion: The Next Steps for Skill Learning 94

Appendix A

Symbols and Notation . 97

Appendix B

Additional Derivations and Discussion . 99

B.1 Steepest Descent with Respect to a Metric N 99

B.2 Proof of the Covariance Theorem . 100

B.3 A Discussion of Kimura & Kobayashi’s Algorithm 100

B.4 Derivations of the Two Forms of the eNAC 102

B.4.1 Derivation of the eNAC1 . 103

B.4.2 Derivation of the eNACn . 104

B.5 Motor Primitive Equations . 106

Bibliography 106

References 107

vi

List Of Tables

2.1 This table shows the root mean squared error results of the tracking

achieved by the different control laws. 29

3.1 This table shows the complete learning algorithm for Operational Space

Control. See text of detailed explanations. 48

4.1 General setup for policy gradient reinforcement learning. 64

4.2 Finite difference gradient estimator. 66

4.3 General likelihood ratio policy gradient estimator “Episodic REINFORCE”

with an optimal baseline. 67

4.4 Specialized likelihood ratio policy gradient estimator “G(PO)MDP”/Policy

Gradient with an optimal baseline. 71

4.5 Natural Actor-Critic Algorithm with LSTD-Q(λ) 79

4.6 Episodic Natural Actor Critic . 81

4.7 Episodic Natural Actor Critic with a Time-Variant Baseline 83

vii

List Of Figures

1.1 This figure illustrates our general approach to motor skill learning by

dividing it into motor primitive and a motor control component. For

the task execution, fast policy learning methods based on observable

error need to be employed while the task learning is based on slower

episodic learning. 4

1.2 This figure illustrates the outline and relation of the thesis chapters. . . 8

2.1 In the presence of disturbances or non-zero initial conditions, stable

task dynamics will not result in joint-space stability. 16

2.2 Sarcos Master Arm robot, as used for the evaluations on our experiments. 28

2.3 This figure shows the three end-effector trajectory controllers tracking

a “figure eight (8)” pattern at 8 seconds per cycle. On the left is the x-z

plane with the y-z plane on the right. All units are in meters. 29

2.4 The same three controllers tracking the same “figure eight (8)” pattern

at a faster pace of 4 seconds per cycle. The labels and units remain the

same as in Figure 2.3. 30

2.5 Joint space trajectories for the four major degrees of freedom, i.e.,

shoulder flexion-extension (SFE), shoulder adduction-abduction (SAA),

humeral rotation (HR) and elbow flexion-extension (EBFE), are shown

here. Joint angle units are in radians. The labels are identical to the

ones in Figure 2.3. 31

3.1 When applied to the prismatic robot from Example 3.1 shown in (a),

the three control laws for the metrics N = I (dashed-dot red lines),

N = M−1 (solid green), N = M−2 (dashed blue) result in (b) the

same task-space tracking but (c,d) very different joint-space behavior.

See Example 3.1 for more information. 41

viii

3.2 This figure illustrates how (a) different data sets result in different so-

lutions if each data point is treated with equal importance (the blue

dash-dot line corresponds to the blue diamonds and the red dashed line

to the red circles). If these data points are (b) weighted down using

the Gaussian cost function (here indicated with the metric N = M−1

as solid thin black lines) the solutions of different data sets will con-

sistently approximate optimal solutions shown in the solid cyan line.

While for the linear prismatic robot one could live with any solution in

(a), different local solutions have to create a consistent global solution

for nonlinear robots. The horizontal faintly dotted lines in (a) and (b)

indicate contour lines of equal task-space acceleration. 44

3.3 A comparison of fixed and adaptive reward transformation for learn-

ing a linear policy π (u|s) = N (u|θ1s + θ2, σ
2) under the transformed

reward u(r (s, u)) = exp (−τ (q1u
2 + q2us+ sq2

3)). The transformed

reward is indicated by the dotted blue ellipses, the variance of the ac-

tion distribution is indicated by the red thick ellipse, and the mean of

the linear policy is shown by the red thick line. With τ being adaptive,

significantly faster learning of the optimal policy is achieved. Step 0
shows the initial policy and initial transformed reward, Step 1 shows

the initial policy with adapted transformed reward. 51

3.4 (a) screen shot of the 3 DOF arm simulator, (b) near ideal tracking per-

formance for a planar figure-8 pattern for the 3 DOF arm, and (c) a com-

parison between the analytically obtained optimal control commands to

the learned ones for one figure-8 cycle of the 3DOF arm exhibits that a

near-optimal policy is obtained. 54

3.5 (a) Anthropomorphic Sarcos Master Arm, used as simulated system

and in progress of actual robot evaluations. (b) Tracking performance

for a planar figure-8 pattern for the simulated Sarcos Master arm. 55

4.1 The classical example of LQR can be used to illustrate why ‘vanilla’

policy gradients reduce the exploration to zero while natural policy gra-

dients go for the optimal solution. The blue circle in (a) indicate equal

distance with the standard Eucledian metric, while the one in (b) shows

equal distance with respect to the Fisher information metric. The natu-

ral policy gradient corresponds to searching the steepest descent on an

infinitesimally small Fisher ellipse (b), while the vanilla policy gradient

corresponds to steepest descent on a unit circle. 76

ix

4.2 This figure shows different experiments with motor task learning. In

(a,b), we see how the learning system creates minimum motor com-

mand goal-achieving plans using both (a) splines and (b) motor prim-

itives. For this problem, the natural actor-critic methods beat all other

methods by several orders of magnitude. In (c,d), the plan has to

achieve an intermediary goal. While the natural actor-critic methods

still outperform previous methods, the gap is lower as the learning prob-

lem is easier. Note that these are double logarithmic plots. 87

4.3 This figure shows (a) the performance of a baseball swing task when

using the motor primitives for learning. In (b), the learning system is

initialized by imitation learning, in (c) it is initially failing at reproduc-

ing the motor behavior, and (d) after several hundred episodes exhibit-

ing a nicely learned batting. 89

x

Abstract

Autonomous robots that can assist humans in situations of daily life have been a long

standing vision of robotics, artificial intelligence, and cognitive sciences. A first step

towards this goal is to create robots that can accomplish a multitude of different tasks,

triggered by environmental context or higher level instruction. Early approaches to this

goal during the heydays of artificial intelligence research in the late 1980ies, however,

made it clear that an approach purely based on reasoning and human insights would not

be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new

hope was put in the growing wake of machine learning that promised fully adaptive

control algorithms which learn both by observation and trial-and-error. However, to

date, learning techniques have yet to fulfill this promise as only few methods manage

to scale into the high-dimensional domains of manipulator robotics, or even the new

upcoming trend of humanoid robotics, and usually scaling was only achieved in pre-

cisely pre-structured domains. In this thesis, we investigate the ingredients for a general

approach to motor skill learning in order to get one step closer towards human-like per-

formance. For doing so, we study two major components for such an approach, i.e.,

firstly, a theoretically well-founded general approach to representing the required con-

trol structures for task representation and execution and, secondly, appropriate learning

algorithms which can be applied in this setting.

As a theoretical foundation, we first study a general framework to generate control

laws for real robots with a particular focus on skills represented as dynamical systems in

differential constraint form. We present a point-wise optimal control framework result-

ing from a generalization of Gauss’ principle and show how various well-known robot

control laws can be derived by modifying the metric of the employed cost function. The

framework has been successfully applied to task space tracking control for holonomic

systems for several different metrics on the anthropomorphic SARCOS Master Arm.

In order to overcome the limiting requirement of accurate robot models, we first

employ learning methods to find learning controllers for task space control. However,

when learning to execute a redundant control problem, we face the general problem of

the non-convexity of the solution space which can force the robot to steer into physi-

cally impossible configurations if supervised learning methods are employed without

further consideration. This problem can be resolved using two major insights, i.e., the

xi

learning problem can be treated as locally convex and the cost function of the analytical

framework can be used to ensure global consistency. Thus, we derive an immediate re-

inforcement learning algorithm from the expectation-maximization point of view which

results in a reward-weighted regression technique. This method can be used both for

operational space control as well as general immediate reward reinforcement learning

problems. We demonstrate the feasibility of the resulting framework on the problem of

redundant end-effector tracking for both a simulated 3 degrees of freedom robot arm as

well as for a simulated anthropomorphic SARCOS Master Arm.

While learning to execute tasks in task space is an essential component to a general

framework to motor skill learning, learning the actual task is of even higher impor-

tance, particularly as this issue is more frequently beyond the abilities of analytical ap-

proaches than execution. We focus on the learning of elemental tasks which can serve

as the “building blocks of movement generation”, called motor primitives. Motor prim-

itives are parameterized task representations based on splines or nonlinear differential

equations with desired attractor properties. While imitation learning of parameterized

motor primitives is a relatively well-understood problem, the self-improvement by in-

teraction of the system with the environment remains a challenging problem, tackled

in the fourth chapter of this thesis. For pursuing this goal, we highlight the difficulties

with current reinforcement learning methods, and outline both established and novel

algorithms for the gradient-based improvement of parameterized policies. We compare

these algorithms in the context of motor primitive learning, and show that our most

modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms

by at least an order of magnitude. We demonstrate the efficiency of this reinforcement

learning method in the application of learning to hit a baseball with an anthropomorphic

robot arm.

In conclusion, in this thesis, we have contributed a general framework for analyt-

ically computing robot control laws which can be used for deriving various previous

control approaches and serves as foundation as well as inspiration for our learning al-

gorithms. We have introduced two classes of novel reinforcement learning methods,

i.e., the Natural Actor-Critic and the Reward-Weighted Regression algorithm. These

algorithms have been used in order to replace the analytical components of the theoret-

ical framework by learned representations. Evaluations have been performed on both

simulated and real robot arms.

xii

Chapter 1

Introduction

Knowledge and scientific insight are the joy

and the entitlement for the existence of all humanity.

Alexander von Humboldt (Prussian naturalist, 1769-1859)

1.1 Motivation

Despite an increasing number of motor skills exhibited by manipulator and humanoid

robots, the general approach to the generation of such motor behaviors has changed

little over the last decades (Tsai, 1999; Craig, 2005; Sciavicco & Siciliano, 2007; Wit,

Siciliano, & Bastin, 1996). The roboticist models the task as accurately as possible and

uses human understanding of the required motor skills in order to create the desired

robot behavior as well as to eliminate all uncertainties of the environment. In most

cases, such a process boils down to recording a desired trajectory in a pre-structured

environment with precisely placed objects. If inaccuracies remain, the engineer cre-

ates exceptions using human understanding of the task. In order to be controllable,

the robot tracking the trajectory is usually a heavy structure with non-backdrivable,

noncompliant joints resulting into high-payload to weight ratio, low energy-efficiency

and dangers for its environment (Hirzinger et al., 2002; Sciavicco & Siciliano, 2007).

While such highly engineered approaches are feasible in well-structured industrial or

research environments, it is obvious that if robots should ever leave factory floors and

research environments, we will need to reduce or eliminate the complete reliance on

hand-crafted models of the environment and the robots exhibited to date. Instead, we

need a general approach which allows us to use compliant robots designed for interac-

tion with less structured and uncertain environments in order to reach domains outside

industry. Such an approach can not solely rely on human understanding of the task but

1

instead has to be acquired and adapted from data generated both by human demonstra-

tions of the skill as well as the robot’s trials and errors.

The tremendous progress in machine learning over the last decades offers us the

promise of less human-driven approaches to motor skill acquisition. However, despite

offering the most general way of thinking about data-driven acquisition of motor skills,

generic machine learning techniques, which do not rely on an understanding of motor

systems, often do not scale into the domain of manipulator or humanoid robotics due

to the high domain dimensionality. Therefore, instead of attempting an unstructured,

monolithic machine learning approach to motor skill aquisition, we need to develop

approaches suitable for this particular domain with the inherent problems of task repre-

sentation, learning and execution addressed separately in a coherent framework. Such

a general architecture needs to be developed from the perspective of analytical motor

control and employing a combination of imitation, reinforcement and model learning

in order to cope with the complexities involved in motor skill learning. The advantage

of such a concerted approach is that it allows the separation of the main problems of

motor skill acquisition, refinement and control. Instead of either having an unstruc-

tured, monolithic machine learning approach or creating hand-crafted approaches with

pre-specified trajectories, we are capable of aquiring skills from demonstrations and

refine them using trial and error. The creation and improvement of such skills takes

place through a combination of imitation and reinforcement learning. The acquired

skills are represented as policies and can principally include specifications ranging

from positions, velocities and acceleration to applied forces, stiffnesses, etc. When

using learning-based approaches for control instead of analytical models of the robots

dynamics and kinematics, we often can achieve accurate control without needing to

model the complete system by hand. Furthermore, robots no longer need to be build

with the focus on being straightforward to model but can be chosen to fulfill the tasks

requirements in terms of compliance with the environment, energy efficiency and other

factors.

1.2 Objective and Approach

The principal objective of this thesis is to move closer towards a general learning archi-

tecture for motor skills, i.e., to tackle the question

“How can we find a general framework for representing, learning and

executing motor skills for robotics?”

As can be observed from this question, the major goal of this thesis requires three

building blocks, i.e., (i) appropriate representations for movements, (ii) learning algo-

rithms which can be applied to these representations and (iii) a transformation which

2

allows the execution of the kinematic plans in the respective task space on robots. These

essential components will be discussed in detail in Section 1.2.1 while the resulting idea

for a general approach is discussed in Section 1.2.2.

1.2.1 Essential Components

In order to make a step towards the objective of finding a general framework for motor

skills, we have to address our basic philosophy towards the three essential components,

i.e., representation, learning and execution. In this section, we briefly outline on which

fundamental concepts we will be building on in this thesis and how the different topics

relate to each other.

Representation. For the representation of motor skills, we can rely on the insight that

humans, while being capable to perform a large variety of complicated movements, re-

strict themselves to a smaller amount of primitive motions (Schaal, Ijspeert, & Billard,

2004). As suggested by Ijspeert et al. (2002, 2003), such primitive movements can be

represented by nonlinear dynamic systems. We can represent these in the differential

constraint form given by

Aθi
(xi, ẋi, t)ẍ = bθi

(xi, ẋi, t), (1.1)

where i ∈ N is the index of the motor primitive in a library of movements, θi ∈ R
L

denote the parameters of the primitive i, t denotes time and xi,ẋi,ẍi ∈ R
n denote

positions, velocities and accelerations of the dynamic system, respectively.

Learning. Learning basic motor skills1 is achieved by adapting the parameters θi of

motor primitive i. The high dimensionality of our domain prohibits the exploration

of the complete space of all admissible motor behaviors, rendering the application of

machine learning techniques which require exhaustive exploration impossible. Instead,

we have to rely on a combination of supervised and reinforcement learning in order

to aquire motor skills where the supervised learning is used in order to obtain the ini-

tialization of the motor skill while reinforcement learning is used in order to improve

it. Therefore, the aquisition of a novel motor task consists out of two phases,i.e., the

‘learning robot’ attempts to reproduce the skill acquired through supervised learning

and improve the skill from experience by trial-and-error, i.e., through reinforcement

learning.

1Learning by sequencing and parallelization of the motor primitives will be treated in future work.

3

Motor Primitive
Representation

Control Task
Execution

Robot
System

Real-time Learning from
Immediate Rewards

Episodic Learning from
Long-Term Rewards

Perceptual
Triggering

Figure 1.1: This figure illustrates our general approach to motor skill learning by divid-

ing it into motor primitive and a motor control component. For the task execution, fast

policy learning methods based on observable error need to be employed while the task

learning is based on slower episodic learning.

Execution. The execution of motor skills adds another level of complexity. It requires

that a mechanical system

u = M(q, q̇, t)q̈ + F(q, q̇, t), (1.2)

with a mapping xi = f i(q, q̇, t) can be forced to execute each motor primitive Aiẍi =
bi in order to fulfill the skill. The motor primitive can be viewed as a mechanical con-

straint acting upon the system, enforced through accurate computation of the required

forces based on analytical models. However, in most cases it is very difficult to obtain

accurate models of the mechanical system. Therefore it can be more suitable to find

a policy learning approach which replaces the control law based on the hand-crafted

rigid body model. In this thesis, we will follow this approach which forms the basis for

understanding motor skill learning.

1.2.2 Resulting Approach

As we have outlined during the discussion of our objective and its essential compo-

nents, we require an appropriate general motor skill framework which allows us to

separate the desired task-space movement generation (represented by the motor prim-

itives) from movement control in the respective actuator space. We need to be able to

understand this transformation from an analytical point of view and need to be able to

relate it to general techniques in robotics. The resulting framework has to yield the

execution component discussed before as well as a basic understanding for resulting

learning frameworks. When turning the analytical approach into a learning framework,

4

we have to consider two components, i.e., we need to determine how to learn the de-

sired behavior represented by the motor primitives as well as the execution represented

by the transformation of the motor primitives into motor commands. From here, we

need to develop scalable learning algorithms which are both appropriate and efficient

when used with the chosen general motor skill learning architecture. As such we need

algorithms for fast immediate policy learning for movement control based on instantly

observable rewards in order to enable the system to cope with real-time improvement

during the execution. The learning of the task itself on the other hand requires the learn-

ing of policies which define the long-term evolution of the task, i.e., motor primitives,

which are learned on a trial-by-trial basis with episodic improvement using a teacher for

demonstration and reinforcement learning for self-improvement. The resulting general

concept underlying this thesis is illustrated in Figure 1.1.

1.3 Major Contributions

In this thesis, we have made progress towards a general framework for representing,

learning and executing motor skills while demonstrating the application of this work to

physical and simulated robots. This progress includes contributions to three different

but related lines of research, i.e.,

• Machine Learning,

• Motor Skill Representation and Control,

• Robot Application,

hence the name of this thesis is “Machine Learning for Motor Skills in Robotics”.

The problem of motor skills learning for robotics is obviously not solved before

we have humanoid robots are to successfully perform most common motor tasks in

people’s homes. Nevertheless, we have made significant progress and several major

contributions which we will outline in the next paragraphs. Each of these novel results

can be seen as contribution to all three disciplines and together they can be seen as in a

coherent and general basis for learning motor skills for robotics.

1.3.1 General, Unifying Framework

As mentioned before, our push for new motor skills largely relies upon a general uni-

fying framework for a class of point-wise optimal control approaches. This framework

allows us to derive previous and novel control approaches, e.g., for operational space

control, and it serves as the basis for our learning framework.

5

Point-Wise Optimal Control Approach. For obtaining our generic framework, we

start with the general insight by Udwadia (1996, 2003) that Nature enforces constraints

on mechanical or structural systems in the similar way to a nonlinear controller and

thus we can obtain control laws in a similar fashion. We formalize this basic insight

for robotics with a particular focus redundant degrees-of-freedom (DOFs) systems and

rely on the general understanding of the control framework as a special class of point-

wise optimal controllers derived from differential constraints. We discuss resulting

requirements for stability as well as an extension for hierarchical task prioritization. In

a more limited case, it can be justified from the viewpoint from an infinite horizon point

of view.

Unification of previous approaches. The suggested approach offers a promising uni-

fication and simplification of nonlinear control law design for robots obeying rigid body

dynamics equations, both with or without external constraints. We take this line of

reasoning one step further and demonstrate that several well-known and also novel

nonlinear robot control laws can be derived from this generic methodology. We show

experimental verifications on a Sarcos Master Arm robot for some of the the derived

controllers.

1.3.2 Novel Learning Algorithms

As outlined before, we need two different styles of policy learning algorithms, i.e.,

methods for long-term reward optimization and methods for immediate improvement.

Thus, we have developed two different classes of algorithms, i.e., the Natural Actor-

Critic and the Reward-Weighted Regression.

Natural Actor-Critic. The Natural Actor-Critic algorithm (Peters, Vijayakumar, &

Schaal, 2003a, 2005) are the fastest policy gradient methods to date and “the current

method of choice” (Aberdeen, 2006). They rely on the insight that we need to maxi-

mize the reward while keeping the loss of experience constant, i.e., we need to measure

the distance between our current path distribution and the new path distribution created

by the policy. This distance can be measured by the Kullback-Leibler divergence and

approximated using the Fisher information metric resulting into a natural policy gradi-

ent approach. This natural policy gradient has a connection to the recently introduced

compatible function approximation, which allows to obtain the Natural Actor-Critic.

Interestingly, earlier Actor-Critic approaches can be derived from this new approach.

In application to motor primitive learning, we can demonstrate that the Natural Actor-

Critic outperforms both finite-difference gradients as well as ‘vanilla’ policy gradient

methods with optimal baselines.

6

Reward-Weighted Regression. In contrast to the Natural Actor-Critic, the Reward-

Weighted Regression algorithm (Peters & Schaal, 2006a, 2007a, 2007b) focusses on

immediate reward improvement and employs an adaptation of the expectation maxi-

mization (EM) algorithm for reinforcement learning instead of a gradient based ap-

proach. The key difference here is that when using immediate rewards, we can learn

from our actions directly, i.e., use them as training examples similar as in a supervised

learning problem just with a higher priority for samples with a higher reward. Thus,

this problem is a reward-weighted regression problem, i.e., it has a well-defined so-

lution which can be obtained using established regression techniques. While we have

given a more intuitive explanation of this algorithm, it corresponds to a properly de-

rived maximization-maximization (MM) algorithm which maximizes a lower bound

on the immediate reward similar to an EM algorithm. It can be shown to scale into high

dimensional domains and learn a good policy without any imitation of a human teacher.

1.3.3 Robot Application

The general setup presented in this thesis can be applied in robotics using analytical

models as well as the presented learning algorithms. The applications presented in this

thesis include motor primitive learning and operational space control.

Operational Space Control. Operational space control is one of the more general

frameworks for obtaining task-level control laws in robotics. In this thesis, we present

two new contributions to this field. First, we show how both well-established as well

as novel task-space tracking algorithms can be obtained by posing the problem as a

task-space constraint and simply varying the metric in the point-wise cost function

given by our general framework. We can show that all of the presented methods result

into roughly the same quality of tracking performance but that the resulting joint-space

trajectories differ significantly due to the shifted force distribution on the joints.

Our second contribution is a learning framework for operational space control which

is a result of both the general point-wise optimal control framework and our insight into

immediate reward reinforcement learning. While the general learning of operational

space controllers with redundant degrees of freedom is non-convex and thus global

supervised learning techniques cannot be applied straightforwardly, we can gain two

insights, i.e., that the problem is locally convex and that our point-wise cost function

allows us to ensure global consistency among the local solutions. We show that this can

yield the analytically determined optimal solution for simulated three degrees of free-

dom arms where we can sample the state-space sufficiently. Similarly, we can show the

framework works for simulations of the anthropomorphic SARCOS Master Arm.

7

Chapter 1
Introduction

Chapter 2
A Unifying Framework for Robot

Control with Redundant Degrees of
Freedom

Chapter 3
Learning Tracking Control in

Operational Space

Chapter 4
Policy Gradient Methods for Motor

Primitives and Robotics

Chapter 5
Conclusion

Figure 1.2: This figure illustrates the outline and relation of the thesis chapters.

Motor Primitive Improvement. The main application of our long-term improve-

ment framework is the optimization of motor primitives. Here, we follow essentially

the previously outlined idea of acquiring an initial solution by supervised learning

and then using reinforcement learning for motor primitive improvement. For this, we

demonstrate both comparisons of motor primitive learning with different policy gra-

dient methods, i.e., finite difference methods, ‘vanilla’ policy gradient methods and

the Natural Actor-Critic, as well as an application of the most successful method, the

Natural Actor-Critic to T-Ball learning.

1.4 Thesis Outline

In the last section of this introduction, we will briefly outline the structure and connec-

tions between the remaining chapters. The relation between the thesis structure and the

different chapters of this thesis proposal is given in Figure 1.4.

8

In Chapter 2, “A Unifying Framework for Robot Control with Redundant Degrees

of Freedom”, we present the general architecture which allows us to both understand

motor skill representation and execution from an analytical point of view as well as it

serves as the basis of our motor skill learning endeavours.

In Chapter 3, “Learning Tracking Control in Operational Space”, we focus on

learning how to generate joint-space motor commands in order to achieve task-space

tracking. While this chapter can be read separately from Chapter 2, it makes use of the

main principle, i.e., the point-wise cost function. In this context, we present first the

general EM-like algorithm for reinforcement learning and, subsequently, we derive the

Reward-Weighted Regression algorithm from it.

While Chapters 3 and 2 assume given tasks in a differential form, Chapter 4, “Pol-

icy Gradient Methods for Motor Primitives and Robotics”, focusses on the learning

and/or refinement of tasks represented by motor primitives. For achieving this, we

compare reinforcement learning methods for parameterized policies with a strong bias

towards high-dimensional systems such as robots and episodic task-learning. The best

performing method, the Episodic Natural Actor-Critic is then shown to be efficient in

task learning for an anthropomorphic robot.

Finally, in Chapter 5, “Conclusion ”, we give a conclusion and discuss future work.

9

Chapter 2

A Unifying Framework for Robot Control

with Redundant Degrees of Freedom

Theory attracts practice as the magnet attracts iron.

Carl Friedrich Gauss (German mathematician, 1777-1855)

One of the most important reasons why learning methods are not dominating the

field of robotics yet is the depth of human insight into the structure and control of

mechanical systems. Pure machine learning approaches which neglect the insights

from analytical robotics often end up with ill-posed problems (e.g., learning inverse

kinematics by supervised learning can result in inconsistent solutions), or with infe-

rior solutions (e.g., the linear appearance of velocities and accelerations in differential

kinematic models can be incorporated). Thus, this chapter attempts to make use of that

knowledge in order to establish the theoretical basis for a machine learning framework

for motor skills from an analytical dynamics point of view. The results presented in this

chapter are a key ingredient for Chapter 3. They serve also as basis for the operational

space control learning framework and they suggest a task learning approach based on

motor primitive representations as discussed in Chapter 4.

Recently, Udwadia (2003) suggested to derive tracking controllers for mechanical

systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’

principle of least constraint. This method allows reformulating control problems as a

special class of point-wise optimal controllers. In this thesis chapter, we take this line

of reasoning one step further and demonstrate that several well-known and also novel

nonlinear robot control laws can be derived from this generic methodology. We show

experimental verifications on a Sarcos Master Arm robot for some of the the derived

controllers. The suggested approach offers a promising unification and simplification

of nonlinear control law design for robots obeying rigid body dynamics equations, both

with or without external constraints. It can be shown to generalize to hierarchical task

10

prioritization frameworks, and, in a more limited case, it can be justified from the view-

point of an infinite horizon point of view.

2.1 Introduction

The literature on robot control with redundant degrees-of-freedom (DOFs) has intro-

duced many different approaches of how to resolve kinematic redundancy in complex

robots and how to combine redundancy resolution with appriopriate control methods

(e.g., see (Nakanishi, Cory, Mistry, Peters, & Schaal, 2005) for an overview). For in-

stance, methods can be classified to operate out of velocity-based, acceleration-based,

and force-based principles, they can focus on local or global redundancy resolution

strategies (Baillieul & Martin, 1990), and they can have a variety of approaches how

to include optimization criteria to maintain control in the null space of a movement

task. When studying the different techniques, it sometimes appears that they were cre-

ated from ingenious insights of the orginal researchers, but that there is also a missing

thread that links different techniques to a common basic principle.

We follow Udwadia’s (2003) suggestion to reinterpretate tracking control in terms

of constrained mechanics, which was inspired by results from analytical dynamics with

constrained motion. The major insight is that tracking control can be reformulated in

terms of constraints, which in turn allows the application of a generalization of Gauss’

principle of least constraint1 (Udwadia & Kalaba, 1996; Bruyninckx & Khatib, 2000)

to derive a control law. This insight leads to a specialized point-wise optimal con-

trol framework for controlled mechanical systems. While it is not applicable to non-

mechanical control problems with arbitrary cost functions, it yields an important class

of optimal controllers, i.e., the class where the problem requires task achievement un-

der minimal squared motor commands with respect to a specified metric. In this thesis

chapter, we develop this line of thinking one step further and show that it can be used

as a general way of deriving robot controllers for systems with redundant DOFs, which

offers a useful unification of several approaches in the literature. We discuss the nec-

essary conditions for the stability of the controller in task space if the system can be

modeled with sufficient precision and the chosen metric is appropriate. For assuring

stability in configuration space further considerations may apply. To exemplify the

feasibility of our framework and to demonstrate the effects of the weighting metric,

we evaluate some of the derived controllers on an end-effector tracking task with an

anthropomorphic robot arm.

1Gauss’ princip least constraint (Udwadia & Kalaba, 1996) is a general axiom on the mechanics of

constrained motions. It states that if a mechanical system is constrained by another mechanical structure

the resulting acceleration ẍ of the system will be such that it minimizes (ẍ−M−1F)T M−1(ẍ−M−1F)
while fulfilling the constraint.

11

This thesis chapter is organized as follows: firstly, a optimal control framework

based on (Udwadia, 2003) is presented and analyzed. Secondly, we discuss different

robot control problems in this framework including joint and task space tracking, force

and hybrid control. We show how both established and novel controllers can be derived

in a unified way. Finally, we evaluate some of these controllers on a Sarcos Master Arm

robot.

2.2 A Unifying Methodology for Robot Control

A variety of robot control problems can be motivated by the desire to achieve a task

accurately while minimizing the squared motor commands, e.g., we intend to track a

trajectory with minimum generated torques. Such problems can be formalized as a type

of minimum effort control. In this section, we will show how the robot dynamics and

the control problem can be brought into a general form which, subsequently, will allow

us to compute the optimal control commands with respect to a desired metric. We will

augment this framework such that we can ensure the necessary conditions for stability

both in the joint space of the robot as well as in the task space of the problem.

