
Machine Learning of Motor Skills for Robotics

Ph.D. Dissertation Proposal
submitted by

Jan Peters

May 2, 2005

Guidance Committee

Dr. Stefan Schaal (chair)
Dr. Gaurav Sukhatme
Dr. Sven Koenig
Dr. Laurent Itti
Dr. Firdaus Udwadia (external)

Acknowledgments

First of all, I have to thank the wonderful people at the University of Southern Califor-
nia. This thesis proposal would have never been possible without initiation, continuing
encouragement, coordination, supervision and understanding help of Stefan Schaal. He
is a great ‘sensei’ and has endured my emotional roller-coaster ride from my masters
thesis to today — over the last five years. Another thanks goes to Firdaus Udwadia and
Sethu Vijayakumar from whom both I learned a lot on analytical dynamics and machine
learning, respectively. I am also very grateful to the committee members, i.e., Stefan
Schaal, Sven Koenig, Gaurav Sukhatme, Laurent Itti and Firdaus Udwadia for reading
my thesis proposal and participating in the exam. I am indebted to Mitsuo Kawato and
Gordon Cheng who made two stays in 2000 and 2003 at the Advanced Telecommunica-
tion Research Center ATR in Kansai Science City, Kyoto, Japan, possible. Without the
first visit in 2000, I would have never met Stefan Schaal and my life would have taken a
very different turn. Finally, I have to thank all my friends and family for leading me to
a career in science and continuing support. My girl-friend Aysenur Altinguel for her un-
derstanding and love. Another thanks goes to my fellow trolls in the HNB dungeon, i.e.,
Aaron d’Souza, Aude Billard, Auke Ijspeert, Dimitris Pongas, Jun Nakanishi, Michael
Mistry, Nerses Ohanyan, Peyman Mohajerian, Rick Cory, Sethu Viyahakumar, Srideep
Musuvathy and Vidhya Navalpakkam for all the advice, support, help, and . . . the good
times and great parties!

Für meinen Opa, der mich durch sein Vorbild Disziplin und Gradlienigkeit lehrte,
für meinen Vater, der mich zum Denken und als Wissenschaftler aufzog,
für meine Mutter, die mir Kraft, Liebe und Kreativität auf den Weg gab,

für meine Freundin, die mich jeden Tag wieder glücklich macht,
für meine Schwester, die oft an mich denkt,

und für meinen viel zu netten wissenschaftlichen “grossen Bruder”
zum Dank für die letzten fünf Jahre.

ii

Contents

Acknowledgments ii

List Of Tables v

List Of Figures vi

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Objective and Approach . 2
1.3 Major Contributions . 4
1.4 Thesis Outline . 7

2 Hierarchical Representation and Aquisition of Motor Skills 9
2.1 Introduction . 9
2.2 Related Frameworks . 11

2.2.1 Hybrid (Discrete-Continous) Control Approaches 11
2.2.2 Hierarchical Reinforcement Learning 14
2.2.3 Approaches from Imitiation Learning 16

2.3 Towards a General Framework for Motor Skill Learning 18
2.3.1 Motor Tasks . 18
2.3.2 Motor Primitives Level . 22

3 Policy Search for Parameterized Motor Primitives 25
3.1 Introduction . 25

3.1.1 The Reinforcement Learning Framework 26
3.1.2 Motor Skills through Reinforcement Learning 32

3.2 Policy Gradient Techniques . 33
3.2.1 Policy Gradient Estimation . 35
3.2.2 Variance Reduction Techniques for Policy Gradient Methods . . 40
3.2.3 Compatible Function Approximation 47

3.3 Natural Policy Gradients . 56

iii

3.3.1 Properties of the Natural Policy Gradient 58
3.3.2 Evaluations and Applications . 61

3.4 Probabilistic Policy Search . 66
3.4.1 Probability Matching . 66
3.4.2 Convergence of Probability Matching 68
3.4.3 Relation to Previously Discussed Methods 68

4 Executing Motor Skills through a Generalization of Gauss’ Principle 71
4.1 Introduction . 71
4.2 A Novel Methodology for the Execution of Motor Skills 72

4.2.1 Formulating Robot Control Problems 72
4.2.2 Optimal Control Framework . 73
4.2.3 Stability Analysis . 74

4.3 Robot Control Laws . 77
4.3.1 Joint-Space Trajectory Control 77
4.3.2 End-effector Trajectory Control 79
4.3.3 Controlling Constrained Manipulators: Impedance & Hybrid Con-

trol . 81
4.4 Evaluations . 84
4.5 Conclusion and Proposed Future Work 86

4.5.1 Conclusion on the Current State 87
4.5.2 Proposed Future Work . 88

5 Application to Robotics 90
5.1 T-ball Swing . 90
5.2 Learning of Locomotion . 90
5.3 Complex Movements . 91

6 Conclusion 92

Reference List 94

References 94

Appendix A
Additional Derivations . 106
A.1 Partitioned Regression Problems . 106
A.2 Fisher Information Property . 107

iv

List Of Tables

4.1 This table shows the root mean squared error results of the tracking
achieved by the different control laws. 85

v

List Of Figures

1.1 This figure illustrates our approach to motor skill learning by dividing it
into a representation which is learned through reinforcement and super-
vised learning. Subsequently, it is executed which provides further data
for reinforcement learning. 3

1.2 This figure illustrates the proposed three projects and their interrelation.
The highest level project is the learning of complex motor tasks. These
consist out of learned lower level motor primitives. The execution of
motor primitives is build on learned system models. 5

1.3 This figure illustrates the proposed outline of the thesis. It illustrates the
title and shows the three branches of research conducted: machine learn-
ing, motor skill representation and control as well as robotic applications.
Shaded topics are still in their early stages. 8

2.1 This figure illustrates two skill learning problems. In (a), it shows the
motorized traveling salesman problem where the robot has to connect the
four points with a path which should be as smooth as possible. In (b),
it shows box tumbling inspired by Pollard (2004) but without a ballistic
phase. 10

2.2 Superposition and sequencing of motor primitives are being illustrated
in this example. Each hand movement creates a motor primitive Mi.
Together these primitives form a motor task automaton M. 19

2.3 This figure shows different solutions for the motorized traveling problem
where the robot has to connect the points in a movement with maximal
smoothness. In (a), we see the solution learned by imitation. The imi-
tated solution from (a) is improved by optimizing both motor primitives
(i.e., the goal of the primitive and its parameters) as well as transitions
between the primitives. The result is smoother but not optimal as shown
in (b). The optimal solution would also need a reconnecting of the motor
primitives and is shown in (c). 20

3.1 This figure shows the effects of baselines on the policy gradient estimates
for a simple toy problem with two states and actions. With bad baselines,
the components point into all directions and the gradient estimator has
to average our the error in all directions. 36

vi

3.2 This figure shows that the optimal controller parameters are in fact func-
tions of the eligibility rate λ. In (a), you can see the optimal controller
parameter k for a one dimensional LQR system with A = b = Q = R = 1
as a function of the discount rate γ. In (b), the optimal controller param-
eters k1 and k2 of a two dimensional LQR system with A = diag(1, 2),
b = [2, 1]T , Q = I, and R = 1 are given as in implicit function of γ.
It is clear from these plots, that the discount rate affects the optimal
controller parameters. 46

3.3 This figure shows the state-action value function and the advantage func-
tion for LQR. It is obvious that these have very little structure in common
as one is bowl while the other is a saddle. 52

3.4 This figure compares the natural gradient to the policy gradient. In (a),
the policy gradient, and in (b) the natural gradient of the LQR problem
with a Gaussian policy is shown. The LQR again had the parameters
A = b = R = Q = 1, and γ = 0.95. The natural gradient had to be
normalized to be nicely visible. In (c), the policy gradient, and in (d) the
natural gradient of the two state problem with a decision border policy.
The natural gradient of the two-state problem has not been normalized.
The discount factor of the two-state problem is γ = 0.95. 57

3.5 This figure shows the angle between the gradient estimate and the true
gradient for (a) the three state and three action MDPs with randomly
chosen rewards, transition probabilities, and policies, (b) for randomly
chosen stable 4 dimensional linear quadratic Gaussian regulation problems. 62

3.6 This figure shows the physical set-up of a cart-pole balancing in (a), and
in (b) the performance of GPOMDP, the projection natural gradient,
and the Episodic Natural Actor-Critic in comparison. The latter clearly
outperforms the first two - one of the main reasons is the significantly
lower variance. 63

3.7 This figure shows the physical set-up of a pole swing-up in (a), and in
(b) the performance of GPOMDP, the projection natural gradient, and
the Episodic Natural Actor-Critic in comparison. The latter clearly out-
performs the first two. 64

3.8 This figure shows the convergence of both GPOMDP and the episodic
Natural Actor-Critic in a one DOF motor primitive planning tasks. . . 65

3.9 This figure shows (a) the performance of a baseball swing task when using
the motor primitives for learning. In (b), you can see how it is initialized
by teach-in or imitation learning, in (c) you see a failing reproduction
of the motor behavior, and in (d) you see the system several hundred
episodes further exhibiting a nicely learned batting. 66

vii

3.10 This figure visualizes the probability matching principles. The actions
are sampled from an initial policy πθ(u) = N (u|θ, 1) shown in green,
and the actor receives the rewards r(u) = c exp(−0.5(u − 2)2) shown in
blue. By adjusting the single parameter, the mean θ, the new policy will
attempt to match πθ(u)r(u) as well as possible. After just nine iterations,
the policy matches the optimal policy in this parameterized policy class
perfectly. 67

4.1 Setups in which we evaluate the designed controllers: (a) a physical sim-
ulation of the SARCOS Master Arm, (b), the robot arm. 85

4.2 This figure shows the three end-effector trajectory controllers tracking a
“figure eight (8)” pattern at 8 seconds per cycle. On the left is the x-z
plane with the y-z plane on the right. All units are in meters. 86

4.3 The same three controllers tracking the same “figure eight (8)” pattern
at a faster pace of 4 seconds per cycle. The labels and units remain the
same as in Figure 4.2. 87

4.4 Joint space trajectories for the four major degrees of freedom, i.e., shoul-
der flexion-extension (SFE), shoulder adduction-abduction (SAA), humeral
rotation (HR) and elbow flexion-extension (EBFE), are shown here. Joint
angle units are in radians. The labels are identical to the ones in Figure
4.2. 88

5.1 This figure shows the different simulations and robots of which we can
make use for accomplishing the tasks outlined in this thesis proposal. In
(a) our simulation platform is shown, in (b) the robot DB chan, and in
(c) the legs of DB 2. 91

viii

Abstract

Autonomous robots that can assist humans in situations of daily life have been a long
standing vision of robotics, artificial intelligence, and cognitive sciences. A first step
towards this goal is to create robots that can accomplish a multitude of different tasks,
triggered by environmental context or higher level instruction. Early approaches to this
goal during the heydays of artificial intelligence research in the late 1980ies, however,
made it clear that an approach purely based on reasoning and human insights would
not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead,
new hope was put in the growing wake of machine learning that promised fully adaptive
control algorithms which learn both by observation and trial-and-error. However, to
date, learning techniques have yet to fulfill this promise as only few methods manage
to scale into the high-dimensional domains of manipulator robotics, or even the new
upcoming trend of humanoid robotics, and usually scaling was only achieved in well
pre-structured domains. In this thesis proposal we investigate how a more general
representation for motor skills, i.e., parameterized policies or motor primitives, can
be used in combination with novel, modern machine learning algorithms in order to
make one step closer towards human-like performance of learning control and motor
skills. For doing so, we look at the machine learning of motor skills at three different
levels, i.e., (i) the execution of motion, (ii) the generation of building blocks of motion
and (iii) their sequencing and parallelization. At the execution level, i.e., lowest level,
we study how we can control skills on a real robot with a particular focus on skills
represented as dynamical systems Ai(ẋ, x, t)ẍ = bi(ẋ, x, t). We present an optimal
control framework based upon a generalization of Gauss’ principle and show how various
well-known robot control laws can be derived using this framework by just changing the
metric of the cost function. We can show successful applications to inverse kinematics
control for holomonic systems for several different metrics. This framework comes with
a drawback as it requires an accurate model of the robot system which is rarely given in
practice; we therefore discuss the perspective of integrating learning into this framework
using techniques from internal model learning. The intermediary level is the one of
the building blocks of motions, i.e., the motor primitive level. Following Ijspeert et al.
(Ijspeert, Nakanishi, & Schaal, 2001, 2003), we focus on motor primitives represented by
a special kind of parameterized nonlinear dynamical systems of the type Aiẍ = bi. These
motor primitives can be learned using a combination of supervised learning with trial-
and-error, where the supervised learning is used for the initialization of the policy. We
discuss different reinforcement learning techniques with respect to their applicability to

ix

this problem and focus on parameterized policy search methods. It can be shown that a
special kind of technique, i.e., the episodic natural actor-critic, is particularly well-suited
for learning motor primitives – especially when compared to other gradient-based policy
search techniques. We show first steps of how this technique can be extended towards
probabilistic policy search. When such motor primitives are combined together, they
can form very complex movements. Such complex movements require a representation
which allows both the parallelization and sequencing of previously learned building
blocks. We refer to this level as the motor task level. We review how such hierarchical
learning problems have traditionally been tackled by the learning control community and
show some preliminary experiments how this can be achieved in the context of the motor
primitives above. In the light of the previously discussed levels of motor skills, we will
discuss several important motor skills as applications of the techniques discusssed. These
motor skills include T-ball swings, biped locomotion, and on sequential movements. In
summary, this thesis proposal is built on the following pieces of accomplished work:

1. We have shown theoretically and in experiments that the generalized Gauss’ con-
trol framework with a squared metric is suitable when accurate robot dynamics
models exist and connects to previous control approaches.

2. The natural actor-critic methods have yielded a variety of theoretical insights into
previous reinforcement learning problems and has been successfully applied to
motor primitives for simple and complex motor tasks including the T-ball swing
on an antropomorphic robot arm.

3. We have presented a hierarchical framework for the representation and learning
of motor skills.

Until the completion of the thesis, we intend to tackle the following problems with
descending level of importance:

1. Extend the Gauss’ control framework to more complicated metrics and apply it
to at least one nonholomonic system. Complete the preliminary work on how to
aquire such controllers using model learning.

2. Move from the policy-gradient based method for learning motor primitives towards
a probabilistic policy search method which is applied both on the motor primitive
as well as motor task level.

3. Use the resulting architecture to learn locomotion for legged robots.

4. If time permits, show how the probabilistic policy search techniques can be ex-
tended to infer cost functions for motor policies.

Ideally, all of these points will be accomplished in the next year; however, if necessary,
point 4 can be dropped as it is not the main point of this thesis proposal.

x

Chapter 1

Introduction

1.1 Motivation

Despite an increasing number of motor skills exhibited by manipulator and humanoid
robots, the general approach to the generation of such motor behaviors has changed lit-
tle over the last decades (De Wit, Siciliano, & Bastin, 1996). The roboticist attempts to
model the task as accurately as possible and uses human understanding of the required
motor skills in order to create the desired robot behavior as well as to eliminate all
uncertainties of the environment. In most cases, such a process boils down to recording
a desired trajectory in a pre-structured environment with precisely placed objects. If
inaccuracies remain, the engineer creates exceptions using his understanding of the task.
Subsequently, a robot designed or purchased with the main objective that a human op-
erator can hand-tune a control law so that the robot can precisely track the positions
and velocities of the generated behavior. For doing so, the robot has to be build as
a heavy mechanical structure with non-backdrivable, uncompliant joints resulting both
into high-payload to weight ratio and low energy-effiency (Hirzinger et al., 2002; Albu-
Schaefer, 2002). Furthermore, due to the required large torques and the stiffness of the
joints, the robot itself represents a danger to its environment (Hirzinger et al., 2002;
Albu-Schaefer, 2002). While such highly engineered approaches are feasible in well-
structured industrial or research environments, it is obvious that if robots should ever
leave factory floors and research environments, we will need to reduce or eliminate the
complete reliance on hand-crafted models of the environment and the robots exhibited
to date. Instead, we need a general approach which allows us to use compliant robots
designed for interaction with less structured and uncertain environments in order to
reach domains outside industry. Such an approach can not solely rely upon human un-
derstanding of the task but instead has to be acquired and adapted from data generated
both by human demonstrations of the skill as well as the robot’s trials and errors.