2.2.1 Formulating Robot Control Problems

We assume the well-known rigid-body dynamics model of manipulator robotics with n
degrees of freedom given by the equation

u = M(q)q̈ + C(q, q̇) + G(q), (2.1)

where u ∈ R
n is the vector of motor commands (i.e., torques or forces), q, q̇, q̈ ∈ R

n

are the vectors of joint position, velocities and acceleration, respectively, M(q) ∈ R
n×n

is the mass or inertia matrix, C(q, q̇) ∈ R
n denotes centripetal and Coriolis forces, and

G(q) ∈ R
n denotes forces due to gravity (Yoshikawa, 1990; Wit et al., 1996). At many

points we will write the dynamics equations as M(q)q̈ = u(q, q̇) + F(q, q̇) where

F(q, q̇) = −C(q, q̇)−G(q) for notational convenience. We assume that a sufficiently

accurate model of our robot system is available.

A task for the robot is assumed to be described in the form of a constraint, i.e., it is

given by a function

h(q, q̇, t) = 0. (2.2)

where h ∈ R
k with an arbitrary dimensionality k. For example, if the robot is supposed

to follow a desired trajectory qdes(t) ∈ R
n, we could formulate it by h(q, q̇, t) =

q− qdes(t) = 0; this case is analyzed in detail in Section 2.3.1. The function h can be

12

considered a task function in the sense of the framework proposed in (Samson, Borgne,

& Espiau, 1991).

We consider only tasks where equation (2.2) can be reformulated as

A(q, q̇,t)q̈ = b(q, q̇,t), (2.3)

which can be achieved for most tasks by differentiation of equation (2.2) with respect

to time, assuming that h is sufficiently smooth. For example, our previous task, upon

differentiation, becomes q̈ = q̈des(t) so that A = I and b = q̈des(t). An advantage

of this task formulation is that non-holomonic constraints can be treated in the same

general way.

In Section 2.3, we will give task descriptions first in the general form of Equation

(2.2), and then derive the resulting controller, which is the linear in accelerations, as

shown in Equation (2.3).

2.2.2 Point-wise Optimal Control Framework

Let us assume that we are given a robot model and a constraint formulation of the

task as described in the previous section. In this case, we can characterize the desired

properties of the framework as follows: first, the task has to be achieved perfectly, i.e.,

h(q, q̇, t) = 0, or equivalently, A(q, q̇,t)q̈ = b(q, q̇,t), holds at all times. Second,

we intend to minimize the control command with respect to some given metric, i.e.,

J(t) = uTN(t)u, at each instant of time, with positive semi-definite matrix N(t). The

solution to this point-wise optimal control problem (Spong, Thorp, & Kleinwaks, 1984,

1986) can be derived from a generalization of Gauss’ principle, as originally suggested

in (Udwadia, 2003). It is also a generalization of the propositions in (Udwadia &

Kalaba, 1996; Bruyninckx & Khatib, 2000). We formalize this idea in the following

proposition.

Proposition 2.1 The class of controllers which minimizes

J(t) = uTN(t)u, (2.4)

for a mechanical system M(q)q̈ = u(q, q̇)+F(q, q̇) while fulfilling the task constraint

A(q, q̇,t)q̈ = b(q, q̇,t), (2.5)

is given by

u = N−1/2(AM−1N−1/2)+(b−AM−1F), (2.6)

where D+ denotes the pseudo-inverse for a general matrix D, and D1/2 denotes the

symmetric, positive definite matrix for which D1/2D1/2 = D.

13

Proof. By defining z = N1/2u = N1/2(Mq̈ − F), we obtain the accelerations q̈ =
M−1N−1/2(z + N1/2F). Since the task constraint Aq̈ = b has to be fulfilled, we have

AM−1N−1/2z = b−AM−1F. (2.7)

The vector z which minimizes J(t) = zTz while fulfilling Equation (2.7), is given

by z = (AM−1N−1/2)+(b − AM−1F), and as the motor command is given by u =
N−1/2z, the proposition holds.

The choice of the metric N plays a central role as it determines how the control

effort is distributed over the joints. Often, we require a solution which has a kinematic

interpretation; such a solution is usually given by a metric like N = (M·M)−1 = M−2.

In other cases, the control force u may be required to comply with the principle of vir-

tual displacements by d’Alembert for which the metric N = M−1 is more appropriate

(Udwadia & Kalaba, 1996; Bruyninckx & Khatib, 2000). In practical cases, one would

want to distribute the forces such that joints with stronger motors get a higher workload

which can also be achieved by a metric such as N = diag(τ̂−2
1 , τ̂−2

2 , . . . , τ̂−2
n) where

the nominal torques τ̂i are used for the appropriate distribution of the motor commands.

In Section 2.3, we will see how the choice of N results in several different controllers.

2.2.3 Necessary Conditions for Stability

Up to this point, this framework has been introduced in an idealized fashion neglect-

ing the possibility of imperfect initial conditions and measurement noise. Therefore,

we modify our approach slightly for ensuring stability. However, the stability of this

framework as well as most related approaches derivable form this framework cannot be

shown conclusively but only in special cases (Hsu, Hauser, & Sastry, 1989; Arimoto,

1996). Therefore, we can only outline the necessary conditions for stability, i.e., (i) the

achievement of the task which will be achieved through a modification of the frame-

work in Section 2.2.3.1 and (ii) the prevention of undesired side-effects in joint-space.

The later are a result of under-constrained tasks, i.e., tasks where some degrees of free-

dom of the robot are redundant for task achievements, can cause undesired postures or

even instability in joint-space. This problem will be treated in Section 2.2.3.2.

2.2.3.1 Task Achievement

Up to this point, we have assumed that we always have perfect initial conditions, i.e.,

that the robot fulfills the constraint in Equation (2.3) at startup, and that we know the

robot model perfectly. Here, we treat deviations to these assumptions as disturbances

and add means of disturbance rejections to our framework. This disturbance rejection

14

can be achieved by requiring that the desired task is an attractor, e.g., it could be pre-

scribed as a dynamical system in the form

ḣ(q, q̇, t) = fh(h, t), (2.8)

where h = 0 is a globally asymptotically stable equilibrium point – or a locally asymp-

totically stable equilibrium point with a sufficiently large region of attraction. Note that

h can be a function of robot variables (as in end-effector trajectory control in Section

2.3.2) but often it suffices to choose it as a function of the state vector (for example for

joint-space trajectory control as in Section 2.3.1). In the case of holonomic tasks (such

as tracking control for a robot arm), i.e. hi(q, t) = 0, i = 1, 2,. . ., k we can make use

of a particularly simple form and turn this task into an attractor

ḧi + δiḣi + κih = 0, (2.9)

where δi and κi are chosen appropriately. We will make use of this ‘trick’ in order

to derive several algorithms. Obviously, different attractors with more desirable con-

vergence properties (and/or larger basins of attraction) can be obtained by choosing fh

appropriately.

If we have such task-space stabilization, we can assure that the control law will

achieve the task at least in a region near to the desired trajectory. We demonstrate this

issue in the following proposition.

Proposition 2.2 If we can assure the attractor property of the task h(q, q̇, t) = 0, or

equivalently, A(q, q̇,t)q̈ = b(q, q̇,t), and if our robot model is accurate, the optimal

controller of Equation (2.6) will achieve the task asymptotically.

Proof. When combining the robot dynamics equation with the controller, and after

reordering the terms, we obtain

AM−1(Mq̈ − F) = (AM−1N−1/2)+(b−AM−1F). (2.10)

If we now premultiply the equation with D = AM−1N−1/2, and noting that DD+D =
D, we obtain Aq̈ = DD+b = b. The equality follows because the original trajectory

defined by Aq̈ = b yields a consistent set of equations. If this equation describes an

attractor, we will have asymptotically perfect task achievement.

In some cases, such as joint trajectory tracking control discussed in Section 2.3.1,

Proposition 2.2 will suffice for a stability proof in a Lyapunov sense (Yoshikawa, 1990;

Wit et al., 1996). However, for certain tasks such as end-effector tracking control dis-

cussed in Section 2.3.1, this is not the case and stability can only be assured in special

cases (Hsu et al., 1989; Arimoto, 1996).

15

Disturbance or

initial velocityCompensation

in Task Space

Figure 2.1: In the presence of disturbances or non-zero initial conditions, stable task

dynamics will not result in joint-space stability.

2.2.3.2 Prevention of Control Problems in Joint-Space

Even if stability in task space can be shown, it is not immediately clear whether the

control law is stable in joint-space. Example 2.1, illustrates a problematic situation

where a redundant robot arm achieves an end-effector tracking task and is provably

stable in task-space, but nevertheless also provably unstable in joint-space.

Example 2.1 Let us assume a simple prismatic robot with two horizontal, parallel links

as illustrated in Figure 2.1. The mass matrix of this robot is a constant given by M =
diag(m1, 0) + m21 where 1 denotes a matrix having only ones as entries, and the

additional forces are F = C + G = 0. Let us assume the task is to move the end-

effector x = q1 + q2 along a desired position xdes, i.e., the task can be specified by

A = [1, 1], and b = ẍdes +δ(ẋdes− ẋ)+κ(xdes−x) after double differentiation and task

stabilization. While the task dynamics are obviously stable (which can be verified using

the constant Eigenvalues of the system), the initial condition q1(t0) = xdes(t0)− q2(t0)
would result in both qi(t)’s diverging into opposite directions for any non-zero initial

velocities or in the presence of disturbances for arbitrary initial conditions. The reason

for this behavior is obvious: the effort of stabilizing in joint space is not task relevant

and would increase the cost.

While this example is similar to problems with non-minimum phase nonlinear con-

trol systems (Isidori, 1995)), the problems encountered are not the failure of the task

controller, but rather due to internal dynamics, e.g., hitting of joint limits. From this

example, we see that the basic general framework of contrained mechanics does not al-

ways suffice to derive useful control laws, and that it has to be augmented to incorporate

joint stabilization for the robot without affecting the task achievement. One possibility

is to introduce a joint-space motor command u1 as an additional component of the the

motor command u, i.e.,

u = u1 + u2(u1), (2.11)

16

where the first component u1 denotes an arbitrary joint-space motor command for sta-

bilization, while the second component u2(u1) denotes the task-space motor command

generated with the previously explained equations. The task-space component depends

on the joint-space component as it has to compensate for it in the range of the task

space. We can show that task achievement Aq̈ = b by the controller is not affected by

the choice of the joint-space control law u1.

Proposition 2.3 For any chosen joint stabilizing control law u1 = f(q), the resulting

task space control law u2(u1) ensures that the joint-space stabilization acts in the null-

space of the task achievement.

Proof. When determining u2, we consider u1 to be part of our additional forces in the

rigid body dynamics, i.e., we have F̃ = F+u1. We obtain u2 = N−1/2(AM−1N−1/2)+

(b − AM−1F̃) using Proposition 2.1. By reordering the complete control law u =
u1 + u2(u1), we obtain

u = u1 + N−1/2(AM−1N−1/2)+(b−AM−1(F + u1)),

= N−1/2(AM−1N−1/2)+(b−AM−1F)

+
[
I−N−1/2(AM−1N−1/2)+AM−1

]
u1,

= N−1/2(AM−1N−1/2)+(b−AM−1F) (2.12)

+ N−1/2
[
I− (AM−1N−1/2)+(AM−1N−1/2)

]
N1/2u1,

The task space is defined by N−1/2(AM−1N−1/2)+, and the projection matrix given

by N−1/2 [I − (AM−1N−1/2)+ (AM−1N−1/2)] ensures that the joint-space control

law and the task space control law are N-orthogonal, i.e., the task accomplishment is

independent of the joint-space stabilization.

Despite that the task is still achieved, the optimal control problem is affected by the

restructuring of our control law. While we originally minimized J(t) = uTN(t)u, we

now have a modified cost function

J̃(t) = uT
2 N(t)u2 = (u− u1)

TN(t)(u− u1), (2.13)

which is equivalent to stating that the complete control law u should be as close to the

joint-space control law u1 as possible under task achievement.

This reformulation can have significant advantages if used appropriately. For ex-

ample, in a variety of applications – such as using the robot as a haptic interface – a

compensation of the robot’s gravitational, coriolis and centrifugal forces in joint space

17

can be useful. Such a compensation can only be derived when making use of the mod-

ified control law. In this case, we set u1 = −F = C + G, which allows us to obtain

u2 = N−1/2(AM−1N−1/2)+b, (2.14)

which does not contain these forces, and we would have a complete control law of

u = C + G + N−1/2(AM−1N−1/2)+b.

2.2.4 Hierachical Extension

In complex high-dimensional systems, we can often have a large number of tasks

A1q̈ = b1, A2q̈ = b2, . . . , Anq̈ = bn that have to be accomplished in parallel. These

tasks often partially conflict, e.g., when the number of tasks exceeds the number of de-

grees of freedom or some of these tasks cannot be achieved in combination with each

other. Therefore, the combination of these tasks into a single large task is not always

practical and, instead, the tasks need prioritization, e.g., the higher the number of the

task, the higher its priority. Task prioritized control solutions have been discussed in

the literature (Nakamura, Hanafusa, & Yoshikawa, 1987; Hollerbach & Suh, 1987; Ma-

ciejewski & Klein, 1985; Hanafusa, Yoshikawa, & Nakamura, 1981; Yamane & Naka-

mura, 2003; Sentis & Khatib, 2004; Siciliano & Slotine, 1991; Khatib, Sentis, Park,

& Warren, 2004; Sentis & O.Khatib, 2005). Most previous approaches were kinematic

and discussed only a small, fixed number of tasks; to our knowledge, (Sentis & Khatib,

2004; Sentis & O.Khatib, 2005) were among the first to discuss arbitrary task numbers

and dynamical decoupling, i.e., a different metric from our point of view. The proposed

framework allows the generalization for arbitrary metrics and more general problems

as will be shown in Proposition 2.3. The prioritized motor command is given by

u = u1 + u2 (u1) + u3 (u1 + u2) + . . .+ un (u1 + . . .+ un−1) , (2.15)

where un (u1 + . . .+ un−1) is the highest-priority control law as a function of the lower

level u1, . . . ,un−1 and cancels out all influence u1 + . . . + un−1 which prohibit the

execution of its task. The motor commands for each degree of freedom can be given by

the following Proposition:

Proposition 2.4 A set of hierachically prioritized constraints Aiq̈ = bi where the pri-

ority is represented by i = 1, 2, . . . , n (here, a higher number idenotes a higher prior-

ity) can be controlled by

u = u1 +
n∑

i=2

ui

(∑i−1

k=1
uk

)
, (2.16)

18

where ui (uΣ) = N−1/2(AiM
−1N−1/2)+(b −AiM

−1(F + uΣ)). For any k < i, the

lower-priority control law uk acts in the null-space of the higher-priority control law

ui and any higher-priority control law ui cancels all parts of the lower-priority control

law uk which conflict with its task achievement.

Proof. We first simply create the control laws u1 and u2 (u1) as described before

and then make use of Proposition 2.3, which proves that this approach is correct for

n = 2. Let us assume now that it is true for n = m. In this case, we can consider ũ1 =
u1+u2+. . .+um our joint-space control law and ũ2 = um+1 the task-space control law.

If we now make use of Proposition 2.3 again, we realize that ũ1 = u1 + u2 + . . .+ um

acts in the null-space of ũ2 = um+1 and that all components of u1,u2, . . . ,um which

conflict with um+1 will be canceled out. Therefore, the proposition also remains true

for n = m+ 1. This proves the proposition by induction.

From the viewpoint of optimization, the control laws obtained in Proposition 2.4

have a straightforward interpretation like the combination of joint and task-space con-

trol laws: each subsequent control law is chosen so that the control effort deviates

minimally from the effort created from the previous control laws.

Example 2.2 Robot locomotion is a straightforward example for such an approach.

Traditionally, all tasks are often meshed into one big tasks (Pratt & Pratt, 1998). How-

ever, the most essential task is the balancing of the robot to prevent accidents; it can,

for instance, be achieved by a balancing task A3q̈ = b3 similar to a spring-damper

system pulling the system to an upright position. Additionally, the center of the torso

should follow a desired trajectory – unless the desired path would make the robot fall.

This gait generating task would be given by A2q̈ = b2. Additionally, we want to have

joint-space stability as the unconstrained degrees of freedom such as the arms might

otherwise move all the time. The joint-space stabilization can be expressed as a con-

straint A1q̈ = b1 pulling the robot towards a rest posture. The combined motor com-

mand is now given by u = u1 +u2 (u1)+u3 (u1 + u2) with the single control laws are

obtained by ui (uΣ) = N−1/2(AiM
−1N−1/2)+(b−AiM

−1(F+uΣ)) with i = 1, 2, 3.

Ideas similar to Example 2.2 have been explored in (Yamane & Nakamura, 2003;

Sentis & Khatib, 2004; Khatib et al., 2004; Sentis & O.Khatib, 2005) and we are cur-

rently working on applying this framework to locomotion similar to Example 2.2.

2.3 Robot Control Laws

The previously described framework offers a variety of applications in robotics – we

will only focus on some the most important ones in this thesis chapter. Most of these

controllers which we will derive are known from the literature, but often from very

19

different, and sometimes convoluted, building principles. In this section, we show how

a large variety of control laws for different situations can be derived in a simple and

straightforward way by using the unifying framework that has been developed hereto.

We derive control laws for joint-space trajectory control for both fully actuated and

overactuated “muscle-like” robot systems from our framework. We also discuss task-

space tracking control systems, and show that most well-known inverse kinematics

controllers are applications of the same principle. Additionally, we will discuss how

the control of constrained manipulators through impedance and hybrid control can be

easily handled within our framework.

2.3.1 Joint-Space Trajectory Control

The first control problem we address is joint-space trajectory control. We consider two

different situations: (a) We control a fully actuated robot arm in joint-space, and (b) we

control an overactuated arm. The case (b) could, for example, have agonist-antagonist

muscles as actuators similar to a human arm2.

2.3.1.1 Fully Actuated Robot

The first case which we consider is the one of a robot arm which is actuated at every

degree of freedom. We have the trajectory as constraint with h(q, t) = q(t)− qd(t) =
0. We turn this constraint into an attractor constraint using the idea in Section 2.2.3.1,

yielding

(q̈− q̈d) + KD(q̇− q̇d) + KP (q− qd) = 0, (2.17)

where KD are positive-definite damping gains, and KP are positive-definite propor-

tional gains. We can bring this constraint into the form A(q, q̇)q̈ = b(q, q̇) with

A = I, (2.18)

b = q̈d + KD(q̇d − q̇)−KP (qd − q). (2.19)

Proposition 2.1 can be used to derive the controller. Using (M−1N−1/2)+ = N1/2M
as both matrices are of full rank, we obtain

u = u1 + N−1/2(AM−1N−1/2)+(b−AM−1(F + u1)),

= M(q̈d + KD(q̇d − q̇) + KP (qd − q)) + C + G. (2.20)

2An open topic of interest is to handle underactuated control systems. This will be part of future

work.

20

Note that – not surprisingly – all joint-space motor commands or virtual forces u1

always disappear from the control law and that the chosen metric N is not relevant –

the derived solution is unique and general. This equation is a well-known text book

control law, i.e., the Inverse Dynamics Control Law (Yoshikawa, 1990; Wit et al.,

1996).

2.3.1.2 Overactuated Robots

Overactuated robots, as they can be found in biological systems, are inheritently differ-

ent from the previously discussed robots. For instance, these systems are actuated by

several linear actuators, e.g., muscles that often act on the system in form of opposing

pairs. The interactions of the actuators can be modeled using the dynamics equations

of

Du = M(q)q̈ + C(q, q̇) + G(q), (2.21)

where D depends on the geometric arrangement of the actuators. In the simple model

of a two degree-of-freedom robot with antagonistic muscle-like activation, it would be

given by

D =

[
−l +l 0 0
0 0 −l +l

]
, (2.22)

where size of the entries Dij denotes the moment arm length li and the sign of Dij

whether its agonist (Dij > 0) or antagonist muscle (Dij < 0). We can bring this

equation into the standard form by multiplying it with D+, which results in a modified

system where M̃(q) = D+M(q), and F̃(q, q̇) = −D+C(q, q̇) − D+G(q). If we

express the desired trajectory as in the previous examples, we obtain the following

controller

u = M̃
1/2

(AM̃
−1/2

)+(b−AM̃
−1

F̃), (2.23)

= D+M(q̈d + KD(q̇d − q̇)−KP (qd − q)) + D+(C + G). (2.24)

While immidiately intuitive, it noteworthy that this particular controller falls out of the

presented framework in an natural way. It is straightforward to extend Proposition 2.1

to show that this is the constrained optimal solution to J(t) = uTDN(t)Du at any

instant of time.

2.3.2 End-effector Trajectory Control

While joint-space control of a trajectory q(t) is straightforward and the presented

methodology appears to simply repeat earlier results from the literature – although

21

derived from a different and unified perspective – the same cannot be said about end-

effector control where goal is to control the position x(t) of the end-effector. This

problem is generically more difficult as the choice of the metric N determines the type

of the resulting controller in an important way, and as the joint-space of the robot of-

ten has redundant degrees of freedom resulting in problems as already presented in

Example 2.1. In the following, we will show how to derive different approaches to

end-effector control from the presented framework, which will yield both established

as well as novel control laws.

The task description is given by the end-effector trajectory acting as a constraint

with h(q, t) = f(q(t)) − xd(t) = x(t) − xd(t) = 0, where x = f(q) denotes the

forward kinematics. We turn this constraint into an attractor constraint using the idea

in Section 2.2.3.1, yielding

(ẍ− ẍd) + KD(ẋ− ẋd) + KP (x− xd) = 0, (2.25)

where KD are positive-definite damping gains, and KP are positive-definite propor-

tional gains. We make use of the differential forward kinematics, i.e.,

ẋ = J(q)q̇, (2.26)

ẍ = J(q)q̈ + J̇(q)q̇. (2.27)

These equations allow us to formulate the problem in form of constraints, i.e., we intend

to fulfill

ẍd + KD(ẋd − ẋ) + KP (xd − x) = Jq̈ + J̇q̇, (2.28)

and we can bring this equation into the form A(q, q̇)q̈ = b(q, q̇) with

A(q, q̇) = J, (2.29)

b(q, q̇) = ẍd + KD(ẋd − ẋ) + KP (xd − x)− J̇q̇. (2.30)

These equations determine our task constraints. As long as the robot is not redundant

J is invertible and similar to joint-space control, we will have one unique control law.

However, when J is not uniquely invertible the resulting controller depends on the

chosen metric and joint-space control law.

2.3.2.1 Separation of Kinematics and Dynamics Control

The choice of the metric N determines the nature of the controller. A metric of partic-

ular importance is N = M−2 as this metric allows the decoupling of kinematics and

22

dynamics control as we will see in this section. Using this metric in Proposition 2.1,

we obtain a control law

u = u1 + N−1/2(AM−1N−1/2)+(b−AM−1(F + u1)),

= MJ+(ẍd + KD(ẋd − ẋ) + KP (xd − x)− J̇q̇) (2.31)

+ M(I− J+J)M−1u1 −MJ+JM−1F.

If we choose the joint-space control law u1 = u0 − F, we obtain the control law

u = MJ+(ẍd + KD(ẋd − ẋ) + KP (xd − x)− J̇q̇) (2.32)

+ M(I− J+J)M−1u0 + C + G.

This control law is the combination of a resolved-acceleration kinematic controller

(Yoshikawa, 1990; Hsu et al., 1989) with a model-based controller and an additional

null-space term. Often, M−1u0 is replaced by a desired acceleration term for the null-

space stabilization. Similar controllers have been introduced in (Park, Chung, & Youm,

2002, 1995; Chung, Chung, & Y.Youm, 1993; K.C.Suh & Hollerbach, 1987). The null-

space term can be eliminated by setting u0 = 0; however, this can result in instabilities

if there are redundant degrees of freedom. This controller will be evaluated in Section

2.4.

2.3.2.2 Dynamically Consistent Decoupling

As noted earlier, another important metric is N = M−1 as it is consistent with the prin-

ciple of d’Alembert, i.e., the resulting control force can be re-interpreted as mechanical

structures (e.g., springs and dampers) attached to the end-effector; it is therefore called

dynamically consistent. Again, we use Proposition 2.1, and by defining F̃ = F + u1

obtain the control law

u = u1 + N−1/2(AM−1N−1/2)+(b−AM−1F̃),

= u1 + M1/2(JM−1/2)T (JM−1JT)−1(b− JM−1F̃),

= u1 + JT (JM−1JT)−1(b− JM−1F̃),

= JT (JM−1JT)−1(ẍd + KD(ẋd − ẋ) + KP (xd − x)− J̇(q)q̇

+ JM−1(C + G)) + M(I−M−1JT (JM−1JT)−1J)M−1u1.

It turns out that this is another well-known control law suggest in (Khatib, 1987) with

an additional null-space term. This control-law is especially interesting as it has a clear

physical interpretation (Udwadia & Kalaba, 1996; Bruyninckx & Khatib, 2000; Udwa-

dia, 2003): the metric used is consistent with principle of virtual work of d’Alembert.

23

Similarly as before we can compensate for coriolis, centrifugal and gravitational forces

in joint-space, i.e., setting u1 = C + G + u0. This yields a control law of

u = JT (JM−1JT)−1(ẍd + KD(ẋd − ẋ) + KP (xd − x)− J̇(q)q̇) (2.33)

+ C + G + M[I−M−1JT (JM−1JT)−1J]M−1u0.

The compensation of the forces C+G in joint-space is often desirable for this metric in

order to have full control over the resolution of the redundancy as gravity compensation

purely in task space often results in postures that conflict with joint limits and other

parts of the robot.

2.3.2.3 Further Metrics

Using the identity matrix as metric, i.e., N = I, punishes the squared motor command

without reweighting, e.g., with inertial terms. This metric could be of interest as it

distributes the “load” created by the task evenly on the actuators. This metric results in

a control law

u = (JM−1)+(ẍd + KD(ẋd − ẋ) + KP (xd − x)− J̇(q)q̇ (2.34)

+ JM−1(C + G)) + (I− (JM−1)+JM−1)u1.

To our knowledge, this controller has not been presented in the literature.

Another practical idea would be to weight the joints depending on the maximal

torques τmax,i of each joint, e.g., using N = diag(τ−1
max,1, . . . , τ

−1
max,n).

These alternative metrics may be particularly interesting for practical application

where the user wants to have more control over the natural appearance of movement,

and worry less about the exact theoretical properties – humanoid robotics, for instance,

is one of such applications. In some cases, it also may not be possible to have accurate

access to complex metrics like the inertia matrix, and simplier metrics will be more

suitable.

2.3.3 Controlling Constrained Manipulators: Impedance & Hybrid

Control

Contact with outside objects alters the robot’s dynamics, i.e., a generalized contact

force FC ∈ R
6 acting on the end-effector changes the dynamics of the robot to

u = M(q)q̈ + C(q, q̇) + G(q) + JTFC . (2.35)

24

In this case, the interaction between the robot and the environment has to be controlled.

This kind of control can both be used to make the interaction with the environment safe

(e.g., in a manipulation task) as well as to use the robot to simulate a behavior (e.g., in a

haptic display task). We will discuss impedance control and hybrid control as examples

of the application of the proposed framework; however, further control ideas such as

parallel control can be treated in this framework, too.

2.3.3.1 Impedance Control

In impedance control, we want the robot to simulate the behavior of a mechanical sys-

tem such as

Md(ẍd − ẍ) + Dd(ẋd − ẋ) + Pd(xd − x) = FC , (2.36)

where Md ∈ R
6×6 denotes the mass matrix of a desired simulated dynamical system,

Dd ∈ R
6 denotes the desired damping, Pd ∈ R

6 denotes the gains towards the desired

position, and FC ∈ R
6 the forces that result from this particular dynamical behavior.

Using Equation (2.27) from Section 2.3.2, we see that this approach can be brought in

the standard form for tasks by

MdJq̈ = FC −Mdẍd −Dd(ẋd − Jq̇)−Pd(xd − f(q))−MdJ̇q̇. (2.37)

Thus, we can infer the task description

A = MdJ, (2.38)

b = FC −Mdẍd −Dd(Jq̇− ẋd)−Pd(f(q)− xd)−MdJ̇q̇,

and apply our framework for deriving the robot control law as shown before.

Kinematic Separation of Simulated System and the Manipulator Similar as in

end-effector tracking control, a practical metric is N = M−2 it basically separates

the simulated dynamic system from the physical structure of the manipulator on a

kinematic level. For simplicity, we make use of the joint-space control law u1 =
C + G + u0 similar as before. This results in the control law

u = u1 + N−1/2(AM−1N−1/2)+(b−AM−1(F + u1)),

= M(MdJ)+(FC −Mdẍd −Dd(Jq̇− ẋd)−Pd(f(q)− xd)−MdJ̇q̇)

+ C + G + (I−M(MdJ)+MdJM−1)u0. (2.39)

25

As (MdJ)+ = JTMd(MdJJTMd)
−1 = J+M−1

d since Md is invertible, we can sim-

plify this control law to become

u = MJ+M−1
d (FC −Mdẍd −Dd(Jq̇− ẋd)−Pd(f(q)− xd))

−MJ+J̇q̇ + C + G + M(I− J+J)M−1u0. (2.40)

We note that ẍd = M−1
d (FC −Mdẍd −Dd(Jq̇ − ẋd) − Pd(f(q) − xd)) is a desired

acceleration in task-space. This insight clarifies the previous remark about the sepa-

ration of the simulated system and the actual physical system: we have a first system

which describes the interaction with the environment – and additionally we use a sec-

ond, inverse-model type controller to execute the desired accelerations with our robot

arm.

Dynamically Consistent Combination Similar as in end-effector control, a practical

metric is N = M−1 which combines both the simulated and the physical dynamic

systems employing Gauss’ principle. For simplicity, we make use of the joint-space

control law u1 = C + G + u0 similar as before. This approach results in the control

law

u = u1 + N−1/2(AM−1N−1/2)+(b−AM−1(F + u1)),

= u1 + JT (JM−1JT)−1(b−AM−1(F + u1)),

= M1/2(MdJM−1/2)+(FC −Dd(Jq̇− ẋd)−Pd(f(q)− xd)−MdJ̇q̇)

+ C + G + (I−M(MdJ)+MdJM−1)u0. (2.41)

As (MdJM−1/2)+ = M−1/2JT (JM−1JT)−1M−1
d since Md is invertible, we can sim-

plify this control law into

u = JT (JM−1JT)−1M−1
d (FC −Dd(Jq̇− ẋd)−Pd(f(q)− xd))

−MJ+J̇q̇ + C + G + (I−MJ+JM
−1

)u0. (2.42)

We note that the main difference between this and the previous impedance control law

is the location of the matrix M.

2.3.3.2 Hybrid Control

In hybrid control, we intend to control the desired position of the end-effector xd and

the desired contact force exerted by the end-effector Fd. Modern hybrid control ap-

proaches are essentially similar to our introduced framework (Wit et al., 1996). Both

are inspired by constrained motion and use this insight in order to achieve the desired

26

task. In traditional hybrid control, a natural or artificial, idealized holomonic constraint

φ(q, t) = 0 acts on our manipulator, and subsequently the direction of the forces is

determined through the virtual work principle of d’Alembert. We can make significant

contributions here as our framework is a generalization of the Gauss’ principle that al-

lows us to handle even non-holomic constraints φ(q, q̇, t) = 0 as long as they are given

in the form

Aφ(q, q̇)q̈ = bφ(q, q̇). (2.43)

Aφ, bφ depend on the type of the constraint, e.g., for scleronomic, holomonic con-

straints φ(q) = 0, we would have Aφ(q, q̇) = Jφ and bφ(q, q̇) = −J̇φq̇ with

Jφ = ∂φ/∂q as in (Wit et al., 1996). Additionally, we intend to exert the contact

force Fd in the task; this can be achieved if we choose the joint-space control law

u1 = C + G + JT
φFd. (2.44)

From the previous discussion, this constraint is achieved by the control law

u = u1 + N−1/2(AφM−1N−1/2)+(bφ −AφM−1(F + u1)), (2.45)

= C + G + N−1/2(AφM−1N−1/2)+bφ (2.46)

+ N−1/2(I− (AM−1N−1/2)+AM−1N−1/2)N1/2JT
φFd.

Note that the exerted forces act in the null-space of the achieved tracking task; therefore

both the constraint and the force can be set independently.

2.4 Evaluations

The main contribution of this thesis chapter is the unifying methodology for deriv-

ing robot controllers. Each of the presented controllers is a well founded control law

which, from a theoretical point of view, would not need require empirical evaluations,

particularly as most of the control laws are already well-known from the literature and

their stability properties have been explored before. Nevertheless, it is useful to high-

light one component in the suggested framework, i.e., the impact of the metric N on

the particular performance of a controller. For this purpose, we chose to evaluate the

three end-effector controllers from Section 2.3.2: (i) the resolved-acceleration kine-

matic controller (with metric N = M−2) in Equation (2.32), (ii) Khatib’s operational

space control law (N = M−1) in Equation (2.33), and (iii) the identity metric control

law (N = I) in Equation (2.34).

As an experimental platform, we used the Sarcos Dextrous Master Arm, a hydraulic

manipulator with an anthropomorphic design shown in Figure 2.2 (b). Its seven degrees

of freedom mimic the major degrees of freedom of the human arm, i.e., there are three

27

Figure 2.2: Sarcos Master Arm robot, as used for the evaluations on our experiments.

DOFs in the shoulder, one in the elbow and three in the wrist. The robot’s end-effector

was supposed to track a planar “figure-eight (8)” pattern in task space at two different

speeds. In order to stabilize the null-space trajectories, we choose a PD control law in

joint space which pulls the robot towards a fixed rest posture, qrest, given by

u0 = M(KP0
(qrest − q)−KD0

q̇). (2.47)

Additionally we apply gravity, centrifugal and Coriolis force compensation, such that

u1 = u0 + C + G. For consistency, all three controllers are assigned the same gains

both for the task and joint space stabilization.

Figure 2.3 shows the end-point trajectories of the three controllers in a slow pattern

of eight seconds per cycle “figure-eight (8)”. Figure 2.4 shows a faster pace of four

seconds per cycle. All three controllers have similar end-point trajectories and result

in fairly accurate task achievement. Each one has an offset from the desired trajectory

(thin black line), primarily due to the imperfect dynamics model of the robot. The root

mean squared errors (RMS) between the actual and the desired trajectory in task-space

for each of the controllers are shown in the Table 2.1.

While the performance of the three controllers is very similar in task space, we

did notice that the resolved-acceleration kinematic controller (N = M−2) had a slight

advantage. The reason for this performance difference is most likely due to errors

in the dynamics model which affect the three control laws differently, i.e., the effect

of these errors is amplified by the inversion of the mass matrix in the control laws

given in Equations (2.33, 2.34) while the decoupling of the dynamics and kinematics

28

0.3 0.35 0.4 0.45 0.5 0.55

−0.1

−0.05

0

0.05

0.1

0.15

z
 a

x
is

x axis
0.34 0.38

−0.1

−0.05

0

0.05

0.1

0.15

y axis

Desired Res. Accel. Khatib Identity

Figure 2.3: This figure shows the three end-effector trajectory controllers tracking a

“figure eight (8)” pattern at 8 seconds per cycle. On the left is the x-z plane with the

y-z plane on the right. All units are in meters.

provided by the controller in Equation (2.32) can be favorable as the effect of modeling

errors is not increased. More accurate model parameters of the manipulator’s rigid

body dynamics would result in a reduction of the difference between these control laws

(observable in Figures 2.3 and 2.4) as we have confirmed in simulations.

Figure 2.5 illustrates how the joint space trajectories appear for the fast cycle. Al-

though end-point trajectories were very similar, joint space trajectories differ signifi-

cantly due to the different optimization criteria of each control law, which emphasizes

the importance of the choice of the metric N.

Table 2.1: This table shows the root mean squared error results of the tracking achieved

by the different control laws.

Metric Slow RMS error [m] Fast RMS error [m]

N = M−2 0.0122 0.0130
N = M−1 0.0126 0.0136
N = I 0.0130 0.0140

29

0.3 0.35 0.4 0.45 0.5 0.55

−0.1

−0.05

0

0.05

0.1

0.15

z
 a

x
is

x axis
0.34 0.38

−0.1

−0.05

0

0.05

0.1

0.15

y axis

Desired Res. Accel. Khatib Identity

Figure 2.4: The same three controllers tracking the same “figure eight (8)” pattern at a

faster pace of 4 seconds per cycle. The labels and units remain the same as in Figure

2.3.

2.5 Conclusion & Discussion

In order to conclude this thesis chapter, we give an overview on the contributions of the

chapter and outline the most important open problems for future research.

2.5.1 Contributions of the Chapter

In this thesis chapter, we have presented an optimal control framework which allows

the development of a unified approach for deriving a number of different robot control

laws for rigid body dynamics systems. We demonstrated how we can make use of both

the robot model and a task description in order to create control laws which are optimal

with respect to the squared motor command under a particular metric while perfectly

fulfilling the task at each instant of time. We have discussed how to realize stability

both in task as well as in joint-space for this framework.

Building on this foundation, we demonstrated how a variety of control laws–which

on first inspection appear rather unrelated to one another–can be derived using this

straightforward framework. The covered types of tasks include joint-space trajectory

30

1 2 3 4 5 6 7 8

0.05
0.1

0.15

S
F

E

1 2 3 4 5 6 7 8

−0.4

−0.2

S
A

A

1 2 3 4 5 6 7 8

−0.2
0

0.2
0.4
0.6

H
R

1 2 3 4 5 6 7 8
1

1.2
1.4
1.6
1.8

E
B

F
E

time (sec.)

Res. Accel. Khatib Identity

Figure 2.5: Joint space trajectories for the four major degrees of freedom, i.e., shoulder

flexion-extension (SFE), shoulder adduction-abduction (SAA), humeral rotation (HR)

and elbow flexion-extension (EBFE), are shown here. Joint angle units are in radians.

The labels are identical to the ones in Figure 2.3.

control for both fully actuated and overactuated robots, end-effector trajectory control,

impedance and hybrid control.

The implemention of three of the end-effector trajectory control laws resulting from

our unified framework on a real-world Sarcos Master Arm robot was carried out as an

empirical evaluation. As expected, the behavior in task space is very similar for all

three control laws; yet, they result in very different joint-space behaviors due to the

different cost functions resulting from the different metrics of each control law.

The major contribution of this thesis chapter is the unified framework that we have

developed. It allows a derivation of a variety of previously known controllers, and

promises easy development of a host of novel ones, in particular control laws with

additional constraints. The particular controllers reported in this thesis chapter were

selected primarly for illustarting the applicability of this framework and demonstrating

its strength in unifying different control algorithms using a common building principle.

The work presented in this chapter up to this point has been presented in (Peters

et al., 2005; Peters, Mistry, Udwadia, & Schaal, 2005) and the resulting journal paper

is currently under review at Autonomous Robots.

31

2.5.2 Extension to Infinite Horizon Optimality

It is quite obvious that the point-wise minimization of the instantanious motor com-

mands uTu does not neccessarily result into a minimization of
∫∞

0
uTudt if there is

more than one solution u fulfilling the task Aq̈ = b. For example, assume that there

are two paths in joint-space at a point in time which both fulfill Aq̈ = b and you have

to choose between the two of them. In this case, we could end up choosing a path which

requires the lower immediate torque at that instant of time but much higher torque for

the rest of the trajectory, resulting into a higher average torque. Unfortunately, such

tasks exist frequently for redundant robots and, thus, it is of high importance to under-

stand what the infinite horizon implications of this method are. Following the work by

Kazerounian & Wang (1988), we can compute the infinite horizon optimal controller

for a different measure, i.e., the amount of kinetic energy of a holonomic task3 plus the

value of the storage function (which allows additional position-based punishments).

Proposition 2.5 The minimization of

J∞ =

∫ ∞

0

[
q̇TN∞ (q, t) q̇ + V (q)

]
dt (2.48)

subjected to a holonomic task h (q, t) = 0 in form of Aq̈ = b and a mechanical system

u = Mq̈ + F, yields the control law

u = u0 (q) + M(AN−1/2
∞)+ [b + AN∞ (u0 (q)− F)] , (2.49)

with a joint-space control law

u0 (q) = Ṅ∞q̇ − Bq̇−V ′ (q) + F (2.50)

where B = ∂
(
q̇TN∞

)
/∂q.

Proof. Using an instantaneous cost function

c (q, q̇, t) = q̇TN−1
∞ (q, t) q̇ + V (q) + µTh (q, t) . (2.51)

The resulting Euler equations (∂c/∂q)− d (∂c/∂q̇) /dt = 0 can be reformulated as

2N∞q̈+V ′ (q) + 2Ṅ∞q̇−Bq̇−ATµ = 0, (2.52)

3The same metric is commonly used as a base in differential geometric methods (Bullo & Lewis,

2004).

32

where B = ∂
(
q̇TN∞

)
/∂q. This equations yields the acceleration

q̈ = 0.5N−1
∞

(
Bq̇ + ATµ− 2Ṅ∞q̇−V ′ (q)

)
. (2.53)

Substituting into Aq̈ = b yields µ, resubstituting in Equation (2.53) and using u =
Mq̈ + F, we obtain Equation (2.49).

Note that this approach is significantly more limited. It requires the constraints to

be holonomic in nature, the null-space control law cannot include differential terms and

will be drastically more difficult to compute. However, from this infinite horizon opti-

mal controller, we can infer an important statement on the infinite horizon optimality

of some control laws.

Proposition 2.6 The point-wise optimal controller with cost function

J0 = (u − u0)
T N0 (q, t) (u − u0) (2.54)

is equivalent to the one minimizing the infinite horizon cost in Equation (2.48) for

N0 (q, t) = M−1 (q)N∞ (q, t)M−1 (q) and a joint-space control law

u0 (q) = Ṅ∞q̇ − Bq̇−V ′ (q) + F (2.55)

where B = ∂
(
q̇TN∞

)
/∂q.

Proof. We compare the optimal control laws from Equations (2.49) and (2.6). The

result directly follows.

For N0 (q, t) = M−1 (q) and G (q) = V ′ (q), this implies that no special joint-

space control law is needed for infinite-horizon optimality. This artifact is a result of the

special nature of M (q) being the metric found in mechanics and has been established

in a different setting by Doty et al. (1993) and Udwadia (Udwadia & Kalaba, 1996).

For N0 (q, t) = M−2 (q) , and small q̇, we can ensure G (q) + C (q, q̇) ≈ V ′ (q)
and thus have a similar equivalence. This explains why these metrics have been the

preferred ones in the theory of robot control. Nevertheless, there are strong arguments

against using these metrics as the required motor commands can be infinite for intertia

matrix related metrics, see (Udwadia & Kalaba, 1996).

The infinite horizon point of view allows us to make two very strong points, i.e.,

that adding a null-space control law which includes velocities alters the infinite-horizon

metric for which the controller is optimal, and that the hierachical extension cannot be

optimal from infinite horizon point of view.

33

2.5.2.1 Extension of the Infinite Horizon Optimality using Storage Functions

If we intend to have joint-space control laws as the ones suggested in this paper, e.g., a

spring-damper system in joint-space (or even complex ones), then we need to replace

V (q) by V (q, q̇), e.g., V (q, q̇) = KDq̇2 +KP (qd − q)2
for a spring-damper system

in joint-space. This will alter the metric of the system significantly.

Proposition 2.7 For velocity dependent V (q, q̇), the infinite horizon optimal control

law corresponds to the point-wise optimal control law with the altered metric

N0 = M−1 (q)

[
N∞ (q, t) +

∂2V

∂q̇2

]
M−1 (q) , (2.56)

with a joint-space control law

u0 (q) = Ṅ∞q̇ − Bq̇−
∂V

∂q
+

∂2V

∂q̇∂q
q̇ + F. (2.57)

Proof. We replace V (q) by V (q, q̇) in Proposition 2.5, which implies that V ′ (q)
needs to be replaced by ∂V/∂q − (∂2V/∂q̇2)q̈ − (∂2V/∂q̇∂q)q̇. When following the

steps of Proposition 2.5 from here on, the step follows naturally.

This point puts a strong doubt on the idea that an inertia metric is always that useful:

the main advantage of the inertia metric is that it directly results in an energy optimal

joint-space control law. However, a necessary condition for joint-space stability is that

the joint-space control laws has a velocity component as shown in Example 2.1. Thus,

this alteration of the metric will be necessary in all practical cases.

2.5.2.2 Re-evaluation of the Hierachical Extension

The hierachical extension opens up a variety of important questions not tackled in the

literature. Already on the two level hierchachy (i.e., a joint-space control law and a task

space control law), the joint-space control law can best be interpreted as an additional

storage function and will always act as a form of friction, thus increasing the amount of

energy consumed by the system. Obviously, a n-level hiercharchy has no physical inter-

pretation for n > 2 and, to date, there is no way of showing an infinite horizon optimal

control law. Even worse, when re-evaluating the derivations in Proposition (2.5) for

hierachical approaches, it is straightforward to show that a hierachical approach cannot

be developed in a similar fashion. Instead, a hierachical control law which is optimal

from an infinite horizon point of view, will require higher-order derivatives such as
...
q

for n = 3,
...
q and

....
q for n = 4, and

...
q, . . . ,q(n) for arbitrary n. The requirement

of these higher order derivatives for infinite horizon optimality might be cause serious

trouble for the hierachical approach.

34

Furthermore, the hierachical extension might not even be desirable as all tasks with

exception of the top-level task can be degraded arbitrarily in tracking performance in

the hierachical approach. Thus, it might be smarter to consider a weighted approach

where the tasks are combined in a form

A = [w1A1, w2A2, . . . , wnAn], (2.58)

b = [w1b1, w2b2, . . . , wnbn], (2.59)

where wi denotes the weight of the task i. In such approaches, a larger wi ≫ wj will

ensure that in the overconstrained case, task j is largely overruled by task i. However,

it will happen in a soft and not in a hard way; thus, if both can be fulfilled, they will be

fulfilled without contradiction. For the hierachical approach discussed, task fulfillment

cannot always be guaranteed for lower level tasks even if it is possible as the higher

level task can simply overrule the lower level task even if an alternative which fulfills

both higher and lower task is possible.

2.5.3 Future Work

Among the other interesting prospective topics resulting from this chapter are the ap-

plication to more complex tasks and systems and using this method for planning.

2.5.3.1 Complex Systems

In this thesis chapter, we have only evaluated the more general systems and intend to

point out the most important systems which should be evaluated with this approach

in the future. One important topic is the control of systems are overactuated systems

which have more actuaters than degrees of freedom, i.e., redundancy on the torque

generation level as it exists in biological systems where hundreds of muscles inter-

act. While we have suggested a basic solution to this problem (Peters et al., 2005), a

proper evaluation of overactuated control based upon the approach suggested in this

paper could result into interesting insights both for biological motor control as well as

robotics.

Controlling underactuated systems is probably the most important robot control

problem as they occur frequently in nature, e.g., legged locomotion, and even simple

toy systems such as cart-pole balancing fall into this category. From the viewpoint of

35

the approach descriped in this chapter, an underactuated control problem can be treated

as a modified task where we have




A
mT

1
...

mT
k


 q̈ =




b
F1
...

Fk


 (2.60)

with the actual control task Aq̈ = b, and, the additional constraint the for the unactu-

ated degrees of freedom i ∈ {1, . . . , k}, we always have ui = 0 or mT
i q̈ =Fi. Here,

mT
i denotes the i-th row of the inertia matrix. It becomes clear from this formulation,

that undractuated systems can be treated in the same way as a fully actuated one as long

as the task can be fulfilled. If the task cannot be fulfilled, i.e., if the problem is overcon-

strained, this becomes a pure planning problem where only the task planner can ensure

that any control law can ever perform the task. The same holds true for non-holonomic

systems, where the non-holonomic constraints can result into an overconstrained con-

trol task with the same difficulties as for underactuated systems.

2.5.3.2 Applications in Planning

One important aspect might arise out of the application of this method to overactuated

systems, i.e., one might be able to realize a dimensionality reduction method which

allows planning of controllable trajectories in a lower-dimensional domain. While this

idea is similar to the goal of differential geometric control methods, it might arise nat-

urally from decompositions of the matrix (AMN−1/2)+. Such approaches could be

similar to the one suggested in Section 8.4.1 in (Udwadia & Kalaba, 1996) and, the

same time, would become the foundations of novel machine learning algorithms.

Similarly, the methods proposed in this chapter have another interesting implication

for planning of tasks as they can be used for feasibility tests of trajectories in simula-

tion. The resulting mechanism is quite simple: if the planned trajectory (or task) is

controllable at all, the control law generated by this method will be able to control it in

an idealized simulation. Thus, plans can be evaluated for their feasibility. While this

might appear trivial, it can be very useful in practice.

36

Chapter 3

Learning Tracking Control in Operational Space

An approximate solution to the right problem is far better

than an exact answer to an approximate problem.

John Wilder Tukey (American statistician, 1915-2000)

One of the control problems which we have discussed in Chapter 2 is tracking con-

trol in operational space. While operational space control is of essential importance for

robotics and well-understood from an analytical point of view, it can be prohibitively

hard to achieve accurate control in face of modeling errors, which are inevitable in

complex robots, e.g., humanoid robots. In such cases, learning control methods can

offer an interesting alternative to analytical control algorithms. However, the resulting

learning problem is ill-defined as it requires to learn an inverse mapping of a usually

redundant system, which is well known to suffer from the property of non-convexity

of the solution space, i.e., the learning system could generate motor commands that

try to steer the robot into physically impossible configurations. A first important in-

sight for this thesis chapter is that, nevertheless, a physically correct solution to the

inverse problem does exit when learning of the inverse map is performed in a suit-

able piecewise linear way. The second crucial component for our work is based on a

insight in Section 2.3.2 that many operational space controllers can be understood in

terms of a constraint optimal control problem. The cost function associated with this

optimal control problem allows us to formulate a learning algorithm that automatically

synthesizes a globally consistent desired resolution of redundancy while learning the

operational space controller. From the view of machine learning, the learning problem

corresponds to a reinforcement learning problem that maximizes an immediate reward

and that employs an expectation-maximization policy search algorithm. Evaluations on

a three degrees of freedom robot arm are used illustrate the suggested approach and the

application to a physically realistic simulator of the anthropomorphic SARCOS Master

arm demonstrates feasibility for complex high degree-of-freedom robots.

37

3.1 Introduction

Operational space control is one of the most elegant approaches to task control due to

its potential for dynamically consistent control, compliant control, force control, hierar-

chical control, and many other favorable properties, with applications from end-effector

control of manipulators (Khatib, 1987; Hsu et al., 1989) up to balancing and gait exe-

cution for humanoid robots (Sentis & O.Khatib, 2005). If the robot model is accurately

known, operational space control is well-understood yielding a variety of different solu-

tion alternatives, including resolved-motion rate control, resolved-acceleration control,

and force-based control (Nakanishi et al., 2005). However, particularly if compliant

(i.e., low-gain) control is desired, as in many new robotic systems that are supposed to

operate safely in human environments, operational space control becomes increasingly

difficult in the presence of unmodeled nonlinearities, leading to reduced accuracy or

even unpredictable and unstable null-space behavior in the robot system. As a potential

solution to this problem, learning control methods seem to be promising. But learning

methods do not easily provide the highly structured knowledge required in traditional

operational space control laws, i.e., Jacobians, inertia matrices, and Coriolis/centripetal

and gravity forces, as all these terms are not observable and are therefore not suitable

for formulating supervised learning as traditionally used in learning control approaches

(Nakanishi, Farrell, & Schaal, 2004).

In this thesis chapter, we will suggest a novel approach to learning operational space

control that avoids extracting such structured knowledge, and rather aims at learning

the operational space control law directly. To develop our approach, we will proceed

as follows: firstly, we will review operational space control and discuss where learn-

ing can be beneficial. Secondly, we will pose operational space control as a learning

problem and discuss why standard learning techniques cannot be applied straightfor-

wardly. Using the alternative understanding of operational space control as an optimal

control technique, we reformulate it as an immediate reward reinforcement learning or

policy search problem and suggest novel algorithms for learning some of the most stan-

dard types of operational space control laws. These new techniques are evaluated on a

simulated three degree-of-freedom robot arm and a simulated anthropomorphic seven

degrees of freedom SARCOS robot arm.

3.1.1 Notation and Remarks

Throughout this thesis chapter, we assume the standard rigid body model for the de-

scription of the robot, i.e.,

M (q) q̈ + C (q, q̇) + G (q) + ε (q, q̇) = u, (3.1)

38

where q, q̇, q̈ ∈ R
n denote the joint coordinates, velocities and accelerations of the

robot, respectively. The torques generated by the motors of the robot, also referred to

as motor commands, are given by u ∈ R
n. Furthermore, M (q) denotes the inertia

tensor or mass matrix, C (q, q̇) the Coriolis and centripetal forces, G (q) is gravity and

ε (q, q̇) denotes unmodeled nonlinearities.

In operational space control, we intend to execute trajectories or forces 1 given in

the coordinate system of the actual task. A well-studied example is a manipulator robot

arm where position and orientation of the end-effector are controlled (Khatib, 1987;

Hsu et al., 1989); however, a variety of further applications exist, such as the control

of the center of gravity for balancing legged robots, which can also be thought of as

operational space control (Sentis & O.Khatib, 2005). Position and orientation x ∈ R
m

of the controlled element of the robot in task-space, e.g., the end-effector, is given

by the forward kinematics x = fKinematics (q). The derivatives yield both velocity and

acceleration in task space, i.e.,

ẋ = J (q) q̇, ẍ = J (q) q̈ + J̇ (q) q̇, (3.2)

where J (q) = dfKinematics (q) /dq denotes the Jacobian. We assume that the robot is

in general redundant, i.e., it has more degrees of freedom than required for the task or,

equivalently, n > m.

3.1.2 Operational Space Control as an Optimal Control Problem

Using the framework of trajectory tracking as an example, the general problem in

operational space control1 can be described as follows: generate a control law u =
fControl (q, q̇,xd, ẋd, ẍd) which controls the robot along a joint space trajectory q(t),
q̇(t), and q̈(t),such that the controlled element (e.g., the end-effector) follows a desired

trajectory in task space xd (t) , ẋd (t) , and ẍd (t). This problem has been thoroughly

discussed since the late 1980s (e.g., (Khatib, 1987; Hsu et al., 1989)) and, among oth-

ers, has resulted in a class of well-known control laws (Nakanishi et al., 2005). As an

important new insight into operational space control it was recently discovered (Peters

et al., 2005), that many of the suggested controllers in the literature can be derived as

the solution of a constraint optimization problem given by

min
u
C0 (u) = uTNu s.t. Jq̈ = ẍref − J̇q̇, (3.3)

where N denotes a positive definite metric that weights the contribution of the motor

commands to the cost function, and ẍref = ẍd (t)+Kd (ẋd (t)− ẋ (t))+Kp (xd (t)− x (t))

1In the more general case, the hybrid creation of forces in task space while following a desired

trajectory needs to be included. For simplicity, we will omit such kind of tasks in this thesis chapter.

39

denotes a reference attractor in task space with gain matrices Kd and Kp. The result-

ing control laws or solution of this optimization problem obey the general form (Peters

et al., 2005)

u = N−1/2(JM−1N−1/2)+(ẍref − J̇q̇ + JM−1F), (3.4)

with F (q, q̇) = C (q, q̇)+G (q)+ε (q, q̇), and the notation D+ defining the pseudo

inverse of a matrix such that D+D = I, DD+ = I, and with the matrix root D1/2

defined as D1/2D1/2 = D.

For example, the resolved-acceleration controller of Hsu et al. (Hsu et al., 1989)

(without null space optimization) is the result of using the metric N = M−2, which

yields u = MJT (ẍref − J̇q̇) + F, and corresponds to a cascade of an inverse dynamics

and an inverse kinematics control law. Another example is Khatib’s formulation of

operational space control (Khatib, 1987), determined by the metric N = M−1 and

given by

u = JT (JM−1JT)−1(ẍref − J̇q̇ + JM−1F). (3.5)

Khatib’s solution is special as the metric N = M−1 is the only metric which generated

torques that correspond to the ones created by a physical contraint pulling the robot

along the trajectory (Udwadia & Kalaba, 1996; Peters et al., 2005), i.e., it is the metric

used by nature according to Gauss’ principle (Bruyninckx & Khatib, 2000; Udwadia

& Kalaba, 1996) and it is invariant under change of joint coordinates (Doty et al.,

1993). Other metrics such as N = const can be used to distribute the required forces

differently, e.g., such that stronger motors get a higher portion of the generated forces

(Peters et al., 2005).

Even when achieving the task perfectly, the joint-space trajectories can result into

unfavorable postures or even joint-space instability (see Example 3.1 below). For han-

dling such cases, additional controls which do not affect the tasks performance but

ensure a favorable joint-space behavior need to be included. From the point of view of

the optimization framework, we would select a nominal control law u0 (e.g., a force

which pulls the robot towards a rest posture u0 = −KDq̇ −KD(q − qrest)), and then

solve the constraint optimization problem

min
u
C1 (u) = (u− u0)

T N (u− u0) s.t. Jq̈ = ẍref − J̇q̇, (3.6)

where u1 = u− u0 as the task-space control component. The general solution is given

by

u = N−1/2(JM−1N−1/2)+(ẍref − J̇q̇ + JM−1F) (3.7)

+ N−1/2(I− (N−1/2M−1J)(JM−1N−1/2)+)N1/2u0,

40

(a) Prismatic 2-dof robot

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Time t

P
o
si

ti
o
n

x

N=I

N=M -1

N=M -2

(b) End-effector position (all trajectories coin-

cide almost perfectly with the refrence trajec-

tory) x

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

P
o
si

ti
o
n

q 1

Time t

N=I

N=M -1

N=M -2

(c) Joint position q1

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

P
o
si

ti
o
n

q 2

Time t

N=I

N=M -1

N=M -2

(d) Joint position q2

Figure 3.1: When applied to the prismatic robot from Example 3.1 shown in (a), the

three control laws for the metrics N = I (dashed-dot red lines), N = M−1 (solid

green), N = M−2 (dashed blue) result in (b) the same task-space tracking but (c,d)

very different joint-space behavior. See Example 3.1 for more information.

where the second summand fulfill the nominal control law u0 in the null-space of the

first term. When having more than two tasks, these can be nested in a similar fashion

leading to a general framework of hierarchical task control (Peters et al., 2005; Sentis

& O.Khatib, 2005).

Example 3.1 An illustrative example of operational space control is tracking the end-

effector position x = q1 + q2 of a prismatic robot with two parallel links with joint

positions q1, q2, see Figure 3.1. The mass matrix will by M = diag (m1, 0) +m21 with

masses m1 = m2 = 1 and 1 denoting a matrix with all coefficients equal to one. The

internal forces are F = 0, the Jacobian is J = [1, 1]T and its derivative J̇ = 0. If no

joint-space control law is selected, i.e., u0 = 0, the control law in the form of Equation

41

(3.4) for executing the task ẍref = ẍd + Kd (ẋd − ẋ) + Kp (xd − x) would result into

unstable behavior for most metrics N. When adding a u0 = −KDq̇ − KDq pulling

the robot towards qrest = 0, we obtain stable tracking with very different properties

as can be observed in Figure 3.1: (i) metric N = I will result into the second link

tracking the end-effector and the null-space component stabilizing the first link, (ii)

metric N = M−1 will distribute the task on both links evenly and have the null-space

component decouple the two links, while (iii) metric N = M−2 simply minimizes the

squared acceleration.