The tremendous progress in machine learning over the last decades offers us the
promise of less human-driven approaches to motor skill acquisition. However, despite
offering the most general way of thinking about data-driven acquisition of motor skills,

1

generic machine learning techniques which do not rely upon an understanding of mo-
tor systems often do not scale into the domain of manipulator or humanoid robotics
due to the high domain dimensionality. Therefore, instead of attempting a brute force,
unstructured machine learning approach to motor skill aquisition, we need to develop
approaches suitable for this particular domain with the inherent problems addressed
separately. Such a general architecture should employ a combination of imitation, rein-
forcement and model learning in order to cope with the complexities involved in motor
skill learning. The advantage of such a concerted approach is that it allows the main
problems of motor skill learning such as skill aquisition, refinement and execution to be
addressed in seperate. Instead of either having a monolithic machine learning approach
or creating hand-crafted approaches with pre-specified trajectories, we are capable of
aquiring skills from demonstrations and refine them using trial and error. The creation
and improvement of such skills can take place through a combination of imitation and
reinforcement learning. The acquired skills are represented as policies and can include
specifications ranging from positions, velocities and acceleration to applied forces, stiff-
nesses, etc. When using learned models of the robots dynamics and kinematics for
control, we often can achieve accurate control without needing to model the complete
system by hand. Furthermore, robots no longer needs to be build with the sole purpose
of them being straightforward to model but can be chosen to fulfill the tasks require-
ments in terms of compliance with the environment, energy efficiency and other factors.

In my proposed work, I plan to take motor skill learning a significant step forward
and develop a general architecture for representing, acquiring and refining motor skills
through a combination of imitation, reinforcement and model learning. In order for
doing so, we need to develop both novel learning algorithms and control architectures.
Empirically, we will show how our framework can be applied to learning different skills
including teeball, box-tumbling and legged locomotion.

1.2 Objective and Approach

The principal objective which I intend to accomplish throughout my thesis can be
summed up in a single question

“How can we represent, learn and execute motor skills for robotics?”

As can be observed from this question, the goal of this thesis is threefold. First, we
need to find an appropriate general motor skill representation which allows us to create
both basic movements as well as their combination into complex movements. Second,
we need to develope scalable learning algorithms which are efficient when used with the
chosen motor skill representation. Finally, the acquired skills represented need to be
executed without a precise model of the mechanics. Figure 1.1 illustrates these three
problem areas and their relation.

Our general approach to motor skill representation relies on the insight that humans,
while being capable to perform a large variety of complicated movements rely upon a

2

Representation
Dynamics models

Motor primitives as
dynamic systems

Complex skills through
sequential & concurrent

primitives.

Learning
Model learning

Initialization through
supervised learning

Refinement through
reinforcement learning

Execution
Skills are modeled as

simulated constraints of
the robot.

Learned dynamics
models are used for the
motor tasks execution.

Motor Skill Learning

Figure 1.1: This figure illustrates our approach to motor skill learning by dividing it
into a representation which is learned through reinforcement and supervised learning.
Subsequently, it is executed which provides further data for reinforcement learning.

smaller amount of primitive motions (Schaal, Ijspeert, & Billard, 2004). As suggested
by Ijspeert et al. (2002a, 2002b), such primitive movements can be represented by
nonlinear dynamic systems. We can represent these in the form

Aθi
(xi, ẋi, t)ẍ = bθi

(xi, ẋi, t), (1.1)

where i ∈ N is the index of the motor primitive, θi ∈ RL denote the parameters
of the primitive i, t denotes time and xi,ẋi,ẍi ∈ Rn denote positions, velocities and
accelerations of the dynamic system, respectively. We intend to take the framework
of Ijspeert et al. (2002a, 2002b) which only includes trajectory representations one
step further by also incorporating force/stiffness representations into this framework.
Clearly, complex behaviors can be generated by switching between motor primitives
and by employing several dynamic motor primitives concurrently. Our desired motor
skill representation is therefore hierachical with two layers, on the discrete top-level
representation we attempt to model motor tasks using the continuous layer of dynamic
motor primitives.

3

Learning motor skills consists out of both the sequencing and parallelization of the
motor primitives as well as learning the motor primitives by adapting their parameters
θi. The high dimensionality of our domain prohibits the exploration of the complete
space of all admissible motor behaviors, rendering the application of machine learning
techniques which rely upon exhaustive exploration impossible. Instead, we have to rely
upon a combination of supervised and reinforcement learning in order to aquire motor
skills where the supervised learning is used in order to obtain the initialization of the
motor skill while reinforcement learning is used in order to improve it. Therefore, the
aquisition of a novel motor task consists out of two phases. First, a human demonstra-
tion is parsed into seperate motor primitives which are compared to existing primitives
in the motor primitive library; if they do not yet exist, they are added to the library.
Second, the ‘learning robot’ attempts to reproduce the skill aquired through super-
vised learning and improve the skill from experience by trial-and-error, i.e., through
reinforcement learning.

The execution of motor skills adds another level of complexity. It requires that a
mechanical system

u = M(q, q̇, t)q̈+ F(q, q̇, t), (1.2)

with a mapping xi = fi(q, q̇, t) can be forced to execute each motor primitive Aiẍi = bi

as required by the skill. A motor primitive can be viewed as a mechanical constraint
acting upon the system. In this thesis proposal, we will present a novel approach for
enforcing the robot to fulfill this constraint. However, in most cases it is very difficult to
obtain accurate models of the mechanical system; therefore it is smarter to find a model
learning approach which replaces the control law which incorporates the hand-crafted
rigid body model.

In this thesis proposal, I will discuss each of these three different aspects and we will
show both theoretical as well as empirical work. In Section 1.3, we will show what has
been achieved and is planned until the completion of the thesis.

1.3 Major Contributions

In this thesis, we have made and intend to make progress in representing, learning
and executing motor skills while demonstrating the application of this work to physi-
cal robots. This progress includes contributions to three different but related lines of
research, i.e.,

• Machine Learning,

• Motor Skill Representation and Control,

• Robot Applications,

hence the name of this thesis is supposed to become “Machine Learning for Motor
Skills in Robotics”.

4

Learning Complex Motor Skills

Learning the Building Blocks of Motor Tasks

Learning to Execute Motor Primitives

Motor
Primi
tive 1

Motor
Primi
tive 2

Motor
Primi
tive 4

Motor
Primi
tive 3

Motor
Primitive i

Aiẍi = bi

Policy
Search

Policy
Search

Model
Learning

u = N
−1/2

(
AM

−1
N

−1/2
)+

· (b − AM
−1

F)

+ N
−1/2[I −

(
AM

−1
N

−1/2
)+

· (AM
−1

N
−1/2)]N1/2

u1

Figure 1.2: This figure illustrates the proposed three projects and their interrelation.
The highest level project is the learning of complex motor tasks. These consist out
of learned lower level motor primitives. The execution of motor primitives is build on
learned system models.

While the general goal of bringing motor skills learning to robotics is not yet
achieved, we have made significant progress including the following contributions. In
the next paragraphs, we will outline three partially completed story lines which exem-
plify the greater goal of this thesis. Each of these sections has the basic contributions
from all three disciplines and together they will result in a coherent and general way of
learning motor skills for robotics.

Learning to Execute Motor Primitives. As we will show in detail in later parts
of this proposal, based upon (Udwadia, 2003), we have shown in (Peters, Mistry, &
Udwadia, 2005) that the generalized Gauss’ control framework with a squared metric
is applicable for robot control. We have discussed this theoretically and verified the

5

general concepts by experiments. Furthermore, we have shown that it connects to
various previous control approaches to trajectory control in joint and task space as well
as force control.