We will use this simple robot example (Example 3.1) to illustrate various other

issues below as it allows easy analytical understanding and graphical visualizations.

3.1.3 Why should we learn Operational Space Control?

When an accurate analytical model of the robot is available and its parameters can be

well-estimated, operational space control laws can be highly successful (Khatib, 1987;

Sentis & O.Khatib, 2005; Nakanishi et al., 2005). However, in many new complex

robotic systems, e.g., humanoid robots, space robots, etc., accurate analytical models

of the robot dynamics are not available due to significant depatures from idealized the-

oretical models such as rigid body dynamics. For instance, in our experience with an-

thropomorphic robots, unmodeled nonlinear effects were caused by complex hydraulic

actuator dynamics, hydraulic hoses and cable bundles routed along the light weight

structure of the robot as well as complex friction effects. Trying to model such non-

linearities is of little use due to the lack of generality of such an approach, and the

daunting task of deriving useful models for the unknown effects.

Example 3.2 In the prismatic robot from Example 3.1, already small unmodeled non-

linearities can have a drastic effect. If the estimated mass matrix of the robot M̃ =
diag (m1, 0) + m21 just differs from the true M by M12 − M̃12 = M21 − M̃21 =
0.5 sin (q1 + q2), e.g., through unmodeled properties of cables, then the resulting con-

trol law will result in unstable and unpredictable null-space behavior despite that ac-

curate task space tracking is theoretically still possible. On a real physical system,

excessive null space behavior saturates the motors of the robot, such that also task

space tracking degrades, and the entire control system goes unstable.

Example 3.2 demonstrates how a small modeling error decreases the performance

of the operational control law and can result in joint-space instability even for sim-

ple robots. For light-weight robot arms or full-body humanoid robots, such problems

become even more frequent and difficult to cope with. Traditionally, this problem is

be fixed by the engineer improving the approximation the plant by hand; however, for

operational space control of low-gain controlled light-weight robots which are hard to

model, learning is a promising novel alternative and will be discussed in Section 3.2.

42

3.2 Learning Methods for Operational Space Control

Learning operational space control with redundant manipulators is largely an unex-

plored problem and the literature has only few related examples. Among those, learning

approaches to task level control focussed mostly on an inverse kinematics end-effector

control (Guez & Ahmad, 1988; Jordan & Rumelhart, 1992; Bullock, Grossberg, &

Guenther, 1993; Tevatia & Schaal, 2000; D’Souza, Vijayakumar, & Schaal, 2001), i.e.,

learning an inverse kinematics mapping, in order to create appropriate reference trajec-

tories in joint-space, which were to be executed by a given joint-space control law or

were simply optimizing a certain trajectory (De Luca & Mataloni, 1991). The combi-

nation of a learned inverse kinematics and a learned inverse dynamics controller (Guez

& Ahmad, 1988; Tevatia & Schaal, 2000; D’Souza et al., 2001) can only be found oc-

casionally in the literature. To the best of our knowledge, full operational space control

laws with redundancy have not been addressed by general learning approaches to date.

3.2.1 Can Operational Space Control be learned?

Learning operational space control is equivalent to obtaining a mapping (q, q̇, ẍref) →
u from sampled data using a function approximator. However, as the dimensionality

of the task-space reference trajectory ẍref is lower than the one of motor command u,

there are infinitely many solutions for u for most joint positions q, and joint velocities

q̇. For the illustrative linear case in Example 3.2 without a null-space component, this

mapping corresponds to a line in the plane of possible control laws as shown by the two

lines in Figure 3.2(a).

A major problem arises in the case of a robot with rotary joints as the motor com-

mands u achieving the same reference acceleration ẍref are no longer form a convex

set, a problem first described in the context of learning inverse kinematics (D’Souza

et al., 2001; Jordan & Rumelhart, 1992). Thus, when learning the inverse mapping

(q, q̇, ẍref) → u, the learning algorithm will average over unconnected sets of the so-

lutions which can result in invalid solutions to the learning problem. Therefore, the

learning problem is ill-conditioned such that directly learning from samples with su-

pervised learning techniques is not suitable.

Nevertheless, the convexity issues can be resolved by employing a spatially local-

ized supervised learning system, which, in our case, needs to spatially localized based

on both joint space position and velocity – such an approach was first introduced in the

context of inverse kinematics learning (Bullock et al., 1993; D’Souza et al., 2001). The

feasibility of this idea can be demonstrated simply by averaging over the combination

43

-2 -1 0 1 2
-2

-1

0

1

2

Motor command u
1

M
o
to

r
c
o
m

m
a
n
d
 u

2

(a) Unweighted datasets

-2 -1 0 1 2
-2

-1

0

1

2

Motor command u
1

M
o
to

r
c
o
m

m
a
n
d
 u

2

(b) Reward weighted datasets

Figure 3.2: This figure illustrates how (a) different data sets result in different solutions

if each data point is treated with equal importance (the blue dash-dot line corresponds

to the blue diamonds and the red dashed line to the red circles). If these data points

are (b) weighted down using the Gaussian cost function (here indicated with the metric

N = M−1 as solid thin black lines) the solutions of different data sets will consistently

approximate optimal solutions shown in the solid cyan line. While for the linear pris-

matic robot one could live with any solution in (a), different local solutions have to

create a consistent global solution for nonlinear robots. The horizontal faintly dotted

lines in (a) and (b) indicate contour lines of equal task-space acceleration.

of Equations (3.2) and (3.1) which yields that by averaging over the exact same spatial

position q, and velocity q̇, we have

ẍ = 〈ẍ〉 =
〈
JM−1 (u + F) + J̇q̇

〉
(3.8)

= JM−1 〈u + F〉+ J̇q̇ = JM−1 (u + F) + J̇q̇,

i.e., in the vicinity of same q,q̇, a particular ẍ will always correspond to exactly one

particular u 2. Therefore, locally linear controllers

ui = ci
β(q, q̇, ẍref) = [ẍT

ref, q̇
T , 1]βi, (3.9)

2Note, that the localization in velocity q̇ can be dropped for a pure rigid body formulation as it is

linear in the q̇iq̇j for all degrees of freedom i, j; this, however, is not necessarily desirable as it will add

new inputs to the local regression problem which grows quadratically with the number of degrees of

freedom.

44

can be used if they are only active in a region around q, q̇ (note that we added constant

input in Equation (3.9) to account for the intercept of a linear function). From a control

engineering point of view, this argument corresponds to the insight that when we can

linearize the plant in a certain region, we can find a local control law in that region by

treating the plant as linear, and, in general, linear system do not have the problem of

non-convexity of the solution space when learning an inverse function.

Next we need to address how to find an appropriate piecewise linearization for the

locally linear controllers. For this purpose, we learn a locally linear forward or predictor

model

ẍi = pi
β̂
(q, q̇,u) = [q̇T ,uT , 1]β̂

i
, (3.10)

Learning this forward model is a standard supervised learning problem, as the mapping

is guaranteed to be a proper function. A method of learning such a forward model that

automatically also learns a local linearization is Locally Weighted Projection Regres-

sion (LWPR) (Schaal, Atkeson, & Vijayakumar, 2002), a fast online learning method

which scales into high-dimensions, has been used for inverse dynamics control of hu-

manoid robots, and can automatically determine the number of local models that are

needed to represent the function. The membership to a local model is determined by a

weight generated from a Gaussian kernel:

wi(q, q̇) = exp

(
1

2

([
q
q̇

]
− ci

)T

Di

([
q
q̇

]
− ci

))
(3.11)

centered at ci in (q, q̇)-space, and shaped by a distance metric Di. For a closer descrip-

tion of this statistical learning algorithm see (Schaal et al., 2002).

For each local forward model created by LWPR, we automatically create a local

controller. This approach of pair-wise combining predictors and controllers is related

by the MOSAIC architecture (Haruno, Wolpert, & Kawato, 1999) where the quality of

predicting a task is used for selecting which local controller should be used for the task.

3.2.2 Combining the Local Controllers and Ensuring Consistent

Resolution of Redundancy

In order to control a robot with these local control laws, they need to be combined into a

consistent global control law. The combination is given by a weighted average (Schaal

et al., 2002):

u =

∑n
i=1w

i (q, q̇) [ẍT
ref, q̇

T , 1]βi

∑n
i=1w

i (q, q̇)
, (3.12)

45

where each control law ci
β(q, q̇, ẍref) is just valid in its local region computed by

wi (q, q̇), and βi are the parameters of each local operational space control law.

However, while the mappings (q, q̇, ẍref) → u can properly be learned locally in

the neighborhood of some q,q̇, due to the redundancy in the robotic system, there

is no guarantee that across the local mappings the same type of solution is acquired.

This problem is due to the dependence of the inverse solution on the training data

distribution in each local model – i.e., different distributions will pick different solutions

for the inverse mapping from the infinity of possible inverses. In Figure 3.2 (a), we

demonstrate this effect. While this problem is not devastating for the prismatic robot

from Example 3.1, it is results in severe problems for any nonlinear robot requiring

multiple, consistent linear models. There are two different approaches to tackling such

problems: (1) by biasing the system towards using a pre-processed data set such that

it can only produce one particular inverse solution (D’Souza et al., 2001), and (2) by

incorporating a cost/reward function in order to favor a certain kind of solution (an

example which will be discussed later and is shown Figure 3.2 (b)). The first approach

lacks generality and can bias the learning system such that the task is not properly

accomplished anymore. The major shortcoming of the second approach is that the

choice of the cost/reward function is in general non-trivial and determines the learning

algorithm as well as the learned solution.

The crucial component to finding a principled approach to this inconsistency prob-

lem is based on the discussion in Section 3.1.2 and previous work (Peters et al., 2005).

Operational space control can be seen as a constrained optimization problem with a

cost function given in Equation (3.3). Thus, the cost function based approach for the

creation of a consistent set of local controllers for operational space control can be

based on this insight. The cost function can be turned into a immediate reward r (u) by

running it through an exponential function:

r (u) = σ exp
(
−0.5σ2C1 (u)

)
= σ exp

(
−σ−2uT

1 Nu1

)
, (3.13)

where σ is a scaling factor and the task space command u1 = u− u0 can be computed

using a desired null-space behavior u0 (e.g., pulling towards a rest posture as discussed

in Section 3.1.2). The scaling factor σ does not affect the optimality of a solution u
as it acts as a monotonic transformation in this cost function. However, it can increase

the efficiency of the learning algorithm significantly when only sparse data is available

for learning (i.e., as for most interesting robots as the high-dimensional action spaces of

complex robots will hardly ever be filled densely with data)3. These local rewards allow

3The reward has to be seen in the light of the relationship between the Gaussian distribution and

Gauss’ principle for constrained motion as suggested already by Carl-Friedrich Gauss in his original

work(Udwadia, 2005).

46

us the reformulation of our learning problem as an immediate reward reinforcement

learning problem (Dayan & Hinton, 1997), as will be discussed in Section 3.3.

We are now in the position to formulate a supervised learning algorithm for the local

operational space controllers. The task constraint in Equation (3.3) as well as the rigid

body dynamics in Equation (3.1) are automatically fulfilled by all data sampled from

the real robot similar to a self-supervised learning problem. Therefore, for learning the

local operational space controllers, we have obtained a local linear regression problem

where we attempt to learn primarily from the observed motor commands uk which also

have a high reward r(uk) within each active local model ci
β(qk, q̇k, ẍk

ref). An intuitive

solution is to use reward-weighted regression, i.e., find the solution which minimizes

N∑

k=1

r
(
uk
)
wi
(
qk, q̇k

) (
uk − [ẍk,T

ref , q̇
k,T , 1]βi

)2

→ min, (3.14)

for each controller i. The solution to this problem is the well-known weighted regres-

sion formula:

β =
(
ΦTWΦ

)−1
ΦTWU, (3.15)

with rows in the matrices Φ and U : Φk = [ẍk,T
ref , q̇

k,T , 1], Uk = uk,T and Wi =
r (ui)w(qi, q̇i). When employing this reward-weighted regression solution, we will

converge to a globally consistent solution across all local controllers. The learning al-

gorithm is shown in Table 3.1 together with an additional component derived in Section

3.3. Note that this step was only possible due to the essential cost function in Equation

(3.6) from our previous work.

3.3 Reformulation as Reinforcement Learning Problem

Another way of looking at operational space control is to view it as an immediate re-

ward reinforcement learning problem (Kaebling, Littman, & Moore, 1996) with high-

dimensional, continuous states s = [q, q̇, ẍref,u0] ∈ R
n and actions u ∈ R

m. The goal

of learning is to obtain an optimal policy

u = µ (q, q̇, ẍref,u0) = µ (s) (3.16)

such that the system follows the reference acceleration ẍref while maximizing the im-

mediate reward r (u) = −(u − u0)
TN(u − u0) for any given nominal behavior u0.

In order to incorporate exploration during learning, we need a stochastic control policy

u = µθ(q, q̇, ẍref) + ε, modeled as a probability distribution πθ(u|s) = p(u|s,θ) with

47

Algorithm: Learning for Operational Space Control

1 for each new data point [ẍk
ref,q, q̇

k,uk]
2 Add (q, q̇,u)→ ẍ to the forward model regression.

3 Determine the current number of models n and

localizations of the forward models wi (q, q̇).

4 Compute desired null-space behavior uk
0 = f

(
qk, q̇k

)
.

5 Compute costs Ck
1 =

(
uk

1

)T
N
(
qk
)
uk

1 with uk
1 = uk − uk

0.

6 For each model i = 1, 2, . . . , n
Update mean cost:

7 σ2
i =

∑k
h=1w

k
(
qh, q̇h

)
Ck

1

/∑N
k=1w

k
(
qh, q̇h

)
,

Compute reward:

8 r (u) = σi exp
(
−0.5σ2

iC
k
1

)

Add data point to weighted regression so that:

9 Φi = [qi, q̇i, ẍi
ref]

10 Ui = ui

11 W = diag (r (u1)w1, . . . , r (un)wn)
Perform policy update by regression

12 βk+1 =
(
ΦTWΦ

)−1
ΦTWU,

13 end

14 end

Table 3.1: This table shows the complete learning algorithm for Operational Space

Control. See text of detailed explanations.

48

parameter vector θ. The goal of the learning system is thus to find the policy parameters

θ that maximize

Jr (θ) =

∫
p (s)

∫
πθ (u|s) r (s,u) duds. (3.17)

p(s) denotes the distribution of states, which is treated as fixed in immediate reward

reinforcement learning problems (Kaebling et al., 1996).

Originally, we derived this algorithm from a weighted regression point of view.

However, this point of view is not completely satisfying as it still has the open pa-

rameter σ2 which determines the speed of convergence of the learning controllers. An

alternative view point, i.e., in the framework of immediate reward reinforcement learn-

ing, allows deriving the previous algorithm together with a computation rule for σ2.

Previous work in the literature suggested a variety of optimizing methods which can

be applied to immediate reward reinforcement learning problems, e.g., gradient based

methods (e.g., REINFORCE, Covariant REINFORCE, finite difference gradients, the

Kiefer-Wolfowitz procedure, ARP algorithms, CRBP, etc.) and random search algo-

rithms (e.g., simulated annealing or genetic algorithms) (Dayan & Hinton, 1997; Kae-

bling et al., 1996; Spall, 2003). However, gradient-based methods tend to be too slow

for the online learning that we desire in our problem, while randomized search algo-

rithms can create too arbitrary solutions, often not suitable for execution on a robotic

system. For learning operational space control, we require a method that is compu-

tationally sufficiently efficient to deal with high-dimensional robot systems and large

amounts of data, that has a low sample complexity, that comes with convergence guar-

antees, and that is suitable for smooth online improvement. For instance, linear regres-

sion techniques and/or methods employing EM-style algorithms are highly desirable.

A good starting point for our work is the probabilistic reinforcement learning frame-

work by Dayan & Hinton (1997). As we will show in the following, a generalization

of this approach allows us to derive an EM-algorithm which essentially reduces the

immediate reward learning problem to a reward-weighted regression problem.

3.3.1 Reward Transformation

In order to maximize the expected return (Equation 3.17) using samples, we approxi-

mate

Jr (θ) ≈
∑n

i=1
πθ (ui|si) ri (3.18)

where ri = r (si,ui). For application of the probabilistic reinforcement learning frame-

work of Dayan & Hinton (Dayan & Hinton, 1997), the reward needs to be strictly pos-

itive such that it resembles an (improper) probability distribution. While this can be

49

achieved by a linear rescaling for problems for bounded rewards, for unbounded re-

wards as discussed in this paper, a nonlinear transformation of the reward Uτ (r) is re-

quired, with the constraint that the optimal solution to the underlying problem remains

unchanged. Thus, we require that Uτ (r) is strictly monotonic with respect to r, and

additionally that Uτ (r) ≥ 0 and
∫∞

0
Uτ (r) dr = const, resulting in the transformed

optimization problem

Ju (θ) =
∑n

i=1
πθ (ui|si)Uτ (ri) . (3.19)

The reward transformation plays a more important role than initially meets the eye: as

already pointed out in (Dayan & Hinton, 1997), convergence speed can be greatly af-

fected by this transformation. Making Uτ (r) an adaptive part of the learning algorithm

by means of some internal parameters τ can greatly accelerate the learning speed and

help avoid local minima during learning. Figure 3.3 demonstrates this issue with a 1D

continuous state and 1D continuous action example, where the goal is to learn an opti-

mal linear policy. Using the algorithm that we will introduce below, an adaptive reward

transformation accelerated the convergence by a factor of 4, and actually significantly

helped avoiding local minima during learning.

3.3.2 EM Reinforcement Learning with Reward Transformation

To derive our learning algorithm, similar as in (Dayan & Hinton, 1997), we start by

establishing the lower bound

log Ju (θ) = log
∑n

i=1
q (i)

πθ (ui|si)Uτ (ri)

q (i)
(3.20)

≥
∑n

i=1
q (i) log

πθ (ui|si)Uτ (ri)

q (i)
(3.21)

=
∑n

i=1
q (i) [log πθ (ui|si) + logUτ (ri)− log q (i)] (3.22)

= F (q,θ, τ) , (3.23)

due to Jensens inequality. The re-weighting distribution q (i) obeys the constraint

∑n

i=1
q (i)− 1 = 0. (3.24)

The resulting EM algorithm is given below.

50

Step 1

-2 0 2
-1

0

1 Step 2

-2 0 2
-1

0

1

A
c
ti
o

n
u

State s

A
c
ti
o

n
u

State s

Step 0

-2 0 2
-1

0

1

A
c
ti
o
n

u

State s

Step 3

-2 0 2
-1

0

1

A
c
ti
o

n
u

State s

Step 20

-2 0 2
-1

0

1

A
c
ti
o

n
u

State s

Step 1

-2 0 2
-1

0

1 Step 2

-2 0 2
-1

0

1

A
c
ti
o
n

u

A
c
ti
o
n

u

Step 0

-2 0 2
-1

0

1

A
c
ti
o
n

u

State s State sState s

Step 3

-2 0 2
-1

0

1

A
c
ti
o

n
u

State s

Step 6

-2 0 2
-1

0

1

A
c
ti
o
n

u

State s

(b) Adaptive Reward Transformation

(a) Fixed Reward Transformation

Figure 3.3: A comparison of fixed and adaptive reward transformation for learning a

linear policy π (u|s) = N (u|θ1s + θ2, σ
2) under the transformed reward u(r (s, u)) =

exp (−τ (q1u
2 + q2us+ sq2

3)). The transformed reward is indicated by the dotted blue

ellipses, the variance of the action distribution is indicated by the red thick ellipse, and

the mean of the linear policy is shown by the red thick line. With τ being adaptive,

significantly faster learning of the optimal policy is achieved. Step 0 shows the ini-

tial policy and initial transformed reward, Step 1 shows the initial policy with adapted

transformed reward.

Algorithm 3.1 An EM algorithm for optimizing both the expected reward as well as

the reward-transformation is given by an E-Step

qk+1 (j) =
πθk

(uj|sj)Uτk
(rj)∑n

i=1 πθ (ui|si)Uτk
(ri)

, (3.25)

an M-Step for the policy parameter update given

θk+1 = arg max
θ

∑n

i=1
qk+1 (i) log πθ (ui|si) , (3.26)

and a M-Step for the adaptive reward transformation given by

τ k+1 = arg max
τ

∑n

i=1
qk+1 (i) logUτ (ri) . (3.27)

Proof. The E-Step is given by

qk+1 = arg max
q
F (q,θ, τ) (3.28)

51

while fulfilling the constraint

0 =
∑n

i=1
q (i)− 1. (3.29)

Thus, we obtain a constrained optimization problem with Lagrange multiplier λ:

L (λ, q) =
∑n

i=1
q (i) [log πθ (ui|si) + logUτ (ri)− log q (i) + λ]− λ. (3.30)

Optimizing L (λ, q) with respect to q and λ results in Equation (3.25). Optimizing

F (qk+1,θ, τ) with respect to θ and τ yields Equations(3.26, 3.27).

3.3.3 Reinforcement Learning by Reward-Weighted Regression

Let us assume the specific class of normally distributed policies:

πθ (u|s) = N
(
u|µθ (s) , σ2I

)
(3.31)

with a nominal or mean behavior µθ (s) = φ (s)T
θ where φ (s) denotes some fixed

preprocessing of the state by basis functions and σ2I determines the exploration4. Fur-

thermore, we choose the reward transformation

Uτ (r) = τ exp (−τr) , (3.32)

which, for r > 0 fulfills all our requirements on a reward transformation (cited from

Sec.3.3.1). Algorithm 3.1 thus becomes:

Algorithm 3.2 The update equations for the policy πθ (u|s) = N (u|µθ (s) , σ2I) are:

θk+1 =
(
ΦTWΦ

)−1
ΦTWY, (3.33)

σ2
k+1 =

∥∥Y − θT
k+1Φ

∥∥2

W
, (3.34)

where

W =

(
n∑

i=1

Uτ (ri)

)−1

diag (Uτ (r1) , Uτ (r2) , . . . , Uτ (rn)) , (3.35)

denotes a diagonal matrix with transformed rewards,

Φ = [φ (s1) ,φ (s2) , . . . ,φ (sn)]T , (3.36)

4Note that σ2I could be replaced by a full variance matrix with little changes in the algorithm. How-

ever, this would result in a quadratic growth of parameters with the dimensionality of the state and is

therefore less desirable.

52

and

Y = [u1,u2, . . . ,un]T (3.37)

the motor commands. The update of the reward transformation Uτ (r) = τ exp (−τr)
is

τk+1 =

∑n
i=1 Uτk

(ri)∑n
i=1 Uτk

(ri) ri

. (3.38)

Proof. When computing qk+1 (j) from samples in Equation (3.25), we have

qk+1 (j) =
Uτk

(rj)∑n
i=1 Uτk

(ri)
(3.39)

as the probabilities are replaced by relative frequencies. We insert the policy

πθ (u|s) =
(
2πσ2

)− d

2 exp

(
−(u− φ (s)T

θ)T (u− φ (s)T
θ)

2σ2

)
, (3.40)

into Equation (3.26). By differentiating with respect to θ and equating the result to zero,

we obtain

θ =

(
n∑

i=1

qk+1 (i)φ (si)φ (si)
T

)−1(n∑

i=1

qk+1 (i)φ (si)ui

)
. (3.41)

In matrix vector form, this corresponds to Equation (3.33). Analogously, the reward

transformation is obtained from differentiation with respect to τ as

n∑

i=1

qk+1 (i)
∂

∂τ
logUτ (ri)=

n∑

i=1

qk+1 (i)
(
τ−1 − ri

)
= 0. (3.42)

which results in Equation (3.38).

3.4 Evaluations

We evaluated our approach on two different simulated, physically realistic robots: (i)

a three degree-of-freedom (DOF) planar robot arm shown in Figure 3.4 (a) and (ii)

a seven DOF simulated SARCOS master robot arm – an implementation on the real,

physical SARCOS master robot arm (Figure 3.5 (a)) is currently in progress.

Both experiments were conducted as follows: first, learning the forward models

and an initial control policy in each local model was obtained from random point-to-

point movements in joint space using a simple PD control law. This “motor babbling”

53

(a) 3 DoF Robot Arm (b) Tracking Performance

0.44 0.48 0.52 0.56

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Hand coordinate x1

H
a
n
d
 c

o
o
rd

in
a
te

 x
2

desired learned

(c) Optimal vs Learned Motor Command

0 0.5 1 1.5 2-10

0

10

20

30

40

50

60

Time tT
a
s
k
s
p
a
c
e
 m

o
to

r

 c

o
m

m
a
n
d
s
 u

1

u1
1

u1
2

u1
3

optimal learned

Figure 3.4: (a) screen shot of the 3 DOF arm simulator, (b) near ideal tracking perfor-

mance for a planar figure-8 pattern for the 3 DOF arm, and (c) a comparison between

the analytically obtained optimal control commands to the learned ones for one figure-8

cycle of the 3DOF arm exhibits that a near-optimal policy is obtained.

exploration was necessary in order bootstrap learning with some initial data, as we

would otherwise experience rather slow learning, as typically observed in similar direct-

inverse learning approaches (Jordan & Rumelhart, 1992). The measured end-effector

accelerations served as desired acceleration in Equation 3.9, and all other variables

for learning the local controllers were measurable as well. Subsequently, the learning

controller was used on-policy with the normally distributed actuator noise serving as

exploration.

Both robots learned to track desired trajectories with high accuracy, as shown in

Figures 3.4 (b) and 3.5 (b). For the three DOF arm, we verified the quality of the learned

control commands in comparison to the analytical solution, given in Equation (3.7):

Figure 3.4 (c) demonstrates that the motor commands of the learned and analytically

optimal case are almost identical. Learning results of the simulated seven DOF Sarcos

robot achieved almost the same end-effector tracking quality and is shown in Figure 3.4

(c). It exhibits only slightly increased errors, however, the joint commands were not

quite as close to the optimal ones as for the 3 DOF arm – the rather high dimensional

learning space of the 7 DOF arm most likely requires more extensive training and more

careful tuning of the LWPR learning algorithm to achieve local linearizations with very

high accuracy and with enough data to find the optimal solution. The 3 DOF required

about 2 hours of real-time training, while setup was optimized for the 7 DOF arm where

60 minute run of real-time training was sufficient for achieving the quality exhibited on

the test trajectory in Figure 3.5 (b).

54

(a) SARCOS Master Robot Arm (b) Tracking Performance

0.34 0.38
-0.1

-0.05

0

0.05

0.1

y-z plane

y

z

0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.1

-0.05

0

0.05

0.1

x-z plane

x

z

Figure 3.5: (a) Anthropomorphic Sarcos Master Arm, used as simulated system and

in progress of actual robot evaluations. (b) Tracking performance for a planar figure-8

pattern for the simulated Sarcos Master arm.

3.5 Conclusion & Discussion

The contributions of this chapter are outlined in Section 3.5.1. The remaining open

issue of non-constant metrics is discussed in Section 3.5.2.

3.5.1 Contributions of this Chapter

In this thesis chapter, a general learning framework for operational space for redundant

robots has been presented, which is probably the first successful attempt of learning

such control laws to date. We overcome the difficulties of having a non-convex data

distribution by only learning in the vincinity of a local model anchored both in joint

velocity and joint position. The local regions are obtained by learning forward models,

which predict the movement of the end-effector. The global consistency of the redun-

dancy resolution of the local model controllers is ensured through minimizing the cost

function of operational space control. This cost function, derived in our previous work,

is crucial to the success of this framework and its absence has most likely been the

reason for the absence of learning operational space controllers to date. The resulting

learning algorithm for the local models can be understood from two perspective, i.e., as

a weighted regression problem where we intend to match the reward weighted motor

commands (after transforming the cost into a reward) or as a reinforcement learning

55

problem where we attempt to maximize an immediate reward criterion. Throughout

this thesis chapter, we have illustrated the problems and advantages of learning oper-

ational space control using a prismatic two degrees of freedom robot arm as example.

As application, we have shown a task-space trajectory following on a three degrees

of freedom rotary robot arm, where we could exhibit near-perfect operational space

tracking control. As robotics increasingly moves away from the structured domains

of industrial robotics towards complex robotic systems, which both are increasingly

high-dimensional and increasingly hard to model, such as humanoid robots, the tech-

niques and theory developed in this thesis chapter will be beneficial in developing truly

autonomous and self-tuning robotic systems.

The work presented in this chapter up to this point has been presented in (Peters &

Schaal, 2006a, 2007a, 2007b) and the resulting journal paper is currently under review

at the International Journal of Robotics Research (IJRR) for the IJRR Special Issue on

Robot Learning.

3.5.2 Future Work: Using Intertia-based Metrics in Learning

In Section 2.5.2, we have seen that the inertia-based metrics have a particular impor-

tance as they do not require special null-space laws in order to be infinite horizon opti-

mal. Thus, in order to learn the resulting important control laws known from analytical

robotics, i.e., Khatib-Gauss (Khatib, 1987) and Hsu-IDM Control Laws (Hsu et al.,

1989), our learning algorithm needs to be modified in order to be able to compute

the appropriate rewards. In Section 3.3, we have assumed that the reward r (u,q) =
exp

(
−uTN (q)u

)
can be computed without difficulty which is the case, e.g., for

N (q) = const. However, this is not the case for metrics in the form N (q) = M−n (q)
as these require the exact determination of the expensive and error-prone inertia ten-

sor. Therefore, when trying to learn an operational space controller with this kind of

a metric, we would run into the same kind of difficulties as analytical approaches with

modeling errors, or, at least, learn a different control law, which does not fully realize

the interesting properties of the desired control law, e.g., the Khatib-Gauss control law.