In future work, we intend to extend the Gauss’ control framework to more compli-
cated metrics and apply it to unsolved control systems such as nonholomonic systems.
Given that the Gauss’ control framework is one of the most general ways how a system
can be forced to fulfill multiple tasks given as dynamic systems at the same time, it
can be particularly practical for the application to motor primitives as these are also
represented as dynamic systems. However, as we will note in Chapter 4, the framework
suffers from requiring a precise rigid body model. In practice, such a model is hardly
ever given – particularly not for high-dimensional robots such as humanoid robots. We
therefore need to apply machine learning techniques to this framework which replace
the modeling by hand.

Learning the Building Blocks of Motor Tasks. Learning motor tasks consists of
learning both the complete task (which we will discuss later) and the building blocks of
motor tasks. Let us assume that we have isolated such a building block, e.g., learning a
T-ball swing for baseball. If we attempted to learn such a task from scratch, we would
need a huge amount of data given the high dimensionality of the robot. However, when
using a combination of supervised and reinforcement learning, this problem becomes
tractable. Supervised learning can be used in order to learn the motor primitives from
a human demonstration while reinforcement learning is used to improve the performance
by trial and error. During the last four years, we have researched policy search methods
for reinforcement learning (Peters, Vijayakumar, & Schaal, 2003a, 2003b). We have
obtained a variety of theoretical insights on policy search methods culminating into
the policy search method category Natural Actor-Critic (Peters et al., 2003a, 2003b).
Some of the Natural Actor-Critic methods have been successfully applied to learning
motor primitives including the learning of the previously mentioned T-ball swing on an
antropomorphic robot arm.

In future work, we intend to move away from the policy-gradient based formulation
for learning motor primitives towards a probabilistic policy search method which hope-
fully will increase the speed of the learning while reducing the number of open learning
parameters. Furthermore, a probabilistic policy search approach can be extended in
order to infer cost functions of motor primitive and motor task policies.

A further topic in this area would be the learning of gaits for legged locomotion. As
gaits can be learned as rythmic motor primitives, they are an appropriate application.
Supervised learning on gaits for biped locomotion has already been applied (Schaal,
Peters, Nakanishi, & Ijspeert, 2004; Nakanishi et al., 2004) and we intend to use our
reinforcement learning techniques on improving the resulting gaits.

6

Learning Complex Motor Skills. Motor primitives become particularly interesting
when used in combination with each other. Such combination require both the sequen-
tialization as well as parallelization of motor primitives. To date, there is very little
work in this area and we can only present a grande plan how we intend to achieve this.
Similar to our previous approach to learning single motor primitives, we again intend to
use a combination of supervised and reinforcement learning. The demonstrated motor
skill is parsed into motor primitives in the supervised learning step; for this, the termi-
nation of the movement is determined based upon the velocity of the movement which
then allows the determination of goal of the primitive. Subsequently, the seperated
motor primitives are represented by dynamic systems and can be compared to existing
movements. If novel, they will be added to the motor primitive library, otherwise ex-
isting primitives will be employed. Again, we will make use of reinforcement learning
in order to improve the primitives as well as to reconnect these in a different sequence.
However, we will not attempt to create new primitives through reinforcement learning
as this problem is beyond the scope of this thesis. Two such problems are presented in
Chapter 2.

Each of the projects described here uses the previous ones as basis. For learning
motor skills on arbitrary robot platforms, we need the learning approach to motor skill
execution. For learning complex motor skills, we need to learn the building blocks or
motor primitives. This is also described by Figure 1.2.

1.4 Thesis Outline

In the remaining chapters of this thesis proposal, we attempt to give a glance at the
final thesis. However, it is very likely that the different chapters will be split into smaller
ones. The relation between the thesis structure and the different chapters of this thesis
proposal is given in Figure 1.3.

In Chapter 2, “Hierarchical Representation and Aquisition of Motor Skills”, we will
start by presenting comprehensible examples of complex motor skills. These examples
include the usage of sequential and concurrent motor primitives and serve as our first
planned motor skill learning applications. We review previous approaches to hierachical
representations for learning and control in mechanical systems which includes work
both in hybrid control and hierachical reinforcement learning. We use the examples
then in order to present our approach to representing and learning compositions of
motor primitives.

Learning techniques for motor primitives will be presented in Chapter 3, “Policy
Search for Parameterized Motor Primitives”. We will start with a very general discus-
sion of reinforcement learning and subsequently derive increasingly complex methods
for policy search. We start with plain policy gradient methods with the gradients esti-
mated from trial-and-error, and subsequently refine the gradient estimators in order to
minimize the estimates variance and make the convergence more efficient. This results

7

Robotic
Applications

Chapter 5: Robot
Implementations

Motor Skill
Representation and

Execution

Machine Learning
Techniques

Machine Learning for Motor Skills in Robotics
Thesis Outline

Model Learning

Model Learning for
Gauss Control Laws in

Chapter 4

Chapter 2:
Hierarchical

Representation

Review of Hierarchical
Representations for
Learning or Control

Development of our
own Hierarchical

Approach

Chapter 4:
Execution by Gauss

Control

Derivation of Robot
Control Laws

Tackling unsolved
Control Problems

Chapter 3: Policy
Search Methods

Policy Gradient
Methods

Natural Actor-Critic
Methods

Policy Search through
Supervised Learning

Probabilistic Policy
Search

Learning T-ball
with discrete
primitives

Learning
Legged

Locomotion

Proof of
concept of

Gauss control

Complex
Motor Skills

Figure 1.3: This figure illustrates the proposed outline of the thesis. It illustrates the
title and shows the three branches of research conducted: machine learning, motor skill
representation and control as well as robotic applications. Shaded topics are still in
their early stages.

into the Natural Actor-Critic algorithms which currently are the main focus of Chapter
3. However, we show preliminary work on how probabilistic methods for reinforcement
learning can come into being, and discuss why these would be significant contribution
to this thesis.

In Chapter 4, “Executing Motor Skills through a Generalization of Gauss’ Prin-
ciple”, we present a general framework for creating control laws for robotics based
upon the Gauss’ principles. We give a short perspective on future application to non-
holomonic systems and to the usage of model learning for Gauss’ control. In Chapter 5,
“Application to Robotics”, we discuss the planned target applications and existing im-
plementations which will allow my future work. Chapter 6, “Summary and Time-Line”,
provides a time-line for my work and a summary of this thesis proposal.

8

Chapter 2

Hierarchical Representation and Aquisition of Motor
Skills

Please note that the work presented in Chapter 2 is proposed future work despite its
early appearance in the sequence of the proposal for didactical reasons. In this way, it
differs significantly from Chapters 3 and 4.

2.1 Introduction

Abstraction in motor skills is familiar for everybody: whenever we perform a seemingly
simple motor task, e.g., connect four points A,B,C,D without lifting the pen and in the
shortest time or with the maximal smoothness, we can name the four steps of connecting
these points, see Figure 2.1 (a); this problem is known as motorized traveling salesman
problem (Buss, Stryk, & O., 2000). Similarly when tumbling a box without a ballistic
phase (inspired by (Pollard, 2004; Pollard & Hodgins, 2002)), we can name the basic
steps performed, such as e.g., pushing the box while holding against it in order to tip it,
holding it with one hand while relocating the other and finally putting it down safely,
just as shown in Figure 2.1 (b). While we can explain these basic steps in a discrete
manner, we cannot dissect them into smaller units without nearly a complete loss of
generality (Schaal, 1999; Schaal et al., 2004). Therefore, these building blocks or atoms
of motor tasks form an entity by themself which we call motor primitives (Schaal et al.,
2004); in the literature, these are also called ‘movement schemas’, ‘basis behaviors’,
‘units of action’, ‘macroactions’, ‘options’, etc. (Arbib, 1981; Dautenhahn & Nehaniv,
2002; Sternad & Schaal, 1998; Sutton & Barto, 1998)

What does this imply for a motor skill learning system? We clearly need at least
two levels of abstraction, i.e., the motor task and a motor primitive level. The motor
primitives form the building blocks of the system and are stored in a motor primitive
library. The motor task level represents how the combination of the different motor
primitives form a task together. This presents us with a variety of problems:

• How are both motor tasks and motor primitives encoded?