Nevertheless, through a reformulation of the learning problem, we can compute the

reward without explicitly using the inertia tensor when employing a forward-inverse

modeling approach similar to (Haruno et al., 1999). For this reformulation, we realize

from Equation (3.1) that

M−1u1 = q̈−M−1(F + u0) = q̈− gβ (q, q̇,u0) ≡ δq̈, (3.43)

where q̈ = gβ (q, q̇,u) denotes a learned forward model (or predictor) which predicts

acceleration q̈ for a given motor command u = u0 + u1 at the joint positions q and

56

velocities q̇. Using this motor command induced acceleration difference δq̈, we can

determine the rewards for Khatib-Gauss and Hsu-IDM control laws by

rK (u) = exp(−uT
1 M−1u1) = exp(−uT

1 δq̈), (3.44)

rH (u) = exp(−uT
1 M−2u1) = exp(−δq̈Tδq̈), (3.45)

respectively. This approach has been tested successfully on the prismatic robot, but

requires further evaluation for interesting robot systems.

57

Chapter 4

Policy Gradient Methods for Motor Primitives and

Robotics

Each problem that I solved became a rule

which served afterwards to solve other problems.

Rene Descartes (French philosopher and scientist, 1596-1650),

One of the major challenges in both action generation for robotics and in the under-

standing of human motor control is to learn the “building blocks of movement genera-

tion”, called motor primitives. Motor primitives, as used in this thesis chapter, are pa-

rameterized control policies such as splines or nonlinear differential equations with de-

sired attractor properties and correspond to the desired behaviours in the form Aẍ = b
which we have been using in the two preceeding chapters. While a lot of progress

has been made in teaching parameterized motor primitives using supervised or imita-

tion learning, the self-improvement by interaction of the system with the environment

remains a challenging problem.

In this thesis chapter, we evaluate different reinforcement learning approaches for

improving the performance of parameterized motor primitives. For pursuing this goal,

we highlight the difficulties with current reinforcement learning methods, and outline

both established and novel algorithms for the gradient-based improvement of parame-

terized policies. We compare these algorithms in the context of motor primitive learn-

ing, and show that our most modern algorithm, the Episodic Natural Actor-Critic out-

performs previous algorithms by at least an order of magnitude. We demonstrate the

efficiency of this reinforcement learning method in the application of learning to hit a

baseball with an anthropomorphic robot arm.

58

4.1 Introduction

In order to ever leave the well-structured environments of factory floors and research

labs, future robots will require the ability to aquire novel behaviors and motor skills as

well as to improve existing ones based on rewards and costs. Similarly, the understand-

ing of human motor control would benefit significantly if we can synthesize simulated

human behavior and its underlying cost functions based on insight from machine learn-

ing and biological inspirations. Reinforcement learning is probably the most general

framework in which such learning problems of computational motor control can be

phrased. However, in order to bring reinforcement learning into the domain of human

movement learning, two deciding components need to be added to the standard frame-

work of reinforcement learning: first, we need a domain-specific policy representation

for motor skills, and, second, we need reinforcement learning algorithms which work

efficiently with this representation while scaling into the domain of high-dimensional

mechanical systems such as humanoid robots.

Traditional representations of motor behaviors in robotics are mostly based on de-

sired trajectories generated from spline interpolations between points, i.e., spline nodes,

which are part of a longer sequence of intermediate target points on the way to a final

movement goal. While such a representation is easy to understand, the resulting control

policies, generated from a tracking controller of the spline trajectories, have a variety

of significant disadvantages, including that they are time-indexed and thus not robust

towards unforeseen disturbances, that they do not easily generalize to new bahavioral

sitations without complete recomputing of the spline, and that they cannot easily be

coordinated with other events in the environment, e.g., synchronized with other sen-

sory variables like visual perception during catching a ball. In the literature, a variety

of other approaches for parameterizing motor primitives have been suggested to over-

come these problems, see (Ijspeert et al., 2002, 2003) for more information. One of

these approaches proposed to use parameterized nonlinear dynamical systems as mo-

tor primitives, where the attractor properties of these dynamical systems defined the

desired behavior (Ijspeert et al., 2002, 2003). The resulting framework was particu-

larly well suited for supervised imitation learning in robotics, exemplified by examples

from humanoid robotics where a full-body humanoid learned tennis swings or complex

polyrhythmic drumming pattern. One goal of this thesis chapter is the application of

reinforcement learning to both traditional spline-based representations as well as the

more novel dynamic system based approach.

However, despite that reinforcement learning is the most general framework for

discussing the learning of motor primitives for robotics, most of the methods proposed

in the reinforcement learning community are not applicable to high-dimensional sys-

tems such as humanoid robots as these methods do not scale beyond systems with more

than three or four degrees of freedom and/or cannot deal with parameterized policies.

59

Policy gradient methods are a notable exception to this statement. Starting with the pi-

oneering work1 of Gullapali and colleagues (Benbrahim & Franklin, 1997; Gullapalli,

Franklin, & Benbrahim, 1994) in the early 1990s, these methods have been applied to a

variety of robot learning problems ranging from simple control tasks (e.g., balancing a

ball-on a beam (Benbrahim, Doleac, Franklin, & Selfridge, 1992) , and pole-balancing

(Kimura & Kobayashi, 1998)) to complex learning tasks involving many degrees of

freedom such as learning of complex motor skills (Peters et al., 2005; Peters & Schaal,

2006b; Miyamoto et al., 1995, 1996; Gullapalli et al., 1994; Mitsunaga, Smith, Kanda,

Ishiguro, & Hagita, 2005) and locomotion (Kimura & Kobayashi, 1997; Sato, Naka-

mura, & Ishii, 2002; Kohl & Stone, 2004; Endo, Morimoto, Matsubara, Nakanishi, &

Cheng, 2005; Tedrake, Zhang, & Seung, 2005; Mori, Nakamura, Sato, & Ishii, 2004;

Nakamura, Mori, & Ishii, 2004).

The advantages of policy gradient methods for parameterized motor primitives are

numerous. Among the most important ones are that the policy representation can be

chosen such that it is meaningful for the task, i.e., we can use a suitable motor primi-

tive representation, and that domain knowledge can be incorporated, which often leads

to fewer parameters in the learning process in comparison to traditional value-function

based approaches. Moreover, there exists a variety of different algorithms for policy

gradient estimation in the literature, which have a rather strong theoretical underpin-

ning. Additionally, policy gradient methods can be used model-free and therefore also

be applied to problems without analytically known task and reward models.

Nevertheless, many recent publications on applications of policy gradient methods

in robotics overlooked the newest developments in policy gradient theory and its orig-

inal roots in the literature. Thus, a large number of heuristic applications of policy

gradients can be found, where the success of the projects mainly relied on ingenious

initializations and manual parameter tuning of algorithms. A closer inspection often

reveals that the chosen methods might be highly biased, or even generate infeasible

policies under less fortunate parameter settings, which could lead to unsafe operation

of a robot. The main goal of this thesis chapter is to review which policy gradient meth-

ods are applicable to robotics and which issues matter, while also introducing some new

policy gradient learning algorithms that seem to have superior performance over previ-

ously suggested methods. The remainder of this thesis chapter will proceed as follows:

firstly, we will introduce the general assumptions of reinforcement learning, discuss

motor primitives in this framework and pose the problem statement of this thesis chap-

ter. Secondly, we will discuss the different approaches to policy gradient estimation

1Note that there has been earlier work in the control community,see e.g., (Jacobson & Mayne, 1970;

Dyer & McReynolds, 1970; Hasdorff, 1976)., which is based on exact analytical models. Extensions

based on learned, approximate models originated in the public policy literature, see (Werbos, 1979), and

have also been applied in control (Atkeson, 1994; Morimoto & Atkeson, 2003). In this thesis chapter,

we limit ourselves to model-free approaches in order to avoid having to treat model-related.

60

and discuss their applicability to reinforcement learning of motor primitives. We focus

on the most useful methods and discuss several algorithms in-depth. The presented al-

gorithms in this thesis chapter are highly optimized versions of both novel and previous

policy gradient algorithms. Thirdly, we show how these methods can be applied to mo-

tor skill learning in robotics and show learning results with a seven degrees of freedom,

anthropomorphic SARCOS Master Arm.

4.1.1 General Assumptions and Problem Statement

Most robotics domains require the state space and the action spaces to be continuous

and high-dimensional such that learning methods based on discretizations are not appli-

cable for higher dimensional systems. However, as the policy is usually implemented

on a digital computer, we assume that we can model the control system in a discrete-

time manner and we will denote the current time step by k. In order to take possible

stochasticity of the plant into account, we denote it using a probability distribution

xk+1 ∼ p (xk+1 |xk,uk) (4.1)

as model where uk ∈ R
M denotes the current action, and xk, xk+1 ∈ R

N denote the

current and next state, respectively. We furthermore assume that actions are generated

by a policy

uk ∼ πθ (uk |xk) (4.2)

which is modeled as a probability distribution in order to incorporate exploratory ac-

tions; for some special problems, the optimal solution to a control problem is actually

a stochastic controller, see e.g., (Sutton, McAllester, Singh, & Mansour, 2000). The

policy is parameterized by some policy parameters θ ∈ R
K and assumed to be continu-

ously differentiable with respect to its parameters θ. The sequence of states and actions

forms a trajectory (also called history or roll-out) denoted by τ = [x0:H ,u0:H] whereH
denotes the horizon which can be infinite. At each instant of time, the learning system

receives a reward denoted by r (xk,uk) ∈ R.

The general goal of policy optimization in reinforcement learning is to optimize the

policy parameters θ ∈ R
K so that the expected return

J(θ) =
1

aΣ

E
{∑H

k=0
akrk

}
(4.3)

is optimized where ak denote time-step dependent weighting factors and aΣ is a nor-

malization factor in order to make sure the weights sum up to one. We require that

the weighting factors fulfill ai+j = aiaj in order to be able to connect to the previous

61

policy gradient literature; examples are the weights ak = γk for discounted reinforce-

ment learning (where γ is in [0, 1]) where aΣ = 1/(1− γ); alternatively, they are set to

ak = 1 for the average reward case where aΣ = H . In these cases, we can rewrite the a

normalized expected return in the form

J(θ) =

∫

X

dπ(x)

∫

U

π(u|x)r(x,u)dxdu (4.4)

used by Sutton et al. (2000), where dπ(x) = a−1
Σ

∑∞
k=0 akp(xk = x) is the weighted

state distribution2.

In general, we assume that for each considered policy πθ, a state value function

V π(x, k), and the state-action value function Qπ (x,u, k) exist3 and are given by

V π(x, k) = E
{∑H

i=kairi

∣∣∣xk = x
}
, (4.5)

Qπ (x,u, k) = E
{∑H

i=kairi

∣∣∣xk = x,uk = u
}
. (4.6)

In the infinite horizon case, i.e., for H → ∞, we write V π(x) and Qπ (x,u) as these

functions have become time-invariant. Note, that we can define the expected return in

terms of the state value function by

J(θ) =

∫

X

p (x0)V
π(x0, 0)dx0, (4.7)

where p (x0) is the probability of x0 being the start-state. Whenever we make practical

use of the value function, we assume that we are given good basis functions φ(x) so

that the state-value function can be approximated with linear function approximation

V π(x) = φ(x)Tv.

4.1.2 Motor Primitive Policies

In this section, we first discuss how motor plans can be represented and then how we

can bring these into the standard reinforcement learning framework. For this purpose,

we consider two forms of motor plans, i.e., (1) spline-based trajectory plans and (2)

nonlinear dynamic motor primitives introduced in (Ijspeert et al., 2002). Spline-based

2In most cases, e.g., for ak = γk, this distribution is a multi-modal mixture distribution even if the

distribution p (xk = x) is a unimodal. Only for ak = 1, the state weighted distribution dπ (x) will

converge to the stationary distribution.
3Note that learning in cases where such functions do not exist is usually prohibitively difficult.

62

trajectory planning is well-known in the robotics literature, see e.g., (Sciavicco & Si-

ciliano, 2007; Miyamoto et al., 1996). A desired trajectory is represented by piecewise

connected polynomials, e.g., we have

yi (t) = θ0i + θ1it+ θ2it
2 + θ3it

3 (4.8)

in t ∈ [ti, ti+1] under the constraints that both

yi (ti+1) = yi+1 (ti+1) and ẏi (ti+1) = ẏi+1 (ti+1) . (4.9)

A given tracking controller, e.g., a PD control law or an inverse dynamics controller,

ensures that the trajectory is tracked well. For nonlinear dynamic motor primitives, we

use the approach developed in (Ijspeert et al., 2002) where movement plans (qd, q̇d)
for each degree of freedom (DOF) of the robot are represented in terms of the time

evolution of the nonlinear dynamical systems

q̈d,k = h(qd,k, zk, gk, τ, θk) (4.10)

where (qd,k, q̇d,k) denote the desired position and velocity of a joint, zk the internal

state of the dynamic system, gk the goal (or point attractor) state of each DOF, τ the

movement duration shared by all DOFs, and θk the open parameters of the function

h. The equations used in order to create Equation (4.10) are given in Appendix B.5.

The original work in (Ijspeert et al., 2002) demonstrated how the parameters θk can be

learned to match a template trajectory by means of supervised learning – this scenario

is, for instance, useful as the first step of an imitation learning system. Here, we will

add the ability of self-improvement of the movement primitives in Equation (4.10) by

means of reinforcement learning, which is the crucial second step in imitation learning.

The system in Equation (4.10) is a point-to-point movement, i.e., this task is rather well

suited for the introduced episodic reinforcement learning methods.

In order to make the reinforcement framework feasible for learning motor primi-

tives, we need to add exploration to the respective motor primitive framework, i.e., we

need to add a small perturbation ǫd,k ∼ N (0, σ2) so that the nominal target output

q̈d,k becomes the perturbed target output ¨̂qd,k = q̈d,k + ǫd,k. By doing so, we obtain a

stochastic policy

π(¨̂qd,k|qd,k, zk, gk, τ, θk) =
1√

2πσ2
exp

(
−(¨̂qd,k − q̈d,k)

2

2σ2

)
. (4.11)

This policy will be used throughout the thesis chapter. It is particularly practical as the

exploration can be easily controlled through only one variable σ.

63

4.2 Policy Gradient Approaches for Parameterized Motor

Primitives

The general goal of policy optimization in reinforcement learning is to optimize the

policy parameters θ ∈ RK so that the expected return J(θ) is maximal. For motor

primitive learning in robotics, we require that any change to the policy parameterization

has to be smooth as drastic changes can be hazardous for the robot and its environn-

ment. Also, it would render initializations of the policy based on domain knowledge or

imitation learning useless, as these would otherwise vanish after a single update step.

Additionally, we need to guarantee that the policy is improved in the update steps at

least on average which rules out greedy value function based methods. For these rea-

sons, policy gradient methods which follow the steepest descent on the expected return

are the method of choice. These methods update the policy parameterization according

to the gradient update rule

θh+1 = θh + αh ∇θJ |θ=θh
, (4.12)

where αh ∈ R
+ denotes a learning rate. If the gradient estimate is unbiased and learning

rates fulfill
∞∑

h=0

αh > 0 and

∞∑

h=0

α2
h = 0, (4.13)

the learning process is guaranteed to converge to at least a local minimum.

The main problem in policy gradient methods is to obtain a good estimator of the

policy gradient ∇θJ |θ=θh
. Traditionally, people have used deterministic model-based

methods for obtaining the gradient (Jacobson & Mayne, 1970; Dyer & McReynolds,

1970; Hasdorff, 1976). However, in order to become autonomous we cannot expect to

be able to model every detail of the robot and environment appropriately. Therefore,

we need to estimate the policy gradient only from data generated during the execution

of a task, i.e., without the need for a model. In this section, we will study different

approaches and discuss which of these are useful in robotics.

Table 4.1: General setup for policy gradient reinforcement learning.

input: initial policy parameterization θ0.

1 repeat

2 obtain policy gradient g from estimator (see Tables 4.2-4.7)

3 update policy θh+1 = θh + αhg.

4 until policy parameterization θh ≈ θh+1 converges

return: optimal policy parameters θ∗ = θh+1.

64

The literature on policy gradient methods has yielded a variety of estimation meth-

ods over the last years. The most prominent approaches, which have been applied to

robotics are finite-difference and likelihood ratio methods, more well-known as REIN-

FORCE methods in reinforcement learning.

4.2.1 Finite-difference Methods

Finite-difference methods are among the oldest policy gradient approaches dating back

to the 1950s; they originated from the stochastic simulation community and are quite

straightforward to understand. The policy parameterization is varied by small incre-

ments ∆θi and for each policy parameter variation θh + ∆θi roll-outs are performed

which generate estimates ∆Ĵj ≈ J(θh + ∆θi)− Jref of the expected return. There are

different ways of choosing the reference value Jref, e.g. forward-difference estimators

with Jref = J(θh) and central-difference estimators with Jref = J(θh − ∆θi). The

mosts general way is to formulate the determination of the reference value Jref and the

policy gradient estimate gFD ≈ ∇θJ |θ=θh
as a regression problem which can be solved

by [
gT

FD, Jref

]T
=
(
∆ΘT∆Θ

)−1
∆ΘT Ĵ, (4.14)

where

∆Θ =

[
∆θ1, . . . , ∆θI

1, . . . , 1

]T

, and (4.15)

Ĵ = [Ĵ1, . . . , ĴI]
T , (4.16)

denote the I samples. If single parameters are perturbed, this method is known as the

Kiefer-Wolfowitz procedure and if multiple parameters are perturbed simultaneously, it

is known as Simultaneuous Perrturbation Stochastic gradient Approximation (SPSA),

see (Sadegh & Spall, 1997; Spall, 2003) for in-depth treatment. This approach can

been highly efficient in simulation optimization of deterministic systems (Spall, 2003)

or when a common history of random numbers (Glynn, 1987; Kleinman, Spall, &

Naiman, 1999) is being used (the later trick is known as the PEGASUS method in rein-

forcement learning, see (Ng & Jordan, 2000)), and can get close to a convergence rate

of O(I−1/2) (Glynn, 1987). However, when used on a real system, the uncertainities

degrade the performance resulting in convergence rates ranging between O(I−1/4) to

O(I−2/5) depending on the chosen reference value (Glynn, 1987). An implementation

of this algorithm is shown in Table 4.2.

Due to the simplicity of this approach, such methods have been successfully ap-

plied to robot motor skill learning in numerous applications (Miyamoto et al., 1995,

1996; Tedrake et al., 2005; Kohl & Stone, 2004; Mitsunaga et al., 2005). However, the

65

Table 4.2: Finite difference gradient estimator.

input: policy parameterization θ.

1 repeat

2 generate policy variation ∆θi.

3 estimate J(θ + ∆θi) ≈ Ĵj =
∑H

k=0 akrk from rollouts.

4 compute gradient
[
gT

FD, Jref

]T
=
(
∆ΘT∆Θ

)−1
∆ΘT Ĵ.

with ∆ΘT =

[
∆θ1, . . . , ∆θI

1, . . . , 1

]
,

and Ĵ
T

= [Ĵ1, . . . , ĴI].
5 until gradient estimate gFD converged.

return: gradient estimate gFD.

straightforward application is not without peril as the generation of the ∆θj requires

proper knowledge on the system, as badly chosen ∆θj can destabilize the policy so

that the system becomes instable and the gradient estimation process is prone to fail.

Even in the field of simulation optimization where the destabilization of the system is

not such a dangerous issue, the careful generation of the parameter perturbation is a

topic of debate with strong requirements on the generating process (Sadegh & Spall,

1997). Practical problems often require that each element of the vector ∆θj has a dif-

ferent order of magnitude, making the generation particularly difficult. Therefore, this

approach can only applied under strict human supervision.

4.2.2 Likelihood Ratio Methods and REINFORCE

Likelihood ratio methods are driven by an important different insight. Assume that

trajectories τ are generated from a system by roll-outs, i.e., τ ∼ pθ (τ) = p (τ |θ)
with rewards r(τ) =

∑H
k=0 akrk. In this case, the policy gradient can be estimated

using the likelihood ratio trick, see e.g. (Aleksandrov, Sysoyev, & Shemeneva, 1968;

Glynn, 1987), or REINFORCE trick (Williams, 1992), i.e., we can rewrite the gradient

by

∇θJ (θ) =

∫

T

∇θpθ (τ) r(τ)dτ =

∫

T

pθ (τ) ∇θ log pθ (τ) r(τ)dτ , (4.17)

= E {∇θ log pθ (τ) r(τ)} .

66

Table 4.3: General likelihood ratio policy gradient estimator “Episodic REINFORCE”

with an optimal baseline.

input: policy parameterization θ.

1 repeat

2 perform a trial and obtain x0:H ,u0:H , r0:H
3 for each gradient element gh

4 estimate optimal baseline

bh =

D

(
P

H

k=0
∇θh

log πθ (uk|xk))
2 P

H

l=0
alrl

E

D

(
P

H

k=0
∇θh

log πθ (uk|xk))
2

E

5 estimate the gradient element

gh =
〈(∑H

k=0 ∇θh
log πθ (uk |xk)

)(∑H
l=0 alrl − bh

)〉
.

6 end for.

7 until gradient estimate gRF converged.

return: gradient estimate gRF.

Importantly, the derivative ∇θ log pθ (τ) can be computed without knowleged of the

generating distribution pθ (τ) as

pθ (τ) = p(x0)
∏H

k=0
p (xk+1 |xk,uk)πθ (uk |xk) (4.18)

implies that

∇θ log pθ (τ) =
∑H

k=0
∇θ log πθ (uk |xk) , (4.19)

i.e., the derivatives through the control system do not have to be computed4. As

∫

T

pθ (τ) ∇θ log pθ (τ) dτ =

∫

T

∇θpθ (τ) dτ = ∇θ1 = 0, (4.20)

a constant baseline can be inserted resulting into the gradient estimator

∇θJ (θ) = E {∇θ log pθ (τ) (r(τ)− b)} , (4.21)

where b ∈ R can be chosen arbitrarily (Williams, 1992) but usually with the goal to

minimize the variance of the gradient estimator. Note that the baseline was most likely

first suggested by Williams (1992) and is unique to reinforcement learning as it requires

4This result makes an important difference: in stochastic system optimization, finite difference esti-

mators are often prefered as the derivative through system is required but not known. In policy search,

we always know the derivative of the policy with respect to its parameters and therefore we can make

use of the theoretical advantages of likelihood ratio gradient estimators.

67

a separation of the policy from the state-transition probability densities. Therefore,

the general path likelihood ratio estimator or episodic REINFORCE gradient estimator

(Williams, 1992) is given by

gRF =
〈(∑H

k=0
∇θ log πθ (uk |xk)

)(∑H

l=0
alrl − b

)〉
, (4.22)

where 〈f (τ)〉 =
∫

T
f(τ) dτ denotes the average over trajectories. This type of method

is guaranteed to converge to the true gradient at the fastest theoretically possible pace

of O(I−1/2) where I denotes the number of roll-outs (Glynn, 1987) even if the data is

generated from a highly stochastic system. An implementation of this algorithm will

be shown in Table 4.3 together with the estimator for the optimal baseline.

Besides the theoretically faster convergence rate, likelihood ratio gradient methods

have a variety of advantages in comparison to finite difference methods. As the gen-

eration of policy parameter variations is no longer needed, the complicated control of

these variables can no longer endanger the gradient estimation process. Furthermore,

in practice, already a single roll-out can suffice for an unbiased gradient estimate (Bax-

ter & Bartlett, 2001; Spall, 2003) viable for a good policy update step, thus reducing

the amount of roll-outs needed. Finally, this approach has yielded the most real-world

robot motor learning results (Nakamura et al., 2004; Mori et al., 2004; Endo et al.,

2005; Benbrahim & Franklin, 1997; Kimura & Kobayashi, 1997; Peters et al., 2005;

Gullapalli et al., 1994). In the subsequent two sections, we will strive to explain and

improve this type of gradient estimator.

4.3 ‘Vanilla’ Policy Gradient Approaches

Despite the fast asymptotic convergence speed of the gradient estimate, the variance

of the likelihood-ratio gradient estimator can be problematic in theory as well as in

practice. This can be illustrated straightforwardly with an example.

Example 4.1 When using a REINFORCE estimator with a baseline b = 0 in a scenario

where there is only a single reward of always the same magnitude, e.g., r (x,u) = c ∈
R for all x,u, then the variance of the gradient estimate will grow at least cubically

with the length of the planning horizon H as

Var{gRF} = H2c2
∑H

k=0
Var{∇θ log πθ (uk |xk)}, (4.23)

if Var{∇θ log πθ (uk |xk)} > 0 for all k. Furthemore, it will also grow quadratically

with the magnitude of the reward c.

68

For this reason, we need to address this issue and we will discuss several ad-

vances in likelihood ratio policy gradient optimization, i.e., the policy gradient theo-

rem/GPOMDP, optimal baselines and the compatible function approximation.

4.3.1 Policy gradient theorem and G(PO)MDP

The trivial observation that future actions do not depend on past rewards (unless policy

changes take place continuously during the trajectory) can result in a significant re-

duction of the variance of the policy gradient estimate. This insight can be formalized

as

E{∇θ log πθ (ul |xl) rk} = E{E{∇θ log πθ (ul |xl) |xk}︸ ︷︷ ︸
=0

rk} = 0 (4.24)

for l > k, which is straightforward to verify. This allows two variations of the previous

algorithm which are known as the policy gradient theorem (Sutton et al., 2000)

gPGT =
〈∑H

k=0
ak∇θ log πθ (uk |xk)

(∑H

l=k
al−krl − bk

)〉
, (4.25)

or G(PO)MD (Baxter & Bartlett, 2001)

gGMDP =
〈∑H

l=0

(∑l

k=0
∇θ log πθ (uk |xk)

)
(alrl − bl)

〉
, (4.26)

While these algorithms look different, they are exactly equivalent in their gradient

estimate5, i.e.,

gPGT = gGMPD, (4.27)

which is a direct result from the summation theorem (Vachenauer, Rade, & Westergren,

2000) and from the fact that they can both derived from REINFORCE. The G(PO)MDP

formulation has previously been derived in the simulation optimization community

(Glynn, 1990). An implementation of this algorithm is shown together with the op-

timal baseline in Table 4.4.

These two forms originally puzzled the community as they were derived from two

seperate points of view (Sutton et al., 2000; Baxter & Bartlett, 2001) and seemed to

be different on first inspection. While their equality os natural when taking the path-

based perspective, we will obtain the forms proposed in the original sources in a few

steps. First, let us note that in Equation (4.25) the term
∑∞

l=kalrl in the policy gradient

5Note that (Baxter & Bartlett, 2001) additionally add an eligibility trick for reweighting trajectory

pieces. This trick can be highly dangerous in robotics as can be demonstrated that already in linear-

quadratic regulation, this trick can result into divergence as the optimial policy for small planning hori-

zons (i.e., small eligibility rates) is often instable.

69

theorem is equivalent to a monte-carlo estimate of the value function Qπ (x,u). Thus,

we obtain

gPGT =

∫

X

dπ (x)

∫

U

∇θπθ (u |x) (Qπ (x,u)− b (x)) dudx, (4.28)

for normalized weightings with infinite horizons (e.g., using the discounted or the aver-

age reward case) and while employing the value function instead of the sum. This form

has a significant advantage over REINFORCE-like expressions, i.e., it is obvious that

the variance does not grow with the planning horizon if a good estimate of Qπ (x,u) is

given, e.g., using traditional value function methods. Thus, the counterexample from

Example 4.1 does no longer apply. Similarly, the term
∑l

k=0 ∇θ log πθ (uk |xk) be-

comes the log-derivative of the distribution of states µπ
k (x) = p (x = xk) at step k in

expectation, i.e.,

∇θ log dπ (x) =
∑H

l=0
al∇θ log µπ

k (x) =
∑H

l=0
al

∑l

k=0
∇θ log πθ (uk |xk) ,

(4.29)

which then can be used to rewrite the G(PO)MDP estimator into state-space form, i.e.,

gGMDP =

∫

X

∫

U

(πθ (u |x) ∇θd
π (x) + dπ (x) ∇θπθ (u |x)) (r (x,u)− b) dudx.

(4.30)

Note that this form only allows a baseline which is independent of the state unlike the

policy gradient theorem. When either of the state-action value function or the state

distribution derivative can be easily obtained by derivation or estimation, the variance

of the gradient can be reduced significantly.Without a formal derivation of it, the policy

gradient theorem has been applied in (Gullapalli, 1991; Kimura & Kobayashi, 1997)

using estimated value functions Qπ (x,u) instead of the term
∑H

l=k alrl and a baseline

bk = V π (xk, k). Note that the version introduced in (Kimura & Kobayashi, 1997) is

biased6 and does not correspond to the correct gradient unlike (Gullapalli, 1991).

Note that the formulation over paths can be used in a more general fashion than

the state-action form, e.g., it allows derivations for non-stationary policies, rewards and

systems, than the state-action formulation in the paragraph above. However, for some

results, it is more convenient to use the state-action based formulation and there we will

make use of it.

70

Table 4.4: Specialized likelihood ratio policy gradient estimator “G(PO)MDP”/Policy

Gradient with an optimal baseline.

input: policy parameterization θ.

1 repeat

2 perform trials and obtain x0:H ,u0:H , r0:H
3 for each gradient element gh

4 for each time step k
estimate baseline for time step k by

bhk =

D

(
P

k

κ=0
∇θh

log πθ (uκ|xκ))
2
akrk

E

D

(
P

k

κ=0
∇θh

log πθ (uκ|xκ))
2

E

5 end for.

6 estimate the gradient element

gh =
〈∑H

l=0

(∑l
k=0 ∇θh

log πθ (uk |xk)
) (
alrl − bhl

)〉
.

7 end for.

8 until gradient estimate gGMDP converged.

return: gradient estimate gGMDP.