9

(b) Box Tumbling without Ballistic Phase
(a) Motorized Traveling

Salesman Problem

A B

CD

Figure 2.1: This figure illustrates two skill learning problems. In (a), it shows the
motorized traveling salesman problem where the robot has to connect the four points
with a path which should be as smooth as possible. In (b), it shows box tumbling
inspired by Pollard (2004) but without a ballistic phase.

• What kind of information needs to be presented in the motor primitives? Posi-
tions, forces, impedances? Is the information represented in the joint-space or the
task-space of the robot?

• Given a human demonstration, can the presented motor skill be parsed and trans-
ferred into the hierachical representation?

• Is the representation suitable methods for improvement by trial and error?

• Can we assure the stability of the motor task if presented in the chosen represen-
tation?

Each of these questions centers around the representation of the motor skills. As the
success of the applied learning techniques highly depends on the used representation,
we need to be fairly careful to consider each of the topics above.

In order to be able to answer the listed questions, we review previous approaches
to hierachical representation and/or learning of policies in Section 2.2. For this, we
review several approaches from hierachical reinforcement learning, from hybrid discrete-
continuous control and from imitation learning. Most of the hierachical reinforcement
learning approaches were not directly intended for motor skills and are probably not
applicable to motor skill learning as we will discuss in in Section 2.2.2. Hybrid control
approaches only attempt to create environment for hand-modeling of motor skills and
therefore can only offer a way of understanding how motor skills should be represented.
We will give a brief overview on relevant hybrid control approaches in Section 2.2.1.
Imitation learning with its goal of learning skills from a teacher provides us with a
variety of interesting insights; however, as it also tackles perceptional and intelligence
related issues which are beyond the scope of this thesis. We will review a selection of
approaches relevant to our goal in Section 2.2.3.

10

Based upon the review in Section 2.2, we will outline our approach to motor skill
learning in Section 3.2.1.1. This approach combines concepts from all three reviewed
areas into one unified approach.

2.2 Related Frameworks

Up to today, three different fields have looked at hierachical schemes for learning or
execution of tasks, i.e., Hierachical Reinforcement Learning, Hybrid Discrete-Continous
Control and Imitation Learning. However, none of these three schemes has been refined
to a general framework of motor skill representation, aquisition and execution. We will
now give a brief review of these different approaches and outline the most important
lessons.

2.2.1 Hybrid (Discrete-Continous) Control Approaches

The earliest field to discuss switching between different motor behaviours has been
control theory where switching systems have been of particular importance due to the
availability of inexpensive realizations consisting out of small analog circuits. While a
complete survey of the field of hybrid control would be beyond the scope of this thesis,
we show several lessons which can drawn from the field and we show the few approaches
in hybrid control towards motor skills.

2.2.1.1 Representation

In the literature, there is a variety of different approaches for modeling hybrid systems
such as a motor skills. However, on closer inspection, this variety boils down to exactly
two types of approaches, i.e., (i) differential equations with context switches and (ii)
discrete automata with evolving states. We will discuss these approaches based upon
(Yang, 2001; Lygeros, Tomlin, & Sastry, 2005; Buss et al., 2000) in the context of motor
learning and focus on skill representation and aquisition from the hybrid control point
of view.

Differential Equations with Context Switch. Differential equations with con-
text switch are the traditional way of modeling discrete events in a continuous system.
Methods which discuss hybrid modeling and control problems in this form are switching
linear models (Xu & Antsaklis, 2002), switched bond graphs (Edstroem, 1999), hybrid
state machines (Buss et al., 2000) and others. For example for switching linear mod-
els (Xu & Antsaklis, 2002), the task is modeled using a continous state of the system

11

x(t) ∈ Rn and a discrete context i(t) ∈ Ω in some discrete event set Ω. The evolution
of both can be specified by

ẋ(t) = f(x(t), i(t−)), (2.1)
i(t) = g(x(t), i(t−)), (2.2)

where i(t−) = limτ→t− i(t) denotes the context in the instant of time before the context
switch. When additionally a control variable u(t) is added to f, g, we obtain the hybrid
state machines (Buss et al., 2000) for system modeling.

How could one express a motor skill such as the ones described in Section 2.1? The
motorized salesman skill in Figure 2.1 (a) is fairly easy to express as i(t) would simply
denote the next point to visit and x(t) could denote either the position of the robots
endeffector or the position in joint space. It is convenient to model of motor task if a clear
coordinate system is given and methods from system theory can be applied with ease.
Nevertheless, for the modeling and synthesis of motor skills, this approach has a major
deficiency: the system has to remain in its chosen representation at all time – a switch
between a joint space and a task space model is not trivial to incorporate. However, such
switches are essential for motor skills which often require the switch between different
subtasks and their required object related representations. Furthermore, not all possible
discrete event properties can be incorporated, e.g., discontinous event properties can
create problems (Yang, 2001).

Discrete Automata with Evolving State. As an alternative to the traditional way
of thinking about hybrid systems, it has been suggested to model hybrid systems as
discrete event systems where each state can be described by the evolution of continuous
variables. As the continuous variables can be chosen differently in each state, our
previous concern about the switch in representations is addressed in this framework
by definition. A variety of different discrete automata with evolving state have been
suggested in the literature including hybrid automata (Henzinger, 1996; Yang, 2001),
hybrid I/O automata (Lynch, Segala, Vaandrager, & Weinberg, 1996), phase-transition
systems (T.Henzinger & Toi, 1996) and hybrid Petri-nets (Febbraro, Giua, & Menga,
2001). The general principle behind these approaches is all the same: they use a discrete
event system and turn the states into dynamic systems. We will describe it using the
example of a hybrid automaton (Henzinger, 1996; Yang, 2001). A hybrid automaton H
is a collection

H = (Q,X, θ0, f,Γ, G,R) , (2.3)

where Q = {1, 2, 3, . . . , n} is the set of the discrete states, X ⊆ Rn is the set of continous
states, θ0 ⊆ Q × X is the set of start states, f : X × Q → TX describes the continuous
evolution of the state, Γ : Q → Xq assigns eacht state q ∈ Q ‘invariant’ subset of the
state space Xq ⊆ X, E ⊆ Q×Q denotes the set of edges of the automaton, G : E → X is
called the guard set which maps the edges of the automaton onto continuous state space,
and R : X × E → X resets the continuous state when a new discrete state is entered.

12

If additionally an action u and an output y are included, we can obtain a hybrid I/O
automaton (Lynch et al., 1996).

From the description of the hybrid automaton, it is apparant that cost of discrete au-
tomata with evolving state is they usually require a significantly more complex descrip-
tion and modeling of physical systems is not that straightforward. However, model and
controller verification, controllability analysis and synthesis of controls can be treated
significantly easier (Yang, 2001). Additionally, modeling motor tasks can be done in a
significantly more general way than before and they do open a bridge to methods from
computer science and artificial intelligence.

2.2.1.2 Aquisition

The lessons for the aquisition of motor skills which we can learn from hybrid control is
fairly limited. To date, there are few general building principles which allow automatic
modeling or synthesis of behaviors. In most cases, modeling the system is done by hand;
sythesis of behaviors is either achieved by hand or using optimization techniques.

Sequential Composition. According to (Yang, 2001; Lygeros et al., 2005), there
are just few major approaches to sequential composition of behavior. In the simplest
case, supervisory discrete event control (Lemmon, He, & Markovsky, 1999; Ramadge
& Wonham, 1987), a supervisory layer of discrete events can be created which create
discrete actions which force the continuous state to evolve. The supervisor is usually
created using human knowledge. Another approach is state-space quantization (Caines
& Wei, 1998) where the discrete behavior is specified and then continous control laws are
chosen which enforce the desired transitions. Two interelated approaches can be found
in the literature, i.e., gain scheduling (Leithead, 2000) and backchaining (Lozano-Perez,
Mason, & Taylor, 1984; Burridge, Rizzi, & Koditschek, 1999). Gain scheduling uses
local gains in different discrete states in order to enforce the transition between states
and comes with few mechanism for creating control laws. Stability can be assured
using piecewise quadratic Lyapunov functions (Johansson & Rantzer, 1998) or multiple
Lyapunov functions (Branicky, 1998). Backchaining has a single goal region and a set
of local control laws; chaining back from the goal region it creates a hierachy of local
control laws which can be visualized as a tree of funels leading into the goal (Burridge
et al., 1999). If either the system has to pass through an exit region of the funnel
or if the funnels can compose a global Lyapunov function, stability can be guaranteed
(Burridge et al., 1999). In some cases, it is desirable to create a hierachy of hybrid I/O
automatons where one automaton models the system while the other models a control
policy (Yang, 2001).

Optimization Approaches. While the application of optimal control to hybrid sys-
tems is obviously of large interest, there have been only few approaches in the literature
which can efficiently create optimal controls for hybrid systems (Johansson, 2000). In

13

most cases, the discrete is treated using dynamic programming or branch-and-bound
while the continuous layer is optimized using open-loop trajectories or controls based
upon Pontriyagin’s Maximum principle (Bryson, 1981), in some cases stabilized using
feedback (Johansson, 2000; Buss et al., 2000; Branicky & Mitter, 1995). The later
problem of the open-loop controls is particularly difficult; the currently most success-
ful method appears to be sparse direct collocation (Stryk, 2000, 1999; Hardt & Stryk,
2000; Buss et al., 2000). The only alternatives in the literature are the optimization of
a discrete system which obviously fails to generalize for high-dimensional systems due
to the ‘curse of dimensionality’ (Bellman, 1957) and the parametric optimization with
respect to the parameters of the hybrid system or control law.

2.2.2 Hierarchical Reinforcement Learning

Another area of research which has studied hierachical task learning is reinforcement
learning. However, in this field there has been little work on continuous time systems –
lower levels in the hierachy are usually represented by more finely discretized models or
control policies. Unlike in hybrid control, reinforcement learning researchers are rarely
just interested in a desired trajectory for the evolution of the states but instead attempt
to find complete control policies. Based upon (Barto & Mahadevan, 2003), we will now
discuss the different approaches to hierachical reinforcement learning in a fairly coarse
manner. Again, we will first describe the representation and subsequently the aquisition
of tasks.

2.2.2.1 Representation

In the hierachical reinforcement learning literature to date, three approaches have been
dominant (Barto & Mahadevan, 2003), i.e., (i) options framework with its multi-step ac-
tion representation (Sutton, Precup, & Singh, 1999), (ii) hierachy of abstract machines
(Parr & Russell, 1998), and (iii) MAX-Q value function decomposition with taskgraph
representations (Dietterich, 2000). Each of these approaches attempts to create a repre-
sentation similar to hybrid automata consisting out of layers of representation, however
with a fine grid instead of a continuous level and a higher number of layers.

Multistep Action Representation by Options. The general goals of the options
framework is to create a natural way of representing multi-step actions (Sutton et al.,
1999), i.e., options, so that the option can be treated nearly like a single-step action
(Sutton et al., 1999; Barto & Mahadevan, 2003). In general, an option is given by

o = (Xo, µo, βo) , (2.4)

where Xo ⊆ X denotes the states where the option o is applicable, µo(o|x) denotes the
probability distribution over available options given the current state of the system x or
policy (it usually is semi-Markovian, meaning that the policy can have an internal state

14

during execution of the option or a dependence of time), and βo(x) → [0, 1] denotes the
termination probability of the option. For all x ∈ Xo, we usually have β0(x) < 1, i.e.,
no option terminates before starting.

The execution of an option works as follows: the policy of the current option chooses
an option o′ to execute by sampling from the policy µo based upon the current state and
their applicability. This option in turn calls other options until its termination when it
gives control back to the higher level option (Barto & Mahadevan, 2003).

Hierachy of Abstract Machines. The hierachy of abstract machines approach is
probably the closest to hybrid automata with supervisory discrete event systems among
the approaches in this chapter. Similar to a hybrid automaton, we have a hierarchy
of where each state of the higher level automaton is a lower level automaton by itself
with main difference that many levels are possible and continuous time or state are
not considered (Parr & Russell, 1998). The main problem is the automatic creation of
state machines which usually has to be done by handcrafting. Note the conceptional
difference to options: while options extend the amount of possible choices, hierachies of
abstract machines tend to limit the choices. Recently, the resulting limitations have been
addressed with the programable hierachies of abstract machines which also have local
variables, parameters as actions as wells as interrupts and aborts (Barto & Mahadevan,
2003).

Taskgraph Representation. Taskgraph representations decompose the task M into
subtasks Mi with M = {M0,M1, . . . ,Mn} and have mostly been used in the context
of the MAX-Q algorithm (Dietterich, 2000). The root task is the task M0 and each
following task is a subtask. A subtask considers a group of the lower tasks its subtasks
forming a hierachy of tasks. Each subtask has policy πi which allows it to choose among
its own subtasks, it has a set of active states Si and a set of termination states Ti which
cause the policy to terminate this subtask, and a pseudo-reward function which assigns
each task reward values. The resulting hierachy of subtasks forms a so-called task graph
(Dietterich, 2000).

2.2.2.2 Aquisition

The acquisition of behaviors is highly driven by the chosen framework and to date
has not yet converged to a clearly preferable method. Nevertheless, in order to find
the good motor skill learning system, we can learn significant lessons from hierarchical
reinforcement learning.

15

Options generation and learning. Currently, the designer of the learning system
creates the options using ‘primitive actions’1 and handcrafted sets options based on prior
knowledge (Barto & Mahadevan, 2003). The primary advantage of this approach is that
temporally extended actions can be added easily into the repertoire of the learner which
can increase the learning speed significantly. To date, all skill acquisition methods for
options are based upon dynamic programming or Q-learning. For most cases, an option
is only updated upon its termination. However, for Markov decision problems special
cases exist where all options which would take that action in that state are updated.

A fairly interesting line of research among options framework is the learning of
subgoals (McGovern & Barto, 2001), i.e., regions which the agent has to pass through,
similar to a door through which a human has to go in order to move through a new
room. Here, hierarchical reinforcement learning touches with hybrid control as subgoal
achievement can be achieved through Lyapunov functions design (Perkins & Barto,
2001). Another interesting aspect about options is the concurrent options framework
which allows the parallel activation of multiple options.

Learning in Hierachies of Abstract Machines. The hierachy of abstract machines
are usually learned using Q-learning on the different levels of the hierarchies. This means
the rewards accumulated in the lower level machine are used to improve the lower level
machine and their accumulation is passed on to the next higher machine in the hierarchy
(Parr & Russell, 1998; Barto & Mahadevan, 2003).

MAX-Q Value Function Learning in Task Graphs. The task graph with its sub-
task, termination and active state sets as well as pseudo-rewards is usually handcrafted,
requiring a lot of prior human knowledge on the task. In order to learn the policies of
the subtasks, Dietterich (2000) adapted Q-Learning for this problem to a special form
called MAX-Q. The pseudo-rewards make this framework particularly powerful as it
allows the specification of subgoals without specifying how to achieve such subgoals.

2.2.3 Approaches from Imitiation Learning

Several other approaches to complex movement recognition and movement generation
have been suggested inspired by statistical data analysis. Pook and Ballard (1993)
created a robotic system that initially discretized demonstrated movement and force
trajectories by means of vector quantization, and then trained a hidden Markov model
(HMM) with these discrete states as observables to find the transition probabilities
among a given set of movement primitives. An experimental implementation could
be realized for one complex task (egg flipping), albeit generalization of the suggested
methods to different tasks or changes in the environment was not further explored.

1The term primitive actions is used differently in the options framework than in motor skills. Rein-
forcement learning researchers mean the basic actions executable by the system while we usually mean
the atoms of motor skills.