4.3.2 Optimal Baselines

Above, we have already introduced the concept of a baseline which can decrease the

variance of a policy gradient estimate by orders of magnitude. Thus, an optimal se-

lection of such a baseline is essential. An optimal baseline minimizes the variance

σ2
h = Var {gh} of each element gh of the gradient g without biasing the gradient esti-

mate, i.e., violating E{g} = ∇θJ . This can be phrased as having a seperate baseline

bh for every element of the gradient7, i.e., we have

min
bh

σ2
h = Var {gh} , (4.31)

s.t.E{gh} = ∇θh
J. (4.32)

Due to the requirement of unbiasedness of the gradient estimate, we have σ2
h = E {g2

h}−
(∇θh

J)2, and due to

min
bh

σ2
h ≥ E

{
min

bh

g2
h

}
− (∇θh

J)2 , (4.33)

6See Appendix B.3 for more information.
7A single baseline for all parameters can also be obtained and is more common in the reinforcement

learning literature (Weaver & Tao, 2001a; Greensmith, Bartlett, & Baxter, 2004; Weaver & Tao, 2001b;

Williams, 1992; Lawrence, Cowan, & Russell, 2003; Greensmith, Bartlett, & Baxter, 2001). However,

such a baseline is of course suboptimal.

71

the optimal baseline for each gradient element gh can always be given by

bh =

〈(∑H
k=0 ∇θh

log πθ (uk |xk)
)2∑H

l=0 alrl

〉

〈(∑H
k=0 ∇θh

log πθ (uk |xk)
)2
〉 (4.34)

for the general likelihood ratio gradient estimator, i.e., Episodic REINFORCE. The al-

gorithmic form of the optimal baseline is shown in Table 4.3 in line 4. If the sums in the

baselines are modified appropriately, we can obtain the optimal baseline for the policy

gradient theorem or G(PO)MPD. We only show G(PO)MDP in this thesis chapter in

Table 4.4 as the policy gradient theorem is numerically equivalent.

The optimal baseline which does not bias the gradient in Episodic REINFORCE

can only be a single number for all trajectories and in G(PO)MPD it can also depend

on the time-step (Peters, 2005). However, in the policy gradient theorem it can depend

on the current state and, therefore, if a good parameterization for the baseline is known,

e.g., in a generalized linear form b (xk) = φ (xk)
T ω, this can significantly improve the

gradient estimation process. However, the selection of the basis functions φ (xk) can

be difficult and often impractical in practice. See (Weaver & Tao, 2001a; Greensmith

et al., 2004; Weaver & Tao, 2001b; Williams, 1992; Lawrence et al., 2003; Greensmith

et al., 2001) for more information on this topic.

4.3.3 Compatible Function Approximation

As we previously discussed, the largest source of variance in the formulation of Equa-

tion (4.28) is the state-action value functionQπ(x,u), especially if the functionQπ(x,u)
is approximated by rollouts as in this context. The natural alternative of using approx-

imate value functions is problematic as these introduce bias in presence of imperfect

basis function. However, as demonstrated in (Sutton et al., 2000) and (Konda & Tsit-

siklis, 2000) the term Qπ(x,u) − bπ(x) can be replaced by a compatible function ap-

proximation

fπ
w(x,u) = (∇θ log π(u|x))Tw ≡ Qπ(x,u)− bπ(x), (4.35)

parameterized by the vector w, without affecting the unbiasedness of the gradient es-

timate and irrespective of the choice of the baseline bπ(x). However, as mentioned in

(Sutton et al., 2000), the baseline may still be useful in order to reduce the variance of

72

the gradient estimate when Equation (4.28) is approximated from samples. Based on

Equations (4.28, 4.35), we derive an estimate of the policy gradient as

∇θJ(θ) =

∫

X

dπ(x)

∫

U

π(u|x)∇θ log π(u|x)∇θ log π(u|x)Tdudx w = Fθw. (4.36)

as ∇θπ(u|x) = π(u|x)∇θ log π(u|x). Since π(u|x) is chosen by the user, even in

sampled data, the integral G(x) =
∫

U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)Tdu can be

evaluated analytically or empirically without actually executing all actions. It is also

noteworthy that the baseline does not appear in Equation (4.36) as it integrates out, thus

eliminating the need to find an optimal selection of this open parameter. Nevertheless,

the estimation of G =
∫

X
dπ(x)G(x)dx is still expensive since dπ(x) ist not known.

An important observation is that the compatible function approximation fπ
w(x,u)

is mean-zero w.r.t. the action distribution, i.e.,

∫

U

π(u|x)fπ
w(x,u)du = wT

∫

U

∇θπ(u|x)du = 0, (4.37)

since from
∫

U
π(u|x)du = 1, differention w.r.t. to θ results in

∫
U
∇θπ(u|x)du = 0.

Thus, fπ
w(x,u) represents an advantage function Aπ(x,u) = Qπ(x,u) − V π(x) in

general. The advantage function cannot be learned with TD-like bootstrapping without

knowledge of the value function as the essence of TD is to compare the value V π(x)
of the two adjacent states – but this value has been subtracted out in Aπ(x,u). Hence,

a TD-like bootstrapping using exclusively the compatible function approximator is im-

possible. As an alternative, (Sutton et al., 2000; Konda & Tsitsiklis, 2000) suggested

to approximate fπ
w(x,u) from unbiased estimates Q̂π(x,u) of the action value func-

tion, e.g., obtained from roll-outs and using least-squares minimization between fw and

Q̂π. While possible in theory, one needs to realize that this approach implies a func-

tion approximation problem where the parameterization of the function approximator

only spans a much smaller subspace of the training data – e.g., imagine approximat-

ing a quadratic function with a line. In practice, the results of such an approximation

depends crucially on the training data distribution and has thus unacceptably high vari-

ance – e.g., fit a line to only data from the right branch of a parabula, the left branch,

or data from both branches. In the next section, we will see that there are smarter

ways to estimate the compatible function approximation (Section 4.4.1) and that this

compatible function approximation has a special meaning (Section 4.4.2).

73

4.4 Natural Actor-Critic

Despite all the advances in the variance reduction of policy gradient methods, these

methods tend tio perform surprisingly poor. Even when applied to simple examples

with rather few states, where the gradient can be determined very accurate, they turn

out to be quite inefficient – thus, the underlying reason cannot be the variance in the

gradient estimate but rather be caused by the large plateaus in the expected return land-

scape where the gradients are small and often do not point directly towards the optimal

solution. A simple example that demonstrates this behavior is given in Fig. 4.1. Similar

as in supervised learning, the steepest ascent with respect to the Fisher information met-

ric (Amari, 1998), called the ‘natural’ policy gradient, turns out to be significantly more

efficient than normal gradients. Such an approach was first suggested for reinforcement

learning as the ‘average natural policy gradient’ in (Kakade, 2002), and subsequently

shown to be the true natural policy gradient (Peters et al., 2003a; Bagnell & Schneider,

2003). In this thesis chapter, we take this line of reasoning one step further by introduc-

ing the Natural Actor-Critic which inherits the convergence guarantees from gradient

methods.

Several properties of the natural policy gradient are worthwhile highlighting:

• Convergence to a local minimum guaranteed as for ‘vanilla gradients’, see (Amari,

1998).

• By choosing a more direct path to the optimal solution in parameter space, the

natural gradient has, from empirical observations, faster convergence and avoids

premature convergence of ‘vanilla gradients’ (see Figure 4.1).

• The natural policy gradient can be shown to be covariant, i.e., independent of

the coordinate frame chosen for expressing the policy parameters (see Section

4.5.1).

• As the natural gradient analytically averages out the influence of the stochastic

policy (including the baseline of the function approximator), it requires fewer

data point for a good gradient estimate than ‘vanilla gradients’.

4.4.1 Motivation

One of the main reasons for using policy gradient methods is that we intend to do just a

small change ∆θ to the policy πθ while improving the policy. However, the meaning of

small is ambiguous. When using the Euclidian metric of
√

∆θT∆θ, then the gradient

is different for every parameterization θ of the policy πθ even if these parameterization

are related to each other by a linear transformation (Kakade, 2002), often resulting into

74

unnaturally slow learning even when higher order gradient methods were employed

(Baxter, Bartlett, & Weaver, 2001; Berny, 2000; Kakade, 2001). This problem poses

the question whether we can achieve a covariant gradient descent, i.e., gradient descent

with respect to an invariant measure of the closeness between the current policy and the

updated policy based upon the distribution of the paths generated by each of these. In

statistics, a variety of distance measures for the closeness of two distributions (e.g.,

pθ (τ) and pθ+∆θ (τ)) have been suggested, e.g., the Kullback-Leibler divergence8

dKL (pθ (τ) ||pθ+∆θ (τ)), the Hellinger distance dHD and others (Su & Gibbs, 2002).

Many of these distances (e.g., the previously mentioned ones) can be approximated by

the same second order Taylor expansion, i.e., by

dKL (pθ (τ) ||pθ+∆θ (τ)) ≈ 1

2
∆θTFθ ∆θ, (4.38)

where

Fθ =

∫

T

pθ (τ)∇ log pθ (τ)∇ log pθ (τ)T dτ =
〈
∇ log pθ (τ)∇ log pθ (τ)T

〉

(4.39)

is known as the Fisher-information matrix. Let us now assume that we fix the amount

change of our policy using the step-size ε, then we have restricted step-size gradient

descent problem (Fletcher & Fletcher, 2000). Thus, we have an optimization problem

max
∆θ

J (θ + ∆θ) ≈ J (θ) + ∆θT
∇θJ, (4.40)

s.t.dKL (pθ (τ) ||pθ+∆θ (τ)) ≈ 1

2
∆θTFθ ∆θ = ε, (4.41)

which is illustrated in Figure 4.1 and has the solution

∆θ = αnF
−1
θ ∇θJ (4.42)

with αn = [ε(∇J(θ)TF−1
θ ∇J(θ))−1]1/2, see Section B.1 for derivations9. The direc-

tion ∆θ is called the natural gradient ∇̃θJ(θ) = ∆θ/αn as introduced in (Amari,

8While being ‘the natural way to think about closeness in probability distributions’ (Balasubrama-

nian, 1997), this measure is technically not a metric as it is not commutative.
9The value dKL (pθ, pθ+∆θ) can also be seen as the loss of information resulting of a policy change

∆θ. Thus, we could alternatively formulate the problem as

max
∆θ

J (θ + ∆θ)− αdKL (pθ, pθ+∆θ) ≈ J (θ) + ∆θT
∇θJ − α

1

2
∆θT

Fθ ∆θ, (4.43)

which obviously has the same solution except to the freely selectable trade-off factor or forgetting rate

α.

75

C
o

n
t
r
o

l
l
e

r

v
a

r
i
a

n
c
e

θ

2

=
σ

Controller gain θ
1

=k

(a) Vanilla Policy Gradient

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

0

0.2

0.4

0.6

0.8

1

C
o

n
t
r
o

l
l
e

r

v
a

r
i
a

n
c
e

θ

2

=
σ

Controller gain θ
1

=k

(b) Natural Policy Gradient

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.1: The classical example of LQR can be used to illustrate why ‘vanilla’ policy

gradients reduce the exploration to zero while natural policy gradients go for the opti-

mal solution. The blue circle in (a) indicate equal distance with the standard Eucledian

metric, while the one in (b) shows equal distance with respect to the Fisher information

metric. The natural policy gradient corresponds to searching the steepest descent on an

infinitesimally small Fisher ellipse (b), while the vanilla policy gradient corresponds to

steepest descent on a unit circle.

1998). The learning rate αn is not necessarily a desirable one and can be replaced by a

constant learning rate without changing the gradients direction.

This type of approach is known as Natural Policy Gradients and has its separate

origin in supervised learning (Amari, 1998). It was first suggested in the context of

reinforcement learning by Kakade (2002) and has been explored in greater depth in

(Peters et al., 2003a; Bagnell & Schneider, 2003; Peters, 2005; Peters et al., 2005).

The strongest theoretical advantage of this approach is that its performance no longer

depends on the parameterization of the policy and it is therefore safe to use for arbi-

trary policies10. In practice, the learning process converges significantly faster in most

practical cases.

4.4.2 Connection to the Compatible Function Approximation

Up to this point, we have left open the deciding question how to determine the Fisher

information matrix. In the first work on natural policy gradients (Kakade, 2002), it ap-

peared that this question could not be answered straightforwardly; however this ques-

tion was largely answered in subsequent work simultaneously by Peters & Schaal, and

Bagnell & Schneider, see (Peters et al., 2003a; Bagnell & Schneider, 2003; Peters,

10There is a variety of interesting properties to the natural policy gradient methods which are explored

in (Peters et al., 2005).

76

2005; Peters et al., 2005). We repeat our results from (Peters et al., 2003a) and outline

the derivation of Fisher information of paths here. In (Moon & Stirling, 2000), we can

find the well-known lemma that by differentiating
∫

T
p(τ)dτ = 1 twice with respect to

the parameters θ, we can obtain

∫

T

p(τ)∇2
θ log p(τ)dτ = −

∫

T

p(τ)∇θ log p(τ)∇θ log p(τ)Tdτ (4.44)

for any probability density function p(τ). Using Equations (4.18,4.19), we can obtain

by differentiation

∇
2
θ log p (τ 0:H) =

H∑

k=1

∇
2
θ log π (uk |xk) . (4.45)

Using Equations (4.44, 4.45), and the definition of the Fisher information matrix (Amari,

1998), we can determine Fisher information matrix for the average reward case in sam-

ple notation, i.e,

Fθ =
〈
∇θ log p(τ 0:H)∇θ log p(τ 0:H)T

〉
= −

〈
∇

2
θ log p(τ 0:H)

〉
,

= −
〈

H∑

k=0

∇
2
θ log π (uH |xH)

〉
,

= −
∫

X

dπ
H(x)

∫

U

π(u|x)∇2
θ log π(u|x)dudx,

=

∫

X

dπ
H(x)

∫

U

π(u|x)∇θ log π(u|x)∇θ log π(u|x)Tdudx = Gθ, (4.46)

where dπ
H(x) =

∑H
k=0 p (xk = x) denotes the distribution of states along the trajec-

tory. Similarly, if we replace p(τ 0:H) by a weighted path distribution pγ(τ 0:n) =

p(τ 0:n)
∑H

l=0 alIxi,ui
), we see that ∇

2
θ log p (τ 0:n) = ∇

2
θ log pγ(τ 0:n). Thus, the proof

above generalizes to reweighted path distributions, i.e., we have dπ
H(x) =

∑H
k=0 akp (xk = x).

Thus, we can estimate the Fisher information matrix with

Fθ =
〈∑H

l=0
al∇θ log π(ul|xl)∇θ log π(ul|xl)

T
〉

= Gθ, (4.47)

as we have shown in (Peters et al., 2003a). These results imply the equality of the

all-action matrix Gθ and the Fisher information Fθ of paths, i.e., we have

Fθ = Gθ. (4.48)

77

Therefore, we have demonstrated that Fθ is indeed a true Fisher information matrix and

does not have to be interpreted as the ‘average’ of the point Fisher information matrices.

Eqs.(4.46) and (4.42) combined imply that the natural gradient can be computed as

∇̃θJ(θ) = G−1
θ Fθw = w, (4.49)

since Fθ = Gθ. Therefore we only need estimate w and not Gθ. The resulting policy

improvement step is thus θi+1 = θi + αw where α denotes a learning rate.

4.4.3 Natural Actor Critic Algorithms

The critic evaluates the current policy π in order to provide the basis for an actor im-

provement, i.e., the change ∆θ of the policy parameters. As we are interested in natural

policy gradient updates ∆θ = αw, we wish to employ the compatible function approx-

imation fπ
w(x,u) from Section 4.3.3 in this context. In Section 4.3.3, we had realized

that this function was hard to learn as it could only represent an impoverished version

of the state-action value function. We will remedy this situation we will derive more

useful estimators from two different point of views, i.e., the state-action based point

of view and the episodic roll-out based point of view. Both rely on the assumption of

additional basis functions.

4.4.3.1 Natural Actor Critic with LSTD-Q(λ)

We observe that we can write the Bellman equations (e.g., see (Baird, 1993)) in terms

of the advantage function and the state-value function

Qπ(x,u) = Aπ(x,u) + V π(x) = r (x,u) + γ

∫

X

p(x′|x,u)V π(x′)dx′. (4.50)

Inserting Aπ(x,u) = fπ
w(x,u) and an appropriate basis functions representation of the

value function as V π(x) = φ(x)Tv, we can rewrite the Bellman Equation, Equation ,

(4.50), as a set of linear equations

∇θ log π(ut|xt)
Tw + φ(xt)

Tv = r(xt,ut) + γφ(xt+1)
Tv + ǫ(xt,ut,xt+1) (4.51)

where ǫ(xt,ut,xt+1) denotes an error term which mean-zero as can be observed from

Equation (4.50). Using Equation (4.51), a solution to Equation (4.50) can be obtained

by adapting the LSTD(λ) policy evaluation algorithm (Boyan, 1999). For this purpose,

we define

φ̂t = [φ(xt)
T ,∇θ log π(ut|xt)

T]T , (4.52)

78

Table 4.5: Natural Actor-Critic Algorithm with LSTD-Q(λ)

input: policy parameterization θ

1 if first gradient estimate

2 reset sufficient statistics A0 = 0, b0 = z0 = 0, k = 0.
3 else

4 forget statistics: zk+1 ← 0,Ak+1 ← βAk+1,bk+1 ← βbk+1.
5 end.

6 repeat

7 Draw initial state x0 ∼ p(x0).
8 for t = 0, 1, 2, . . . , H do

Execute a step:

9 Draw action ut ∼ π(ut|xt).
10 Observe next state xt+1 ∼ p(xt+1|xt,ut).
11 Observe reward rt = r(xt,ut).

Update basis functions:

12 φ̃t = [φ(xt+1)
T ,0T]T ,

13 φ̂t = [φ(xt)
T ,∇θ log π(ut|xt)

T]T ,

Update sufficient statistics:

14 zk+1 = λzk + φ̂t,

15 Ak+1 = Ak + zk+1(φ̂t − γφ̃t)
T ,

16 bk+1 = bk + zk+1rt,
17 Update critic parameters: [wT

k+1,v
T
k+1]

T = A−1
k+1bk+1.

18 Update time-step k ← k + 1.

19 end for.

20 until gradient estimate gNAC = wk converged.

return: gradient estimate gNAC = wk

79

φ̃t = [φ(xt+1)
T ,0T]T ,

as new basis functions, where 0 is the zero vector. This definition of basis function

reduces bias and variance of the learning process in comparison to SARSA and pre-

vious LSTD(λ) algorithms for state-action value functions (Boyan, 1999) as the basis

functions φ̃t do not depend on stochastic future actions ut+1, i.e., the input variables to

the LSTD regression are not noisy due to ut+1 (e.g., as in (Bradtke, Ydstie, & Barto,

1994)) – such input noise would violate the standard regression model that only takes

noise in the regression targets into account. LSTD(λ) with the basis functions in Equa-

tion (4.52), called LSTD-Q(λ) from now on, is thus currently the theoretically cleanest

way of applying LSTD to state-value function estimation. It is exact for determinis-

tic or weekly noisy state transitions and arbitrary stochastic policies. As all previous

LSTD suggestions, it loses accuracy with increasing noise in the state transitions since

φ̃t becomes a random variable. The complete LSTD-Q(λ) algorithm is given in the

Critic Evaluation (lines 12-17) of Table 4.5.

Once LSTD-Q(λ) converges to an approximation ofAπ(xt,ut)+V
π(xt), we obtain

two results: the value function parameters v, and the natural gradient w. The natural

gradient w serves in updating the policy parameters ∆θt = αwt. After this update, the

critic has to forget at least parts of its accumulated sufficient statistics using a forgetting

factor β ∈ [0, 1] (cf. Table 4.5). For β = 0, i.e., complete resetting, and appropriate

basis functions φ(x), convergence to the true natural gradient can be guaranteed. The

complete Natural Actor Critic (NAC) algorithm is shown in Table 4.5.

However, it becomes fairly obvious that the basis functions can have an influence

on our gradient estimate. When using the counterexample in (Bartlett, 2002) with a

typical Gibbs policy, we will realize that the gradient is affected for λ < 1; for λ = 0
the gradient is flipped and would always worsen the policy. Thus, it would result into a

biased gradient update for λ < 1, however, unlike in (Bartlett, 2002), we at least could

guarantee that the gradient is unbiased for λ = 1.

4.4.3.2 Episodic Natural Actor-Critic

Given the problem that the additional basis functions φ(x) determine the quality of the

gradient, we need methods which guarantee the unbiasedness of the natural gradient

estimate. Such method can be determined by summing up Equation (4.51) along a

sample path, we obtain

H∑

t=0

atA
π(xt,ut) = aH+1V

π(xH+1) +
H∑

t=0

atr(xt,ut)− V π(x0) (4.53)

80

Table 4.6: Episodic Natural Actor Critic

input: policy parameterization θ.

1 repeat

2 perform M trials and obtain x0:H ,u0:H , r0:H for each trial.

Obtain the sufficient statistics

3 Policy derivatives ψk = ∇θ log πθ (uk |xk).

4 Fisher matrix Fθ =

〈(∑H
k=0ψk

)(∑H
l=0ψl

)T
〉

.

Vanilla gradient g =
〈(∑H

k=0ψk

)(∑H
l=0 alrl

)〉
.

5 Eligbility φ =
〈(∑H

k=0ψk

)〉
.

6 Average reward r̄ =
〈∑H

l=0 alrl

〉
.

Obtain natural gradient by computing

7 Baseline b = Q
(
r̄ − φTF−1

θ g
)

with Q = M−1
(
1 + φT

(
MFθ − φφT

)−1
φ
)

8 Natural gradient geNAC1 = F−1
θ (g − φb) .

9 until gradient estimate geNAC1 converged.

return: gradient estimate geNAC1.

It is fairly obvious that the last term disappears for H → ∞ or episodic tasks (where

r(xH ,uH) is the final reward); therefore each roll-out would yield one equation. If we

furthermore assume a single start-state, an additional scalar value function of φ(x) = 1
suffices. We therefore get a straightforward regression problem:

H∑

t=0

at∇ log π(ut,xt)
Tw + J =

H∑

t=0

atr(xt,ut) (4.54)

with exactly dim θ + 1 unknowns. This means that for non-stochastic tasks we can

obtain a natural gradient after dim θ + 1 rollouts using least squares regression

[
w
J

]
=
(
ΨTΨ

)−1
ΨTR, (4.55)

with

Ψi =

[
H∑

t=0

at∇ log π(ut,xt)
T , 1

]
, (4.56)

81

Ri =
H∑

t=0

atr(xt,ut). (4.57)

This regression problem, can be transformed into the form shown shown in Table 4.6

using the matrix inversion lemmata, see Section B.4.1 for the derivation.

This algorithm,originally derived in (Peters, 2005; Peters et al., 2003a, 2005), can

be considered the ‘natural’ version of reinforce with a baseline optimal for this gradi-

ent estimator. However, for steepest descent with respect to a metric, the baseline also

needs to minimize the variance with respect to the same metric and, thus, the episodic

natural actor critic can be derived similar as the normal likelihood ratio gradients be-

fore. In this case, we can minimize the whole covariance matrix of the natural gradient

estimate ∆θ̂ given by

Σ = Cov
{
∆θ̂
}

Fθ

= E

{(
∆θ̂ − F

−1

θ gRF (b)
)T

Fθ

(
∆θ̂ − F

−1

θ gRF (b)
)}

,

with gRF (b) = 〈∇ log pθ (τ) (r (τ)− b)〉 being the REINFORCE gradient with base-

line b. As outlined in (Peters, 2005; Peters et al., 2003a, 2005), it can be shown that the

minimum-variance unbiased natural gradient estimator.

4.4.3.3 Episodic Natural Actor Critic with a Time-Variant Baseline

The episodic natural actor critic described in the previous section suffers from draw-

back: it does not make use of intermediate data just like REINFORCE. For policy

gradients, the way out was G(PO)MDP which left out terms which would average out

in expectation. In the same manner, we can make the argument for a time-dependent

baseline which then allows us to reformulate the Episodic Natural Actor Critic. This

argument results in the algorithm shown in Table 4.7 and the derivation is shown in

Section B.4.2. The advantage of this type of algorithms is two-fold: the variance of the

gradient estimate is often lower and it can take time-variant rewards significantly better

into account.

4.5 Properties of Natural Actor-Critic

In this section, we will emphasize certain properties of the natural actor-critic. In par-

ticular, we want to give a simple proof of covariance of the natural policy gradient, and

82

Table 4.7: Episodic Natural Actor Critic with a Time-Variant Baseline

input: policy parameterization θ.

1 repeat

2 perform M trials and obtain x0:H ,u0:H , r0:H for each trial.

Obtain the sufficient statistics

3 Policy derivatives ψk = ∇θ log πθ (uk |xk).

4 Fisher matrix Fθ =
〈∑H

k=0

(∑k
l=0ψl

)
ψT

k

〉
.

Vanilla gradient g =
〈∑H

k=0

(∑k
l=0ψl

)
akrk

〉
,

5 Eligbility matrix Φ = [φ1,φ2, . . . ,φK]

with φh =
〈(∑h

k=0ψk

)〉
.

6 Average reward vector r̄ = [r̄1, r̄2, . . . , r̄K]
with r̄h = 〈ahrh〉.

Obtain natural gradient by computing

7 Baseline b = Q
(
r̄−ΦTF−1

θ g
)

with Q = M−1
(
IK + ΦT

(
MFθ −ΦΦT

)−1
Φ
)

.

8 Natural gradient gNG = F−1
θ (g −Φb) .

9 until gradient estimate geNACn converged.

return: gradient estimate geNACn.

83

discuss (Kakade, 2002) observation that in his experimental settings the natural pol-

icy gradient was non-covariant. Furthermore, we will discuss another surprising aspect

about the Natural Actor-Critic (NAC) which is its relation to previous algorithms. We

briefly demonstrate that established algorithms like the classic Actor-Critic (Sutton &

Barto, 1998), and Bradtke’s Q-Learning (Bradtke et al., 1994) can be seen as special

cases of NAC.

4.5.1 On the Covariance of Natural Policy Gradients

When (Kakade, 2002) originally suggested natural policy gradients, he came to the dis-

appointing conclusion that they were not covariant. As counterexample, he suggested

that for two different linear Gaussian policies, (one in the normal form, and the other

in the information form) the probability distributions represented by the natural pol-

icy gradient would be affected differently, i.e., the natural policy gradient would be

non-covariant. We intend to give a proof at this point showing that the natural policy

gradient is in fact covariant under certain conditions, and clarify why (Kakade, 2002)

experienced these difficulties.

Theorem 4.1 Natural policy gradients updates are covariant for two policies πθ pa-

rameterized by θ and πh parameterized by h if (i) for all parameters θi there exists a

function θi = fi(h1, . . . , hk), (ii) the derivative ∇hθ and its inverse ∇hθ
−1, and (iii)

there are no redundant parameters (i.e., the Fisher information matrix is non-singular).

For the proof see Appendix B.2. Practical experiments show that the problems

occurred for Gaussian policies in (Kakade, 2002) are in fact due to the selection the

stepsize α which determines the length of ∆θ. As the linearization ∆θ = ∇hθ
T∆h

does not hold for large ∆θ, this can cause divergence between the algorithms even for

analytically determined natural policy gradients which can partially explain the diffi-

culties occurred by Kakade (Kakade, 2002).

4.5.2 NAC’s Relation to previous Algorithms

Original Actor-Critic. Surprisingly, the original Actor-Critic algorithm (Sutton &

Barto, 1998) is a form of the Natural Actor-Critic. By choosing a Gibbs policy

π(ut|xt) =
exp(θxu)∑
b exp(θxb)

, (4.58)

with all parameters θxu lumped in the vector θ, (denoted as θ = [θxu]) in a discrete setup

with tabular representations of transition probabilities and rewards. A linear function

84

approximation V π(x) = φ(x)Tv with v = [vx] and unit basis functions φ(x) = ex was

employed. Sutton et al. online update rule is given by

θt+1
xu = θt

xu + α1 (r(x, u) + γvx′ − vx) ,

vt+1
x = vt

x + α2 (r(x, u) + γvx′ − vx) ,

where α1, α2 denote learning rates. The update of the critic parameters vt
x equals the

one of the Natural Actor-Critic in expectation as TD(0) critics converges to the same

values as LSTD(0) and LSTD-Q(0) for discrete problems (Boyan, 1999). Since for the

Gibbs policy we have

∂ log π(b|a)
∂θxu

=





1− π(b|a) if a = x and b = u,

−π(b|a) if a = x and b 6= u,

0 otherwise,

(4.59)

and as
∑

b π(b|x)A(x, b) = 0, we can evaluate the advantage function and derive

A(x, u) = A(x, u)−
∑

b
π(b|x)A(x, b) =

∑
b

∂ log π(b|x)
∂θxu

A(x, b).

Since the compatible function approximation represents the advantage function, i.e.,

fπ
w(x,u) = A(x, u), we realize that the advantages equal the natural gradient, i.e.,

w = [A(x, u)]. Furthermore, the TD(0) error of a state-action pair (x, u) equals the

advantage function in expectation, and therefore the natural gradient update

wxu = A(x, u) = Ex′{r(x, u) + γV (x′)− V (x)|x, u}, (4.60)

corresponds to the average online updates of Actor-Critic. As both update rules of the

Actor-Critic correspond to the ones of NAC, we can see both algorithms as equivalent.