16

Inamura et al. (2002, 2004) followed a similar approach using HMMs. A movement
primitive was defined in terms of Gaussian trajectory clusters in joint position space, and
the HMM methodology was employed to recognize sequences through these primitives.
The transition probabilities between primitives could afterwards be used to generate
movements by sampling trajectories from the stochastic HMM. As motor primitives
in terms of Gaussian clusters in joint space can be created automatically, the authors
suggested that this method might be some form of protosymbol formation, which could
be exploited for the purpose of bootstrapping communication in future work. One more
HMM approach to movement sequence recognition and movement sequence generation
was suggested by Amit and Mataric (2002). Movement primitives were assumed to be
given a priori, and a two stage learning system associated goals with each primitive and
sequences through the set of primitives.

Inspired by theories of computational motor control, Miyamoto et al. (1995, 1996,
1996, 1998) employed a movement parameterization in terms of 5th-order time-dependent
splines, and characterized movement primitives based on typical sequences of spline
nodes. Such sequences can be detected in observed actions by first fitting them with
splines, and then searching the spline node representation for known primitives (Wada
& Kawato, 1994; Kawato, Gandolfo, Gomi, & Wada, 1994; Wada & Kawato, 1995;
Miyamoto et al., 1996, 1996). The spline representation lends itself naturally to move-
ment generation in an optimal control framework (Kawato, 1999). Robustness of this
method towards spatial and temporal scaling of movements, however, was not further
explored. Miyamoto et al.’s work was a precursor for a more refined approach of a re-
ciprocally constrained system of movement recognition and movement generation, sug-
gested by Wolpert and Kawato (1998) and adapted for sequence learning in Samejima
et al. (Doya, Samejima, Katagiri, & Kawato, 2002; Samejima, Doya, & Kawato, 2003).
Reinforcement learning was employed to create complex movements from basic control
primitives, and action recognition was possible with the help of predictive forward mod-
els. A limitation of this approach may lie in its slow learning performance due to the
inherent limitation of the current state-of-the-art reinforcement learning algorithms.

Instead of HMMs, motor sequences can also be encoded in recurrent neural networks,
i.e., neural network with closed loopy connectivity. Paine and Tani (2004) trained a
well-designed recurrent network system on observed movement data such that the same
network could represent multiple primitives depending on the setting of certain param-
eters. The network topology also supported the development of specialized neurons,
called mirror neurons, which classified which motor primitive was currently active. Af-
ter training, when exposed to new movement observation, these mirror neurons could
be used to automatically parse the observed action into motor primitives, i.e., periods of
quasi-constant activation of these mirror neurons. Another recurrent network approach
was proposed by Billard (Billard & Mataric, 2001), who employed integrate-and-fire
neurons to code movement primitives in the spirit of associative memory neural net-
works. Teaching and recognition of complex movement on humanoid robots could be
realized in this fashion (Billard & Schaal, 2002; Schaal et al., 2004)

17

2.3 Towards a General Framework for Motor Skill Learning

Building upon previous work (Peters et al., 2003a; Schaal, Peters, Nakanishi, & Ijspeert,
2003; Schaal et al., 2004), and based upon our review of related approaches, we outline
steps towards a general framework for motor skill learning in this section. The main
structural lessons which we can draw from the previous sections on hybrid control,
hierachical reinforcement learning and imitation learning approaches are as follows. We
need a three layered approach where: (i) the execution layer ensures the stable execution
of the movement, (ii) the primitive action layer creates continuous building blocks in
form of dynamical systems and (iii) a discrete layer for the sequential, concurrent and
hierarchical composition of primitive motor actions. In order to make this approach
general, we will need feasible approaches for fast learning at each of these levels. We
will illustrate this general framework in a top-down manner.

2.3.1 Motor Tasks

Let us assume that we are given a set of motor primitives

M = {M1,M2, . . . ,Mn} , (2.5)

where each motor primitive Mi is described a dynamic system as outlined in Section
2.3.2 or (Ijspeert et al., 2001, 2003). Our representation is discrete and can reacts
towards perceptual inputs. We intend to make use of two basic mechanisms for task
generation, i.e., superposition and sequencing, and use lessons from both imitation
learning as well as hierachical reinforcement learning for motor task aquisition. An
example for superposition and sequencing in motor skills is shown in Figure 2.2.

2.3.1.1 Concurrent and Sequential Compositions of Motor Primitives

The relation to hybrid control is obvious, i.e., it is discrete automaton with evolving
states; however, which specific type of automaton is still left as a choice to us. From
the perspective of hierachical reinforcement learning, we can treat motor primitives
either as primitive actions in an options framework or as abstract machines which are
the states of a hierachy of abstract machines (while the taskgraph representation is
inapplicable as the motor primitives are indivisible from the viewpoint of the discrete
layer). However, the options framework appears to be well-suited for motor tasks as
we can create options by superposition of motor primitives. Therefore is creation of
options in motor skills easier than its counterpart for higher order options or discrete
temporally extended options.

Superposition of Motor Primitives. In most biological systems, there are usually
multiple motor behaviors being executed in parallel. Among the most intuitive examples
is bipedal posture control, during which humans accomplish all kinds of other tasks, like

18

PUSH
FOLLOW BOX

HOLD REPOSITION CONTROLLED DROP

STABILIZE

Tip
Over

Re-
grasp

Re-
grasp

(a) Desired Motor Task with Hand Positions and
Applied Forces

(b) Extracted Primitive Actions

(c) Complex Motor Task through Sequencing and
Superposition

M1,M2 M3,M4 M5,M6

M5

M6

M3

M2

M1

M4

Figure 2.2: Superposition and sequencing of motor primitives are being illustrated in
this example. Each hand movement creates a motor primitive Mi. Together these
primitives form a motor task automaton M.

grasping and manipulating objects, head movement for active perception, or esthetic
movements, as for instance in ballet. Obviously, some of these superimposed behaviors
can actually interfere with each other (e.g., reaching for an object while maintaining
bipedal balance), while others do not, like head and eye movements, that can largely be
considered independent of the rest of the body.

As one of the simplest superposition tasks, we will investigate whether two movement
primitives can be executed in parallel, which, assuming both primitives are in the same
coordinate system (e.g., joint space), is technically quite trivial in our motor primitive
framework by simply using the average outputs of two movement primitives as the
target signal. When the two motor primitives have seperate coordinate systems, the
main question is whether they can be action in parallel or whether they require a trade-
off among themselves. For these more advanced interactions, the motor primitives can
be treated as hierachically ordered constraints ranked according to their importance,

19

(a) Solution from
Imitation Learning

(b) Solution improved
for Smoothness

(c) Optimal Solution

Figure 2.3: This figure shows different solutions for the motorized traveling problem
where the robot has to connect the points in a movement with maximal smoothness. In
(a), we see the solution learned by imitation. The imitated solution from (a) is improved
by optimizing both motor primitives (i.e., the goal of the primitive and its parameters)
as well as transitions between the primitives. The result is smoother but not optimal
as shown in (b). The optimal solution would also need a reconnecting of the motor
primitives and is shown in (c).

e.g., posture control is the highest objective, reaching the goal is the second highest
objective, esthetics the third highest ob-jective, etc. Given the highly redundant human
motor system, it is possible to select the contribution of different degrees of freedom for
each task objective such that interference is limited. Similar to the approach of Sentis
and Khatib (Sentis & Khatib, 2004), we can create hierachical orderings also in the
Gauss’ framework in Chapter 4.

Sequencing of Motor Primitives. For creating complex sequential motor tasks,
we can model the problem as solving a semi Markov decision process (MDP) where the
motor primitives are the internal state of the policy or the current option. In either case,
we attempt to basically model the motor skill as a discrete automaton with evolving
states. This opens a major question, i.e., what kind of a representation shall be chosen
for the discrete level? The simplest way would be to use a finite state machine on
the discrete level. However, when used with superposition of motor skills, this kind
of an automaton has an exponential explosion of states (Henzinger, 1996) and might
therefore not be applicable. Probably the smartest way to represent it using either a
non-deterministic finite state machine or a hybrid Petri-automaton; the later appears
particularly suited for sequencing primitives.