Bradtke’s Q-Learning. Bradtke et al. (1994) proposed an algorithm with policy

π(ut|xt) = N (ut|kT
i xt, σ

2
i) and parameters θi = [kT

i , σi]
T (where σi denotes the ex-

ploration, and i the policy update time step) in a linear control task with linear state

transitions xt+1 = Axt + but, and quadratic rewards r(xt,ut) = xT
t Hxt +Ru2

t . They

evaluated Qπ(xt,ut) with LSTD(0) using a quadratic polynomial expansion as basis

functions, and applied greedy updates:

kBradtke
i+1 = argmaxki+1

Qπ(xt,ut = kT
i+1xt) = −(R + γbTPib)−1γbPiA,

where Pi denotes policy-specific value function parameters related to the gain ki; no

update the exploration σi was included. Similarly, we can obtain the natural policy

85

gradient w = [wk, wσ]T , as yielded by LSTD-Q(λ) analytically using the compatible

function approximation and the same quadratic basis functions. As discussed in detail

in (Peters et al., 2003a), this gives us

wk = (γATPib + (R + γbTPib)k)Tσ2
i ,

wσ = 0.5(R + γbTPib)σ3
i .

Similarly, it can be derived that the expected return is J(θi) = −(R + γbTPib)σ2
i for

this type of problems, see (Peters et al., 2003a). For a learning rate αi = 1/ ‖J(θi)‖,
we see

ki+1 = ki + αtwk = ki − (ki + (R + γbTPib)−1γATPib) = kBradtke
i+1 ,

which demonstrates that Bradtke’s Actor Update is a special case of the Natural Actor-

Critic. NAC extends Bradtke’s result as it gives an update rule for the exploration –

which was not possible in Bradtke’s greedy framework.

4.6 Experiments & Results

In the previous section, we outlined the five first-order, model-free policy gradient al-

gorithms which are most relevant for robotics (further ones exist but are do not scale

into high-dimensional robot domains). In this section, we will demonstrate how these

different algorithms compare in practice in different areas relevant to robotics. For this

pupose, we will show experiments on both simulated plants as well as on real robots and

we will compare the algorithms for the optimization of control laws and for learning of

motor skills.

4.6.1 Comparing Policy Gradient Methods on Motor Primitives

Initially, we compare the different policy gradient methods in motor primitive planning

tasks using both spline-based and dynamical system based desired trajectories. In Fig-

ure 4.2 (a) and (b), we show a comparison of the presented algorithms for a simple,

single DOF task with a reward of

rk(x0:N , u0:N) =
N∑

i=0

c1q̇
2
d,k,i + c2(qd;k;N − gk)

2 (4.61)

86

E
x

p
e

c
te

d
 R

e
tu

rn

Rollouts [log-scale]

100 101 102 103 104 105

-102.3

-102.4

-102.5

-102.6

-102.8

-102.7

(a) Minimum motor command with splines (b) Minimum motor command with motor

primitives

100 101 102 103 104 105 106-103

-102

-101

Rollouts [log-scale]

E
x

p
e

c
te

d
R

e
tu

rn

(c) Passing through a point with splines

100 101 102 103 104-103

-102

-101

Rollouts [log-scale]

E
x

p
e

c
te

d
 R

e
tu

rn

(d) Passing through a point with motor primitives

Figure 4.2: This figure shows different experiments with motor task learning. In (a,b),

we see how the learning system creates minimum motor command goal-achieving plans

using both (a) splines and (b) motor primitives. For this problem, the natural actor-critic

methods beat all other methods by several orders of magnitude. In (c,d), the plan has

to achieve an intermediary goal. While the natural actor-critic methods still outperform

previous methods, the gap is lower as the learning problem is easier. Note that these

are double logarithmic plots.

87

where c1 = 1, c2 = 1000 for both splines and dynamic motor primitives. In Figure 4.2

(c) and (d) we show the same with an additional punishment term for going through a

intermediate point pF at time F , i.e.,

rk(x0:N , u0:N) =
N∑

i=0

c̃1q̇
2
d,k,i + c̃2(qd;k;N − gk)

2 + c̃2(qd;F ;N − pF)2. (4.62)

It is quite clear from the results that the natural actor-critic methods outperform both

the vanilla policy gradient methods as well as the likelihood ratio methods. Finite dif-

ference gradient methods behave differently from the likelihood ratio methods as there

is no stochasticity in the system, resulting in a cleaner gradient but also in local minima

not present for likelihood ratio methods where the exploratory actions are stochastic.

From this comparison, we can conclude that natural actor-critic methods are the best

suited for motor primitive learning.

4.6.2 Robot Application: Motor Primitive Learning for Baseball

We also evaluated the same setup in a challenging robot task, i.e., the planning of these

motor primitives for a seven DOF robot task using our SARCOS Master Arm. The task

of the robot is to hit the ball properly so that it flies as far as possible; this game is

also known as T-Ball. The state of the robot is given by its joint angles and velocities

while the action are the joint accelerations. The reward is extracted using color segment

tracking with a NewtonLabs vision system. Initially, we teach a rudimentary stroke by

supervised learning as can be seen in Figure 4.3 (b); however, it fails to reproduce the

behavior as shown in (c); subsequently, we improve the performance using the episodic

Natural Actor-Critic which yields the performance shown in (a) and the behavior in (d).

After approximately 200-300 trials, the ball can be hit properly by the robot.

4.7 Conclusion & Discussion

The contributions of this chapter are outlined in Section 4.7.1, and we discuss the re-

lations between policy gradient and extensions of the EM-like approaches in Section

4.7.2. Furthermore, in Section 4.7.3, we discuss a new approach taylored for motor

primitive learning, i.e., the motor primitive iteration.

4.7.1 Contributions of this Chapter

We have presented an extensive survey of policy gradient methods. While some de-

velopments needed to be omitted as they are only applicable for very low-dimensional

88

(b) Teach in
by Imitation

(c) Initial re-
produced motion

(d) Improved re-
produced motion

(a) Performance
of the system

0 100 200 300 400
-10

-8

-6

-4

-2

0
x 10

5

Episodes

P
er

fo
rm

an
ce

 J
(θ

)

Figure 4.3: This figure shows (a) the performance of a baseball swing task when using

the motor primitives for learning. In (b), the learning system is initialized by imitation

learning, in (c) it is initially failing at reproducing the motor behavior, and (d) after

several hundred episodes exhibiting a nicely learned batting.

state-spaces, this thesis chapter represents the state of the art in policy gradient meth-

ods and can deliver a solid base for future applications of policy gradient methods in

robotics. All three major ways of estimating first order gradients, i.e., finite-difference

gradients, vanilla policy gradients and natural policy gradients are discussed in this

thesis chapter and practical algorithms are given.

One of the presented classes of algorithms, the Natural Actor-Critic algorithms were

developed for this thesis. While developed in the beginning of the Ph.D. of the author,

these algorithms have been widely accepted by now and have been applied in a variety

of settings (Guenter, Hersch, Calinon, & Billard, 2007; Mori, Nakamura, & Ishii, 2005;

Mori et al., 2004; Nakamura et al., 2004; Park, Kim, & Kang, 2005; Richter, Aberdeen,

& Yu, 2007; Sato et al., 2002; Ueno et al., 2006). The Natural Actor-Critic is con-

sidered “Current method of choice” (Aberdeen, 2006) among the policy gradient in

the reinforcement learning community. It also allows the derivation of several previous

algorithms and has very useful properties.

The experiments presented here show that the time-variant episodic natural actor

critic is the preferred method among the presented methods when applicable; however,

if a policy cannot be differentiated with respect to its parameters, the finite difference

methods may be the only method applicable. The example of motor primitive learning

for baseball underlines the efficiency of natural gradient methods.

4.7.2 Relation to EM-based Approaches

Interestingly, the methods used for immidiate reinforcement learning in Section 3.3 are

related to policy gradient approaches and can be extended to trajectories. For this, let

89

us discuss this topic without considering the adaptive reward transformation, i.e., the

presented EM-like algorithm could be derived from

θk+1 = argmaxθ′ dKL (pθk
(τ) r (τ)‖ pθ′ (τ)) , (4.63)

which can be shown to maximize the lower bound on J (θ) =
∫
pθ (τ) r (τ) dτ in the

same fashion as shown in Section 3.3. While the EM solution yields a parameter free

one-step improvement, we can also look at the gradient of dKL(pθk
(τ) r (τ) ||pθ′ (τ))

which is used in the EM-update. This analysis yields

d

dθ′
dKL (pθk

(τ) r (τ)‖ pθ′ (τ)) (4.64)

=
d

dθ′

∫

T

pθk
(τ) r (τ) log

pθ′ (τ)

pθk
(τ) r (τ)

dτ , (4.65)

=

∫

T

pθk
(τ) r (τ)

d

dθ′
log pθ′ (τ) dτ = ∇θJ (θ) , (4.66)

i.e., it shows that the vanilla policy gradient is used in EM-like approaches. In pratice,

the EM-like algorithms usually choose very conservative updates and simple evalua-

tions on toy problems for episodic reinforcement learning show that the EM-like RL

algorithms are very sensitive to the data distribution. Thus, when applied to trajectories,

the natural actor-critic outperforms vanilla EM-like methods significantly. However, it

is obvious that extensions with appropriate constraints can be of significant advantage

here, especially if the reduction onto regression is being used as in Section 3.3. Thus,

this remains an important topic for future research.

4.7.3 Future Work: Motor Primitive Iteration

In this chapter, we have focussed on the application of model free, general policy gra-

dient approaches. Alternatives arise for learning motor primitives for the framework

suggested in (Ijspeert et al., 2002, 2003). In this framework, we have two secon-order

linear systems coupled through a locally weighted linear function approximator. For

this reason, one could look at the nonlinear system

ẋ = Axx + e2f (y) = Ax + Bu, (4.67)

as a linear system with the coupling u = f (y) to the canonical system y as optimal

controls. As this coupling is implemented through a locally linear weighted function

approximator such as

f (y) =

∑n
i=1 φi (y)w

T
i y∑n

i=1 φi (y)
,

90

it is logical, that the reward should also be approximated locally in a similar fashion,

e.g., through approximations of the reward using the same local weightings such as

r (y, x, u) =

∑n
i=1 φi (y)

[
Ri (u− ui)

2 +Qi (x− xi)
2]

∑n
i=1 φi (y)

. (4.68)

In this case, there would be two natural steps, i.e., (i) a motor primitive policy eval-

uations step where several rollouts would allow the learning of the local parameters,

e.g., Ri, Qi, ui, xi, and (ii) a policy improvement step which would compute the op-

timal controls based on these parameters. The optimal controls would then serve as

supervised learning targets in order to determine the motor primitive parameters. If

necessary, Gallerkin solution methods could allow an extensing to cases beyond the ca-

pabilities of traditional optimal control methods (Beard & McLain, 1998). This method

could serve as a promising new method specifically for motor primitives but would of

course always be limited to motor primitive learning.

91

Chapter 5

Conclusion

Reasoning draws a conclusion,

but does not make the conclusion certain,

unless the mind discovers it by the path of experience.

Roger Bacon (English empiricist, 1214 - 1294)

This thesis has been about the greater goal of creating a general machine learning

framework for acquiring and improving motor skills in robotics. Several important

contributions in the areas of learning, motor skills and robotics have been made which

bring us a step closer to that ultimate aim. In this chapter, we will first summarize the

insights and results of this thesis. Subsequently, we discuss the different approaches

as well the important next steps needed in order to solve the general problem of motor

skill learning.

5.1 Summary of the Contributions

In this thesis, we have presented several different contributions to three different but

interrelated topics, i.e., machine learning (particularly reinforcement learning), motor

skill representation and control as well as robot applications. The main results of this

thesis have been grouped into three chapters which are written in such a way that they

can be read independently of each other. However, following the sequence of these

chapters will help the understanding of the single chapters tremendously.

In Chapter 1, we have given an introduction of the thesis. This chapter started with

the general motivation of the chosen topic, i.e., Machine Learning for Motor Skills in

Robotics. It included a summary of the most important novel developments which we

have presented in the following chapters and an outline of the remainder of the thesis.

In Chapter 2, we started with the seminal work of Udwadia (1996, 2003) on the

relation between analytical dynamics and control. The underlying key insight is that

92

Nature enforces constraints just like a control engineer creates control laws and that

these controls can be derived from the a point-wise optimal control problem. Using

this understanding of motor control, we have developed a coherent framework for the

derivation of control laws for a variety of different control problems ranging from task-

space control to hierarchical control. We have shown that this framework can be used

in order to unify a variety of previous control approaches. We discussed the necessary

conditions for both task-space and joint-space stability in this framework. Evaluations

for an anthropomorphic robot arm of the framework in the area of operational space

control are presented.

In Chapter 3, we have presented a framework for learning operational space control

based upon the insights presented in Chapter 2. We first showed how small modeling

errors as they always occur in practice can affect our ability to apply analytically de-

rived operational space laws and, thus, that it is necessary to learn operational control

laws. Our previous insight (i.e., that we have a point-wise optimal control problem)

allowed us to reformulate the resulting learning problem as an immediate reward re-

inforcement learning problem. For this reason, we derived an immediate reward rein-

forcement learning algorithm based upon the expectation-maximization algorithm. The

usage of normally distributed exploration allowed the derivation of a reward-weighted

regression algorithm. The function approximation for representing the nominal be-

haviour of the policy was determined using a multiple paired inverse-forward models

approach. This algorithm is applied to both a simulated three degrees of freedom robot

arm and a simulated anthropomorphic SARCOS Master Arm. For the three degrees

of freedom robot arm, we can show convergence to the optimal solution which can be

determined analytically and for the simulated anthropomorphic SARCOS Master Arm,

we can show very good tracking performance with high rewards.

In Chapter 4, we have presented the most extensive review of policy gradient meth-

ods to date as well as novel approaches. We started out by introducing the two general

approaches for policy gradients in the machine learning literature, i.e., finite-difference

gradients and likelihood ratio policy gradients, i.e., ‘vanilla’ policy gradients. We have

derived both G(PO)MDP as well as the policy gradient theorem from the episodic point

of view on likelihood ratio policy gradients. We have shown how to derive the optimal

baselines for such estimators. Subsequently, we introduce the compatible function ap-

proximation which allows variance reduction but does not introduce bias into into the

gradient approximation. We have clarified the discussion of the compatible function

approximation and show that in general, it can only present the advantage function.

The path-based derivation allows us find the natural policy gradient, i.e., the steepest

descent for the path-based Fisher information matrix. Using this path-based derivation,

we have proven Kakade’s intuitive assumption that the parameters of the compatible

function approximation are in fact the natural policy gradient. Using additional basis

93

functions, we made use of both the compatible function approximation and the natu-

ral policy gradient in order to present a new reinforcement learning architecture, the

Natural Actor-Critic. We show three resulting algorithms, i.e., the Natural Actor-Critic

with general basis functions which employs LSTD-Q(λ) for gradient estimation and the

episodic versions which do not require complex additional function approximation but

only a constant parameter or time-variant parameter. We have shown that the natural

policy gradient used in this thesis is in fact covariant. We have derived previous re-

inforcement learning methods such as the original Actor-Critic and the Bradke’s LQR

Q-Learning from the Natural Actor-Critic. Most presented algorithms are compared

in the setting of motor primitive optimization where the episodic Natural Actor-Critic

algorithms outperform previous approaches by orders of magnitude. The applicability

to robotics is presented in a T-Ball hitting example where the SARCOS Master Arm

has to hit a ball on a stand in a proper fashion.

In Summary, in this thesis, we have presented

• A general framework for control which serves as theoretical foundation and al-

lows the unification of many previous control approaches (Chapter 2).

• The first learning approach to operational space control to date (Chapter 3).

• The reward-weighted regression approach for immediate reinforcement learning

(Chapter 3).

• A unified treatment of previous policy gradient reinforcement learning approaches

from the path-based perspective and their application to motor primitives (Chap-

ter 4).

• With the Natural Actor-Critic, we have introduced a novel reinforcement learn-

ing method which is currently considered the “method of choice” (Aberdeen,

2006) in policy gradient methods and works well in the context of motor skill

improvement in a T-Ball setup (Chapter 4).

These contributions together form the basis for motor skill learning in robotics.

5.2 Discussion: The Next Steps for Skill Learning

While this thesis has made important contributions to the domain of motor skill learn-

ing, it mainly delivers the building blocks required in order to create truly autonomous

system, such (i) a general framework as foundation, (ii) a learning framework for mo-

tor command generation for execution in task space and (iii) a task learning framework

based on policy gradients and motor primitives. At this point, we understand these

94

three areas sufficiently well in order to discuss the required next steps for motor skill

learning which are the collection of skills into libraries, the learning of skill selection

as well as the sequencing and parallelization of motor primitives.

Skill Libraries. In Chapter 4, we have discussed how single behaviours in a certain

task-space can be learned using parameterized motor primitives and in Chapter 3 we

have discussed how to learn the execution of a motor task in its appropriate operational

space. It is quite clear, that humans operate in multiple task spaces depending on the

accomplished motor skill, e.g., in body-centric or retinal coordinates (Boussaoud &

Bremmer, 1999). However, it appears that the motor primitives used by a human being

for hand-writing or hand-zig-zagging are exactly the same as used for performing the

task with a toe (Wing, 2000). Thus, the motor primitive programs seem to be kinematic

plans in task-space, largely independent from the motor command generation. Thus,

future skill libraries will contain both motor primitives as well as task-space to motor

command transformations in order to make many combinations of the two possible.

However, the learning of such skills will be largely using the methods presented in this

thesis. It will use the observed movements in order to learn “coordinate system to mo-

tor command transformations”, even if the performed task was in a different coordinate

system. Separately from the task primitive to motor command transformation, we will

learn motor primitives. For this, observed tasks are compared to existing primitives. If

the observed task is equivalent to an existing one, it will be used for refining the prim-

itive while otherwise it will it will be added to the skill library. Subsequently, the skill

library manager needs to decide whether to practice the skill using the reinforcement

learning methods presented in this thesis.

Learning to Select Skills. The selection of skills shifts the focus away from pure

motor control towards a perceptuo-motor perspective. In this case, a general task is

given, e.g., grasp a specified object and pick it up, move through the room along a

global trajectory, or hit a ball with a tennis racket. Here, perceptual variables allow

us to choose the right motor primitives, e.g., whether to select a power grasp vs a

precision pinch for a particular object, which foot trajectories to use for moving from

one foothold to another in the presence of obstacles, or whether to select a tennis fore-

vs backhand. Similarly, they need to be used in order to set the motor primitive goal

parameters, e.g., the contact points where we intend to hold the object, the selected next

foothold, or where to hit the ball at what time. Each of these tasks is associated with

the appropriate effector. However, it is quite obvious that some of the tasks do transfer

between end-effectors, e.g., we could use two fingers or two hands for generating a

precision pinch for grasping and lifting a particular object.

95

Clearly, the next higher system above the skill selection system needs some form of

higher-level intelligence which determines the general task. This layer could close the

gap between artificial intelligence systems and robotics.

Motor Primitive Sequencing and Parallelization. Another key issue for future re-

search is the parallelization and sequencing of motor primitives. Such issues will auto-

matically arise in tasks of higher complexity, e.g., assembling a modular system such

as an IKEA shelf. For such tasks, we require a sequence of tasks such as first several

a peg-in-the-hole tasks (Gullapalli et al., 1994) and subsequently dropping a shelf on

top of the four pegs. It will also require holding two sides of the shelf in parallel so

that they do not fall before assembled together. In order to learn such tasks, we re-

quire a hybrid control architecture consisting out of the lower level components such

as motor primitives and task execution as well as a higher, discrete layer. The state

of this discrete layer are the active primitives which together form a macro state or

option. Such approaches will require a fusion of previous approaches to hybrid con-

trol approaches, hierarchical reinforcement learning and imitation learning similar as

discussed in (Peters, 2005). Working towards such complex task compositions is of

essential importance for the future of motor skills in robotics.

96

Appendix A

Symbols and Notation

In general, in this thesis we use the following mathematical notation throughout this

thesis:

Notation Description

{x1, x2, . . . , xn} set with elements x1, x2, . . . , xn

Z integer numbers

R real numbers

x = [x1, x2, . . . , xn] a vector

xi the i-th component of the vector x
A = [a1, a2, . . . , am] a matrix

ai the i-th vector of a matrix A
aij the i, j-th component of the matrix A
A−1 matrix inverse

A+ matrix pseudo-inverse

A1/2 matrix root

∇θi
f derivative with respect to parameter θi

∇θf derivative with respect to parameters θi
∂f
∂q

partial derivative

p (x) probability density of x
E {x} expectation of x
x = 〈x〉 sample average of x

97

As symbols in this thesis, the following symbols will be used in several chapters.

Symbol Description

t time (continuous)

x task space position, state of the task

ẋ, ẍ task space velocity, acceleration

ẍref reference acceleration

q, q̇, q̈ joint position, velocity,acceleration

qd, q̇d, q̈d desired joint position, velocity,acceleration

u motor command, action

x1:H series of states xi with i ∈ {1, 2, . . . , H}
u1:H series of actions ui with i ∈ {1, 2, . . . , H}
τ = [x1:H ,u1:H] rollout, trajectory, sampe path, history

M (q) ,M(q, q̇, t) inertia matrices

F(q, q̇),F(q, q̇, t) internal forces

G (q) gravity

C(q, q̇) Coriolis and centripetal forces

ε(q, q̇) unmodeled nonlinearities

h(q, q̇, t) = 0 constraint task description

A(x, ẋ)ẍ = b(x, ẋ), Aẍ = b differential constraint task description

N arbitrary metric

KP = [κij], KD = [δij] gains of a PD control law

π (u|x) control policy

r (x,u) reward

U (r) utility transformation of a reward

J(θ) expected return

Qπ (x,u) , V π (x) value functions of policy π
dπ (x) state distribution under policy π
Fθ Fisher information matrix

dKL (θ′, θ) = dKL (pθ′ (τ) ||pθ (τ)) Kullback-Leibler divergence

∇θJ ‘vanilla’ policy gradient

∇̃θJ natural policy gradient

98

Appendix B

Additional Derivations and Discussion

B.1 Steepest Descent with Respect to a Metric N

In this section, we show how to determine the steepest decent with respect to a metric

and prove the results from Section 4.4.1. We have the optimization problem

max J (θ + δθ) = J (θ) + ∇J (θ)T
δθ,

s.t.d (θ + δθ,θ) =
1

2
δθTNδθ = ε.

Thus, we have the Langrangian

L (δθ, λ) = J (θ) + ∇J (θ)T
δθ + λ

(
ε− 1

2
δθTNδθ

)

which can be maximized with respect to δθ which yields δθ = λ−1N−1
∇J(θ). Then

we have the dual function

g (λ) = J (θ) +
1

2
λ−1

∇J (θ)T N−1
∇J (θ) + λε

which gives us the Langrangian multiplier

λ =

√
∇J (θ)T N−1

∇J (θ)

ε
.

Therefore, we have the steepest gradient descent of θn+1 = θn +αnN
−1

∇J(θ) with a

learning rate

αn = λ−1 =

√
ε

∇J (θ)T N−1
∇J (θ)

.

99

The learning rate αn is not necessarily a desirable one and can be replaced by a constant

learning rate without changing the gradients direction.

B.2 Proof of the Covariance Theorem

For small parameter changes ∆h and ∆θ, we have ∆θ = ∇hθ
T∆h. If the natural

policy gradient is a covariant update rule, a change ∆h along the gradient ∇hJ(h)
would result in the same change ∆θ along the gradient ∇θJ(θ) for the same scalar

step-size α. By differentiation, we can obtain ∇hJ(h) = ∇hθ∇θJ(θ).It is straight-

forward to show that the Fisher information matrix includes the Jacobian ∇hθ twice as

factor,

F(h) =

∫

X

dπ(x)

∫

U

π(u|x)∇hlogπ(u|x)∇hlogπ(u|x)Tdudx,

= ∇hθ

∫

X

dπ(x)

∫

U

π(u|x)∇θlogπ(u|x)∇θlogπ(u|x)Tdudx∇hθ
T ,

= ∇hθF(θ)∇hθ
T .

This shows that natural gradient in the h parameterization is given by

∇̃hJ(h) = F−1(h)∇hJ(h) =
(
∇hθF(θ)∇hθ

T
)−1

∇hθ∇θJ(θ).

This has a surprising implication as it makes it straightforward to see that the natural

policy is covariant since

∆θ = α∇hθ
T∆h = α∇hθ

T
∇̃hJ(h),

= α∇hθ
T
(
∇hθF(θ)∇hθ

T
)−1

∇hθ∇θJ(θ),

= αF−1(θ)∇θJ(θ) = α∇̃θJ(θ),

assuming that ∇hθ is invertible. This concludes that the natural policy gradient is in

fact a covariant gradient update rule.

B.3 A Discussion of Kimura & Kobayashi’s Algorithm

Kimura & Kobayashi’s (1998) introduced a non-episodic algorithm based on value

function approximation and policy gradients. Here, we show that this algorithm is

in fact at best a biased version of the policy gradient. For this, we first show what value

100

function based gradient estimators can be derived from both the policy gradient the-

orem and GPOMDP. As discussed 4, the true gradient of the policy gradient theorem

is

∇J =

∫
dπ (x)

∫
π (u|x)∇ log π (u|x) [Qπ (x, u)− b (x)] dudx. (B.1)

In this equation, we can make use of the relation Qπ (x, u) − b (x) = E{r (x, u) +
V (x′)− V (x)}, and derive a resulting algorithm

△θ = α 〈∇ log π (u|x) [Qπ (x, u)− b (x)]〉 , (B.2)

≈ α 〈∇ log π (u|x) [r (x, u) + V (x′)− V (x)]〉 . (B.3)

This algorithm is called SRV, see (Gullapalli, 1991), and represents a true gradient.

Similarly, we could try to derive Kimura’s algorithm from the GPOMDP formulation,

where each action gets credit for all future actions. There, we have

∇J =

∫
dπ (x)

∫
π (u|x) (∇ log dπ (x) +∇ log π (u|x)) [r (x, u)− b (x)] dudx,

(B.4)

and using dπ (x′) =
∫ ∫

dπ (x)π (u|x) dudx, we realize that

dπ (x′)∇ log dπ (x′) = 〈∇ log π (u|x) +∇ log dπ (x)〉 . (B.5)

As an algorithm, this yields

D (x′) = ∇ log π (u|x) +D (x) , (B.6)

△θ = α 〈[∇ log π (u|x) +D (x)] [r (x, u)− b (x)]〉 . (B.7)

Again, this Episodic REINFORCE and represents a true gradient but not Kimura’s

algorithm! If we use a forgetting factor inD (x′) = ∇ log π (u|x)+βD (x) as suggested

in (Baxter & Bartlett, 2001), it will introduce a large bias, i.e., the optimal solution is

altered! In LQR problems with Q = 0.1 and A = B = R = 1, a β ≈ 0.98 will result

into instable LQR solutions even if computed analytically.

Kimura & Kobayashi (1998) propose an algorithm which basically fuses the two

correct algorithms into a single, biased policy gradient estimator

D (x′) = ∇ log π (u|x) + βD (x) , (B.8)

△θ = α 〈[∇ log π (u|x) +D (x)] [r (x, u) + V (x′)− V (x)]〉 . (B.9)

101

As you notice, this does not give you a true gradient as

∇J 6=
∫
dπ (x)

∫
π (u|x) (∇ log dπ (x) +∇ log π (u|x)) [Qπ (x, u)− b (x)] dudx.

(B.10)

Thus, we have a biased gradient. It will work for some cases but it is nothing but a

heuristic which works accidentally.

B.4 Derivations of the Two Forms of the eNAC

In this section, we derive the two different forms of the Episodic Natural Actor-Critic

in two different forms. For this, we first discuss a theorem needed for the derivation

of estimators which simplifies the estimation of the compatible function approximation

and subsequently apply it on the eNAC.

Theorem B.1 A regression problem of the form

β∗ =
[
β1 β2

]T
= argmin

β

(Y −Xβ)T (Y −Xβ) , (B.11)

with basis function X =
[
X1 X2

]
has the unique solution

β1 =
(
XT

1 X1

)−1
XT

1 (Y −X2b) , (B.12)

β2 = Q−1XT
2

(
Y −X1

(
XT

1 X1

)−1
XT

1 Y
)
, (B.13)

with

Q−1 =
(
XT

2 X2

)−1
(B.14)

+
(
XT

2 X2

)−1
XT

2 X1

(
XT

1 X1 −XT
1 X2

(
XT

2 X2

)−1
XT

2 X1

)−1

XT
1 X2

(
XT

2 X2

)−1
.

Proof. The solution of the regression problem in Equation (B.11) is given by

β∗ =
(
XTX

)−1
XTY, (B.15)

see (Harville, 2000). By defining T = XT
1 X1, U = XT

1 X2, W = XT
2 X2, and subse-

quently applying the Matrix Inversion Theorem (see (Harville, 2000), pages 98–101),

we obtain

(
XTX

)−1
=

[
T U
UT W

]−1

=

[
T−1 + T−1UQ−1UTT−1 −T−1UQ−1

−Q−1UTT−1 Q−1

]
, (B.16)

102

with Q = W−UTT−1U. We can simplify Q−1 using the Sherman-Morrison Theorem

(see (Moon & Stirling, 2000), pages 258–259) which yields

Q−1 = W−1 + W−1UT
(
T−UW−1UT

)−1
UW−1. (B.17)

When multiplying
(
XTX

)−1
by XTY =

[
XT

1 Y XT
2 Y
]T

, we obtain

β1 =
(
T−1 + T−1UQ−1UTT−1

)
XT

1 Y −T−1UQ−1XT
2 Y, (B.18)

= T−1
(
XT

1 Y −Uβ2

)
, (B.19)

β2 = Q−1
(
XT

2 Y −UTT−1XT
1 Y
)
. (B.20)

After inserting the definitions for T, U, and W, we obtain Equations (B.12, B.13,

B.12).

B.4.1 Derivation of the eNAC1

As we have seen in Section 4.4.3.2 for the estimator g1, the baseline b can only be a

constant, the compatible function approximation is obviously given by

fw(ξj) =

(
N∑

τ=0

∇θ log π(uj
τ |xj

0:τ)

)T

w, (B.21)

for history ξj and the targets are the accumulated rewards along the trajectory r(ξj).
When we bring this into the standard regression form, the basis functions are given by

XT =

[
φ1

1:n, φ
2
1:n, . . . , φm

1:n

1, 1, . . . , 1

]
, (B.22)

where φ
j
1:n =

∑N
τ=0∇θ log π(uj

τ |xj
0:τ) denotes the log-probability of the j-th roll-out,

and the targets are given by

YT =
[
r1
1:n, r2

1:n, . . . , rm
1:n

]
, (B.23)

where rj
1:n = r(ξj) denotes the sum of the rewards of the j-the roll-out. The solution

β∗ = [wT , b]T can then be derived as shown in Theorem B.2.

Theorem B.2 The solution β∗ = [wT
1 , b1]

T to the regression problem can be given by

w1 = F−1
1 g1, (B.24)

103

b1 = m−1

(
1 + φ̄

T
(
mF1 − φ̄φ̄T

)−1

φ̄

)(
r̄ − φ̄T

F−1
1 g
)

(B.25)

with Fisher information F1, average eligibility φ̄, average reward r̄,policy gradient

with baseline g1 and without baseline g given by

F1 =
m∑

j=1

φ
j
1:n(φj

1:n)T , φ̄ =
m∑

j=1

φ
j
1:n, r̄ =

m∑

j=1

rj
1:n, (B.26)

g1 =
m∑

j=1

φ
j
1:n

(
rj
1:n − b1

)
, g =

m∑

j=1

φ
j
1:nr

j
1:n. (B.27)

Proof. We make use of Theorem B.1 in the Appendix. We first obtain

XT
1 X1 = F1, XT

1 X2 = φ̄, XT
2 X2 = m, XT

1 Y = g = g1+φ̄b, X
T
2 Y = r̄. (B.28)

We insert these into Equations (B.12, B.13, B.14) from Theorem B.1, and obtain

w = β1 = F−1
1

(
g − φ̄b

)
= F−1

1 g1, (B.29)

b = β2 = Q−1
(
r̄ − φ̄T

F−1
1 g
)
, (B.30)

with Q−1 = m−1(1 + φ̄
T
(mF1 − φ̄φ̄T

)−1φ̄).
Note that this gradient estimator is in fact using exactly the REINFORCE gradient

and just one, constant baseline. This can alternatively be derived using Suttons form

by adding up the advantages along a path and is also known as episodic natural actor-

critic (Peters et al., 2003a; Peters, Vijayakumar, & Schaal, 2003b). As this point, it

might appear that we have thrown the child out together with the water as we need the

reward sequence to approximate the gradient and at the same time need the gradient to

approximate the reward sequence.

B.4.2 Derivation of the eNACn

As we have seen in Section 4.4.3.3 for the estimator g2, the baseline b depends only on

time (and the initial state), the compatible function approximation is obviously given

by

fw(ξj
0:k) =

(
k∑

τ=0

∇θ log π(uj
τ |xj

τ)

)T

w, (B.31)

104

and the targets are the actual rewards along the trajectory, i.e., r(ξ0:t) = rt. When we

bring this into the standard regression form, the basis functions are given by

X =

[
φ1

1:1, φ
1
1:2, . . . , φ1

1:n, φ
2
1:1, . . . , φm

1:n

u1, u2, . . . , un, u1, . . . , un

]
, (B.32)

where φ
j
1:n =

∑n
t=1∇θ log π(uj

t |xj
t) denotes the log-probability of the j-th roll-out,

and ui denotes the i-th unit vector basis function of length n. The targets are given by

Y =
[
r1
1, r1

2, . . . , r1
n, r2

1, . . . , rm
n

]
, (B.33)

where rj
t denotes the rewards at time t of the j-the roll-out. The solution β∗ = [wT , b]T

can then be derived as shown in Theorem B.3.

Theorem B.3 The solution β∗
2 = [wT

2 , b2]
T to the regression problem can be given by

w2 = F−1
2 g2, (B.34)

b2 = m−1

(
In + Φ̄

T
(
mF2 − Φ̄Φ̄

T
)−1

Φ̄

)(
r̄− Φ̄

T
F−1

1 g
)

(B.35)

with Fisher information F1, average eligibility φ̄, average reward r̄, policy gradient

with baseline g1 and without baseline g given by

F2 =
m∑

j=1

n∑

i=1

φ
j
1:i

(
φ

j
1:i

)T
, Φ̄ =

m∑

j=1

n∑

i=1

φ
j
1:ie

T
i , r̄ =

m∑

j=1

n∑

i=1

rj
i ei, (B.36)

g2 =
m∑

j=1

n∑

i=1

φ
j
1:i

(
rj
i − bi

)
, g =

m∑

j=1

n∑

i=1

φ
j
1:ir

j
i . (B.37)

Proof. We make use of Theorem B.1 in the Appendix. We first obtain

XT
1 X1 = F2, XT

1 X2 = Φ̄, XT
2 X2 = mIn, XT

1 Y = g = g2+Φ̄b2, XT
2 Y = r̄.

(B.38)

We insert these into Equations (B.12, B.13, B.14) from Theorem B.1, and obtain

w = β1 = F−1
2

(
g − Φ̄b

)
= F−1

2 g2, (B.39)

b = β2 = Q−1
(
r̄ − Φ̄

T
F−1

2 g
)
, (B.40)

with Q−1 = m−1(In + Φ̄
T
(mF2 − Φ̄Φ̄

T
)−1Φ̄).

105

Note that this gradient compatible reward estimator is in fact using exactly the

GPOMDP gradient with a time-variant scalar baseline bk. However, just like in the

last section, we not the apparant problem.

B.5 Motor Primitive Equations

The motor primitives from (Ijspeert et al., 2002, 2003) in their most recent reformual-

tion are given by a canonical system

τ−1v̇ = αv (βv (g − x)− v) , (B.41)

τ−1ẋ = v, (B.42)

which represents the phase of the motor process. It has a goal g, a time constant τ and

some parameters αv,βv which are chosen so that the system is stable. Additionally, we

have a transformed system

τ−1ż = αz (βz (s− x)− v) + f (x, v, g) , (B.43)

τ−1ẏ = z, (B.44)

τ−1ṡ = αs (g − s) , (B.45)

which has the same time-constant τ as the canonical system, appropriately set param-

eters αz,βz,αs, and a transformation function f (x, v, g). The transformation function

transforms the output of the canonical system so that the transformed system can rep-

resent complex nonlinear patterns and is given by

f (x, v, g) =

∑N
i=1 ψi (x) θiv∑N

i=1 ψi (x)
, (B.46)

where θi are adjustable parameters and it has localization weights defined by

ψi (x) = exp

(
−hi

(
x− x0

g − x0

− ci
)2
)

(B.47)

with offset x0, centers ci and width hi.

106

References

Aberdeen, D. (2006). POMDPs and policy gradients. In Proceedings of the Machine

Learning Summer School (MLSS). Canberra, Australia.

Aleksandrov, V., Sysoyev, V., & Shemeneva, V. (1968). Stochastic optimization. En-

gineering Cybernetics, 5, 11–16.

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation,

10(251).

An, C. H., Atkeson, C. G., & Hollerbach, J. M. (1988). Model-based control of a robot

manipulator. Cambridge, MA: MIT Press.

Arimoto, S. (1996). Control theory of nonlinear mechanical systems: A passivity-based

and circuit-theoretic approach. Oxford, UK: Oxford University Press.

Atkeson, C. G. (1994). Using local trajectory optimizers to speed up global optimiza-

tion in dynamic programming. In J. E. H. S. J. Moody & R. P. Lippmann (Eds.),

Advances in Neural Information Processing Systems 6 (pp. 503–521). Morgan

Kaufmann.

Bagnell, J., & Schneider, J. (2003). Covariant policy search. In Proceedings of the In-

ternational Joint Conference on Artificial Intelligence (IJCAI). Acapulco, Mex-

ico.

Baillieul, J., & Martin, D. P. (1990). Resolution of kinematic redundancy. In Proceed-

ings of Symposia in Applied Mathematics (Vol. 41, pp. 49–89). San Diego, May

1990: Providence, RI: American Mathematical Society.

Baird, L. (1993). Advantage updating (Technical Report No. WL-TR-93-1146).

Wright-Patterson Air Force Base, OH: Wright Laboratory.

Balasubramanian, V. (1997). Statistical inference, occam’s razor, and statistical me-

chanics on the space of probability distributions. Neural Computation, 9(2), 349-

368.

107

Bartlett, P. (2002). An introduction to reinforcement learning theory: Value function

methods. In Proceedings of the Machine Learning Summer School (MLSS) (p.

184-202). Canberra, Australia.

Baxter, J., & Bartlett, P. (2001). Infinite-horizon policy-gradient estimation. Journal

of Artificial Intelligence Research, 15, 319-350.

Baxter, J., Bartlett, P., & Weaver, L. (2001). Experiments with infinite-horizon, policy-

gradient estimation. Journal of Artificial Intelligence Research, 15, 351-381.

Beard, R., & McLain, T. (1998). Successive Galerkin approximation algorithms for

nonlinear optimal and robust control. International Journal of Control: Special

Issue on Breakthroughs in the Control of Nonlinear Systems, 71(5), 717–743.

Benbrahim, H., Doleac, J., Franklin, J., & Selfridge, O. (1992). Real-time learning: A

ball on a beam. In Proceedings of the International Joint Conference on Neural

Networks (IJCNN). Baltimore, MD.

Benbrahim, H., & Franklin, J. (1997). Biped dynamic walking using reinforcement

learning. Robotics and Autonomous Systems, 22, 283–302.

Berny, A. (2000). Statistical machine learning and combinatorial optimization. In

L. Kallel, B. Naudts, & A. Rogers (Eds.), Theoretical aspects of evolutionary

computing (Vol. 1). Heidelberg, Germany: Springer-Verlag.

Boussaoud, D., & Bremmer, F. (1999). Gaze effects in the cerebral cortex: Reference

frames for space coding and action. Exp Brain Res, 128, 170–180.

Boyan, J. (1999). Least-squares temporal difference learning. In Proceedings of the In-

ternational Conference on Machine Learning (ICML) (pp. 49–56). Bled, Slove-

nia.

Bradtke, S., Ydstie, E., & Barto, A. (1994). Adaptive linear quadratic control using

policy iteration (Technical report No. UM-CS-1994-049). Amherst, MA: Uni-

versity of Massachusetts.

Bruyninckx, H., & Khatib, O. (2000). Gauss’ principle and the dynamics of redundant

and constrained manipulators. In Proceedings of IEEE International Conference

on Robotics and Automation (ICRA) (pp. 2563–2569). San Francisco, CA.

Bullo, F., & Lewis, A. D. (2004). Geometric control of mechanical systems mod-

eling, analysis, and design for simple mechanical control systems. Heidelberg,

Germany: Springer-Verlag.

108

Bullock, D., Grossberg, S., & Guenther, F. H. (1993). A self-organizing neural model of

motor equivalent reaching and tool use by a multijoint arm. Journal of Cognitive

Neuroscience, 5(4), 408–435.

Chung, W., Chung, W., & Y.Youm. (1993). Null torque based dynamic control for

kinematically redundant manipulators. Journal of Robotic Systems, 10(6), 811–

834.

Craig, J. (2005). Introduction to Robotics: Mechanics and Control. Upper Saddle

River, NJ: Pearson Prentice Hall.

Dayan, P., & Hinton, G. E. (1997). Using expectation-maximization for reinforcement

learning. Neural Computation, 9(2), 271-278.

De Wit, C., Siciliano, B., & Bastin, G. (1996). Theory of robot control. Heidelberg,

Germany: Springer-Verlag.

De Luca, A., & Mataloni, F. (1991). Learning control for redundant manipulators.

In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA). Sacramento, CA.

Doty, K., Melchiorri, C., & Bonivento, C. (1993). A theory of generalized inverses

applied to robotics. International Journal of Robotics Research, 12, 1–19.

D’Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). Hawaii, USA.

Dyer, P., & McReynolds, S. R. (1970). The computation and theory of optimal control.

New York, NY: Academic Press.

Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., & Cheng, G. (2005). Learning

cpg sensory feedback with policy gradient for biped locomotion for a full-body

humanoid. In Proceedings of the National Conference on Artificial Intelligence

(AAAI). Pittsburgh, PA.

Fletcher, R., & Fletcher, R. (2000). Practical methods of optimization. New York, NY:

John Wiley & Sons.

Glynn, P. (1987). Likelihood ratio gradient estimation: an overview. In Proceedings of

the Winter Simulation Conference (WSC) (p. 366-375). Atlanta, GA.

Glynn, P. (1990). Likelihood ratio gradient estimation for stochastic systems. Commu-

nications of the ACM, 33(10), 75–84.

109

Greensmith, E., Bartlett, P., & Baxter, J. (2001). Variance reduction techniques for

gradient estimates in reinforcement learning. Advances in Neural Information

Processing Systems, 14(34).

Greensmith, E., Bartlett, P. L., & Baxter, J. (2004). Variance reduction techniques

for gradient estimates in reinforcement learning. Journal of Machine Learning

Research, 5, 1471–1530.

Guenter, F., Hersch, M., Calinon, S., & Billard, A. (2007). Reinforcement learning for

imitating constrained reaching movements. Advanced Robotics, In Press.

Guez, A., & Ahmad, Z. (1988). Solution to the inverse kinematics problem in robotics

by neural networks. In Proceedings of IEEE International Conference on Neural

Networks (pp. 102–108). San Diego, CA.

Gullapalli, V. (1991). Associative reinforcement learning of real-value functions. In

Proceedings of the IEEE International Conference on Systems, Man and Cyber-

netics. Charlottesville, VA.

Gullapalli, V., Franklin, J., & Benbrahim, H. (1994). Aquiring robot skills via rein-

forcement learning. IEEE Control Systems Journal, Special Issue on Robotics:

Capturing Natural Motion, 4(1), 13-24.

Hanafusa, H., Yoshikawa, T., & Nakamura, Y. (1981). Analysis and control of ar-

ticulated robot with redundancy. In Proceedings of IFAC Symposium on Robot

Control (Vol. 4, pp. 1927–1932). Gaithersburg, MD.

Haruno, M., Wolpert, D. M., & Kawato, M. (1999). Multiple paired forward-inverse

models for human motor learning and control. In Advances in Neural Information

Processing Systems. Cambridge, MA: MIT Press.

Harville, D. A. (2000). Matrix algebra from a statistician’s perspective. Heidelberg,

Germany: Springer Verlag.

Hasdorff, L. (1976). Gradient optimization and nonlinear control. New York, NY:

John Wiley & Sons.

Hirzinger, G., Sporer, N., Albu-Schäffer, A., Hähnle, M., Krenn, R., Pascucci, A., &

Schedl, M. (2002). DLR’s torque-controlled light weight robot III - are we

reaching the technological limits now? In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA) (p. 1710-1716). Washington

DC.

110

Hollerbach, J. M., & Suh, K. C. (1987). Redundancy resolution of manipulators

through torque optimization. International Journal of Robotics and Automation,

3(4), 308–316.

Hsu, P., Hauser, J., & Sastry, S. (1989). Dynamic control of redundant manipulators.

Journal of Robotic Systems, 6(2), 133–148.

Ijspeert, A., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learn-

ing motor primitives. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances

in Neural Information Processing Systems (Vol. 15, pp. 1547–1554). Cambridge,

MA: MIT Press.

Ijspeert, J. A., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear

dynamical systems in humanoid robots. In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA). Washinton, DC.

Isidori, A. (1995). Nonlinear control systems. Heidelberg, Germany: Springer-Verlag.

Jacobson, D. H., & Mayne, D. Q. (1970). Differential dynamic programming. New

York, NY: American Elsevier Publishing Company, Inc.

Jordan, I. M., & Rumelhart. (1992). Supervised learning with a distal teacher. Cognitive

Science, 16, 307–354.

Kaebling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4, 237–285.

Kakade, S. (2001). Optimizing average reward using discounted rewards. In Proceed-

ings of the Conference on Computational Learning Theory (COLT). Amsterdam,

Netherlands.

Kakade, S. A. (2002). Natural policy gradient. In Advances in Neural Information

Processing Systems (Vol. 14). Vancouver, CA.

Kazerounian, K., & Wang, Z. (1988). Global versus local optimization in redundancy

resolution of robotic manipulators. International Journal of Robotics Research,

7(5), 3-12.

K.C.Suh, & Hollerbach, J. M. (1987). Local versus global torque optimization of redun-

dant manipulators. In Proceedings of the International Conference on Robotics

and Automation (ICRA) (pp. 619–624). Raleigh, NC.

Khatib, O. (1987). A unified approach for motion and force control of robot ma-

nipulators: The operational space formulation. IEEE Journal of Robotics and

Automation, 3(1), 43–53.

111

Khatib, O., Sentis, L., Park, J., & Warren, J. (2004). Whole body dynamic behavior

and control of human-like robots. International Journal of Humanoid Robotics,

1(1), 29–43.

Kimura, H., & Kobayashi, S. (1997). Reinforcement learning for locomotion of a two-

linked robot arm. In Proceedings of the Europian Workshop on Learning Robots

(EWLR) (pp. 144–153). Brighton, UK.

Kimura, H., & Kobayashi, S. (1998). Reinforcement learning for continuous action

using stochastic gradient ascent. In Proceedings of the International Conference

on Intelligent Autonomous Systems (IAS) (Vol. 5, pp. 288–295). Madison, Wis-

consin.

Kleinman, N., Spall, J., & Naiman, D. (1999). Simulation-based optimization with

stochastic approximation using common random numbers,”. Management Sci-

ence, 45, 1570–1578.

Kohl, N., & Stone, P. (2004). Policy gradient reinforcement learning for fast

quadrupedal locomotion. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). New Orleans, LA.

Konda, V., & Tsitsiklis, J. (2000). Actor-critic algorithms. Advances in Neural Infor-

mation Processing Systems 12.

Lawrence, G., Cowan, N., & Russell, S. (2003). Efficient gradient estimation for motor

control learning. In Proceedings of the International Conference on Uncertainty

in Artificial Intelligence (UAI). Acapulco, Mexico.

Maciejewski, A., & Klein, C. (1985). Obstacle avoidance for kinematically redun-

dant manipulators in dynamically varying environments. International Journal

of Robotics Research, 4(3), 109–117.

Minamide, N., & Nakamura, K. (1969). Minimum error control problem in banach

space (Research Report of Automatic Control Lab No. 16). Nagoya, Japan:

Nagoya University.

Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., & Hagita, N. (2005). Robot behavior

adaptation for human-robot interaction based on policy gradient reinforcement

learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (p. 1594-1601). Edmonton, Canada.

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Osu, R., Nakano, E., &

Kawato, M. (1995). A kendama learning robot based on a dynamic optimization

112

theory. In Proceedings of the IEEE International Workshop on Robot and Human

Communication (ROMAN) (pp. 327–332). Tokyo, Japan.

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Rieka, O., Nakano, E.,

Wada, Y., & Kawato, M. (1996). A kendama learning robot based on a dynamic

optimization principle. In Proceedings of the International Conference on Neural

Information Processing (ICONIP) (pp. 938–942). Hong Kong.

Moon, T., & Stirling, W. (2000). Mathematical methods and algorithms for signal

processing. Upper Saddle River, NJ: Prentice Hall.

Mori, T., Nakamura, Y., & Ishii, S. (2005). Efficient sample reuse by off-policy natu-

ral actor-critic learning. In Advances in Neural Information Processing Systems

(NIPS ’05 Workshop). Vancouver, Canada.

Mori, T., Nakamura, Y., Sato, M. aki, & Ishii, S. (2004). Reinforcement learning for

cpg-driven biped robot. In Proceedings of the National Conference on Artificial

Intelligence (AAAI) (p. 623-630). San Jose, CA.

Morimoto, J., & Atkeson, C. A. (2003). Minimax differential dynamic programming:

an application to robust biped walking. In S. Becker, S. Thrun, & K. Obermayer

(Eds.), Advances in Neural Information Processing Systems 15. Cambridge, MA:

MIT Press.

Nakamura, Y. (1991). Advanced robotics: Redundancy and optimization. Boston, MA:

Addison-Wesley.

Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based control of

robot manipulators. International Journal of Robotics Research, 6(2), 3–15.

Nakamura, Y., Mori, T., & Ishii, S. (2004). Natural policy gradient reinforcement

learning for a cpg control of a biped robot. In Proceedings of the International

Conference on Parallel Problem Solving from Nature (PPSN) (p. 972-981). Ky-

oto, Japan.

Nakanishi, J., Cory, R., Mistry, M., Peters, J., & Schaal, S. (2005). Comparative exper-

iments on task space control with redundancy resolution. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Edmonton, Canada.

Nakanishi, J., Farrell, J. A., & Schaal, S. (2004). Learning composite adaptive control

for a class of nonlinear systems. In Proceedings of the International Conference

on Robotics and Automation (ICRA) (pp. 2647–2652). New Orleans, LA.

113

Ng, A. Y., & Jordan, M. (2000). PEGASUS: A policy search method for large MDPs

and POMDPs. In Proceedings of the International Conference on Uncertainty in

Artificial Intelligence (UAI). Palo Alto, CA.

Park, J., Chung, W.-K., & Youm, Y. (1995). Specification and control of motion for

kinematically redundant manipulators. In Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA.

Park, J., Chung, W.-K., & Youm, Y. (2002). Characterization of instability of dy-

namic control for kinematically redundant manipulators. In Proceedings of the

International Conference on Robotics and Automation (ICRA). Washington, DC.

Park, J., Kim, J., & Kang, D. (2005). An RLS-Based Natural Actor-Critic Algorithm

for Locomotion of a Two-Linked Robot Arm. In Y. Hao, J. Liu, Y. Wang, Y. ming

Cheung, H. Yin, L. Jiao, J. Ma, & Y.-C. Jiao (Eds.), Proceedings of the Interna-

tional Conference on Computational Intelligence and Security (CIS) (Vol. 3801,

pp. 65–72). Xi’an, China: Springer.

Peters, J. (2005). Machine learning of motor skills for robotics (Technical Report No.

CS-05-867). Los Angeles, CA: University of Southern California.

Peters, J., Mistry, M., Udwadia, F., R.Cory, Nakanishi, J., & Schaal, S. (2005). A

unifying methodology for the control of robotic systems. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Edmonton, Canada.

Peters, J., Mistry, M., Udwadia, F. E., & Schaal, S. (2005). A new methodology for

robot control design. In ASME International Conference on Multibody Systems,

Nonlinear Dynamics, and Control (MSNDC 2005). Long Beach, CA.

Peters, J., & Schaal, S. (2006a). Learning operational space control. In Proceedings of

Robotics: Science and Systems (RSS). Philadelphia, PA.

Peters, J., & Schaal, S. (2006b). Policy gradient methods for robotics. In Proceed-

ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). Beijing, China.

Peters, J., & Schaal, S. (2007a). Reinforcement learning for operational space. In Pro-

ceedings of the International Conference on Robotics and Automation (ICRA).

Rome, Italy.

Peters, J., & Schaal, S. (2007b). Using reward-weighted regression for reinforce-

ment learning of task space control. In Proceedings of the IEEE International

114

Symposium on Approximate Dynamic Programming and Reinforcement Learn-

ing (ADPRL). Honolulu, HI.

Peters, J., Vijayakumar, S., & Schaal, S. (2003a). Reinforcement learning for hu-

manoid robotics. In Proceedings of the IEEE-RAS International Conference on

Humanoid Robots (HUMANOIDS). Karlsruhe, Germany.

Peters, J., Vijayakumar, S., & Schaal, S. (2003b). Scaling reinforcement learning

paradigms for motor learning. In Proceedings of the 10th Joint Symposium on

Neural Computation (JSNC). Irvine, CA.

Peters, J., Vijayakumar, S., & Schaal, S. (2005). Natural actor-critic. In Proceedings

of the European Machine Learning Conference (ECML). Porto, Portugal.

Pratt, J., & Pratt, G. (1998). Intuitive control of a planar bipedal walking robot. In

Proceedings of the International Conference on Robotics and Automation (ICRA)

(pp. 1024–2021). Leuven, Belgium.

Richter, S., Aberdeen, D., & Yu, J. (2007). Natural actor-critic for road traffic opti-

misation. In B. Schoelkopf, J. Platt, & T. Hofmann (Eds.), Advances in Neural

Information Processing Systems (Vol. 19). Cambridge, MA: MIT Press.

Sadegh, P., & Spall, J. (1997). Optimal random perturbations for stochastic approxima-

tion using a simultaneous perturbation gradient approximation. In Proceedings

of the American Control Conference (ACC) (p. 3582-3586). Albuquerque, NM.

Samson, C., Borgne, M. L., & Espiau, B. (1991). Robot Control: The Task Function

Approach. Oxford, UK: Oxford University Press.

Sato, M., Nakamura, Y., & Ishii, S. (2002). Reinforcement learning for biped lo-

comotion. In Proceedings of the International Conference on Artificial Neural

Networks (ICANN) (p. 777-782). Springer-Verlag.

Schaal, S., Atkeson, C. G., & Vijayakumar, S. (2002). Scalable techniques from

nonparameteric statistics for real-time robot learning. Applied Intelligence, 17(1),

49–60.

Schaal, S., Ijspeert, A., & Billard, A. (2004). Computational approaches to motor

learning by imitation. In C. D. Frith & D. Wolpert (Eds.), The neuroscience of

social interaction (pp. 199–218). Oxford, UK: Oxford University Press.

Sciavicco, L., & Siciliano, B. (2007). Modeling and control of robot manipulators.

Heidelberg, Germany: MacGraw-Hill.

115

Sentis, L., & Khatib, O. (2004). A prioritized multi-objective dynamic controller for

robots in human environments. In Proceedings of the IEEE-RAS International

Conference on Humanoid Robots (HUMANOIDS). Los Angeles, USA.

Sentis, L., & O.Khatib. (2005). Control of free-floating humanoid robots through task

prioritization. In Proceedings of the International Conference on Robotics and

Automation (ICRA). Barcelona, Spain.

Siciliano, B., & Slotine, J. (1991). A general framework for managing multiple tasks

in highly redundant robotic systems. In Proceedings of the International Confer-

ence on Robotics and Automation (ICRA) (pp. 1211–1216). Pisa, Italy.

Spall, J. C. (2003). Introduction to stochastic search and optimization: Estimation,

simulation, and control. Hoboken, NJ: Wiley.

Spong, M., Thorp, J., & Kleinwaks, J. (1984). On pointwise optimal control strategies

for robot manipulators. In Proceedings of the Annual Conference on Information

Sciences and Systems. Princeton, NJ.

Spong, M., Thorp, J., & Kleinwaks, J. (1986). The control of robot manipulators with

bounded input. IEEE Transactions on Automatic Control, 31(6), 483-490.

Su, F., & Gibbs, A. (2002). On choosing and bounding probability metrics. Interna-

tional Statistical Review, 70(3), 419-435.

Sutton, R., & Barto, A. (1998). Reinforcement learning. Boston, MA: MIT Press.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient meth-

ods for reinforcement learning with function approximation. In S. A. Solla, T. K.

Leen, & K.-R. Mueller (Eds.), Advances in Neural Information Processing Sys-

tems (NIPS). Denver, CO: MIT Press.

Tedrake, R., Zhang, T. W., & Seung, H. S. (2005). Learning to walk in 20 minutes.

In Proceedings of the Yale Workshop on Adaptive and Learning Systems. New

Haven, CT: Yale University, New Haven.

Tevatia, G., & Schaal, S. (2000). Inverse kinematics for humanoid robots. In Proceed-

ings of the International Conference on Robotics and Automation (ICRA). San

Fransisco, CA.

Tsai, L.-W. (1999). Robot analysis. New York, NY: Wiley.

Udwadia, F. E. (2003). A new perspective on tracking control of nonlinear structural

and mechanical systems. Proceedings of the Royal Society of London, Series A,

2003(439), 1783–1800.

116

Udwadia, F. E. (2005). Discussions on C.F. Gauss, Gauss’ principle, and its application

to control. (Personal communication)

Udwadia, F. E., & Kalaba, R. E. (1996). Analytical dynamics: A new approach.

Cambridge, UK: Cambridge University Press.

Ueno, T., Nakamura, Y., Takuma, T., Shibata, T., Hosoda, K., & Ishii, S. (2006).

Fast and stable learning of quasi-passive dynamic walking by an unstable biped

robot based on off-policy natural actor-critic. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). Beijing,

China.

Vachenauer, P., Rade, L., & Westergren, B. (2000). Springers Mathematische Formeln:

Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswis-

senschaftler. Heidelberg, Germany: Springer-Verlag.

Wahba, G., & Nashed, M. Z. (1973). The approximate solution of a class of constrained

control problems. In Proceedings of the Sixth Hawaii International Conference

on Systems Sciences. Hawaii, HI.

Weaver, L., & Tao, N. (2001a). The optimal reward baseline for gradient-based rein-

forcement learning. In Proceedings of the International Conference on Uncer-

tainty in Artificial Intelligence (UAI) (Vol. 17). Seattle, Washington.

Weaver, L., & Tao, N. (2001b). The variance minimizing constant reward baseline

for gradient-based reinforcement learning (Technical Report No. 30). Australian

National University (ANU).

Werbos, P. (1979). Changes in global policy analysis procedures suggested by new

methods of optimization. Policy Analysis and Information Systems, 3(1).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8(23).

Wing, A. M. (2000). Motor control: Mechanisms of motor equivalence in handwriting.

Current Biology, 10(6), 245–248.

Yamane, K., & Nakamura, Y. (2003). Natural motion animation through constraining

and deconstraining at will constraining and deconstraining at will. IEEE Trans-

action on Visualization and Computer Graphics, 9(3).

Yoshikawa, T. (1990). Foundations of Robotics: Analysis and Control. Boston, MA:

MIT Press.

117