20

2.3.1.2 Aquisition through a Combination of Supervised and Reinforcement
Learning

When shown a complex motor task, how can we learn this motor task into the chosen
representation? As we have not made our discrete layer completely fixed, we can only
outline

Aquisition by Supervised Learning. A complex movement observed by the motor
learning system can be decomposed into a series of concatenated discrete primitives as
illustrated in Figures 2.1 and 2.3. Without co-articulation, primitives can be separated
by simultaneous zero velocity and zero acceleration crossings or an instant, discontinuous
sign change in both velocity and acceleration. With co-articulation, the first scenario
has to be relaxed towards some thresholding which will be needed in terms of what
is acceptable as a velocity and acceleration value that is close enough to zero. If co-
articulation is high, it is likely that such parsing into movement primitives will produce
errors. More complex movements may be created out of a sequence of different rhythmic
behaviors. A change in amplitude and/or frequency should allow telling these behaviors
apart; co-articulation is not likely to be a problem as the transient between primitives is
much shorter than a normal periodic behavior. Third, a complex movement may have
discrete and rhythmic parts. Those should be separable based on frequency analysis
and duration. Finally, there may be superimposed discrete and rhythmic movement
primitives in the complex movement. When analyzing such data in the Fourier domain,
a subtraction of the most basic Fourier terms from the trajectory should uncover the
discrete movement. All the ideas await yet an algorithm and experimental realization,
and there has been no previous work to examine such methods.

Improvement through Reinforcement Learning. Reinforcement learning can be
used to refine execution of the sequence of motor primitives in terms of both refining
the motor primitive itself, by refining the transition to the next motor primitive and
by finding new paths through this motor primitive graph in order to achieve improved
behavior. The first two of these problems are easier as they just require the task to
be changed locally as illustrated in Figure 2.3 (a,b) while reconnecting is more difficult
as illustrated in Figure 2.3 (c). Motor task refinement through reinforcement learning
of motor primitives has been developed (Schaal et al., 2003, 2004; Peters et al., 2003b,
2003a) and will be outlined later.

From the viewpoint of dynamic movement primitives, the transitions to another
motor primitive could be based on the behavioral phase variable, such that learning
needs to determine at which value of the phase to trigger the next primitive this is a
typical component of learning with abstract actions in MDPs (Barto & Mahadevan,
2003). E.g., if time optimality were required and it is not important to fully achieve
the subgoal of each primitive, one can easily image some form of co-articulation in the
execution of the sequence that smoothes the primitives more and more together. Such
a process would not be unlike human learning of complex motor skills. The motorized

21

travelling salesman problem in Figure 2.3 (a-b) illustrates an example of the smoothing
together of motor primitives in the task of drawing simple figures of few strokes. Future
work will be needed to fully flesh out how to apply the framework of reinforcement
learning to the learning of motor sequences with movement primitives, and also how to
address the finding new paths through this motor primitive graph, which is the most
challenging.

2.3.2 Motor Primitives Level

A dynamic motor primitive represents the desired state either in joint- or task-space
of the robot or in the space of the actual task; in either case, the state of the motor
primitive is specified by some appropriate variable xi, which can represent kinematic
variables, i.e., desired positions, velocities, and accelerations. However, for manipulation
tasks, it might be useful to include variables related to contact forces. In either way, a
motor primitive Mi is given by Mi = (Aθi

(xi, ẋi) ,bθi
(xi, ẋi) , ẍi), or equivalently by

Aθi
(xi, ẋi) ẍi = bθi

(xi, ẋi) . (2.6)

For the representation of such motor primitives, we follow Ijspeert et al. (2001, 2003)
as well as for the imitation of given movements. The reinforcement learning of these
primitives is outlined in Chapter 3 as well as in (Peters et al., 2003b, 2003a; Schaal
et al., 2003, 2004) .

2.3.2.1 Motor Primitive Representation by Dynamical Systems

In order to accommodate discrete and rhythmic movement plans, two kinds of DMPs
are needed: point attractive systems and limit-cycle systems (Ijspeert et al., 2001, 2003).
The key question of DMPs is how to formalize nonlinear dynamic equations such that
they can be flexibly adjusted to represent complex motor behaviors without the need for
manual parameter tuning and the danger of instability of the equations. We will sketch
our approach in the example of a discrete dynamic system for reaching movements,
the analogous development for rhythmic systems can be found in (Ijspeert et al., 2001,
2003).

Assume we have a basic point attractive system, instantiated by the second order
dynamics

τ ż = αz (βz (g − y)− z) , τ ẏ = z + f, (2.7)

where g is a known goal state, αz and βz are time constants, τ is a temporal scaling
factor and y, ẏ correspond to the desired position and velocity generated by Equation
(2.7). These two variables can be interpreted as a movement plan and could for example
be the desired states for a one degree-of-freedom motor system. Without the function
f , Equation (2.7) is nothing but the first order formulation of a linear spring-damper
system. For appropriate parameter settings and f = 0, these equations form a globally
stable linear dynamic system with g as a unique point attractor, which means that for

22

any start position the limb would reach g after a transient, just like a stretched spring,
upon release, will return to its equilibrium point. The key goal, however, is to instantiate
the nonlinear function f in Equation (2.7) to change the rather trivial exponential and
monotonic convergence of y towards g to allow trajectories that are more complex on
the way to the goal. As such a change of Equation (2.7) enters the domain of nonlinear
dynamics, an arbitrary complexity of the resulting equations might be expected. To
the best of our knowledge, this problem has prevented research from employing generic
learning in nonlinear dynamic systems so far. In order to force Equation (2.7) to become
more complex while avoiding explicit functions of time and direct feedback of f from ,
we need an additional dynamic system (x, v) with

τ v̇ = αv (βv (g − x)− v) , τ ẋ = v, (2.8)

and the nonlinear function approximator f in form of

f(x, v, g) =

∑N
j=1 ψjθ

i
jv∑N

j=1 ψj

, (2.9)

where ψj = exp
(
−hi (x/g − ci)

2
)

are the basis functions of the function approximator

and θi the parameters of the approximator.
Equation (2.8) is linear spring-damper system similar to Equation (2.7), however,

not modulated by a nonlinear function we will call this equation the canonical system
from now on, as it is among the most basic dynamic system available to create a point
attractor. The monotonic global convergence of Equation (2.7) to g can be guaranteed
with a proper choice of αv and βv, e.g., in the same manner that a damped spring
returns to its equilibrium point no matter from which stretched position it is released.

In summary, by anchoring a linear learning system with nonlinear basis functions in
the phase space of a canonical dynamic system with guaranteed attractor prop-erties,
we are able to define complex movement behaviors as an attractor of non-linear differen-
tial equations without endangering the asymptotic convergence to the goal state. Both
discrete and rhythmic movements can be coded in the DMPs, and almost arbitrarily
complex (but smooth) trajectory profiles are possible. By modifying the goal param-
eter (or amplitude parameter in rhythmic movement), and the overall time constant
of the equation, variants of the same movement can be generate, i.e., the movement
primitive can be re-used for temporal spatial task variation. This strategy opens a large
range of possibilities to create movement primitives, e.g., for reaching, grasping, object
manipulation, and locomotion. In particular, imitation learning as well as trial-and-
error learning methods can easily be built around this approach, as outlined in the next
section and Chapter 3.

23

2.3.2.2 Motor Primitive Aquisition by Imitation and Refinement

After developing the formal idea of DMPs in the previous sections, we will now turn to
imitation learning. In fact, imitation learning with DMPs is technically rather straight-
forward, which is not surprising, as the theory of DMPs was built with imitation learning
in mind. If we assume, for simplicity, that the number of basis functions in Equation
(2.9) are known, the crucial parameters of a movement primitive are the weights θi

j in
the nonlinear function f , as they define the spatiotemporal path of a DMP. Given that
f is a normalized basis function representation, linear in the coefficients of interest θi

j ,
see e.g., (Bishop, 1995), a variety of learning algorithms exist to find θi

j . In an imita-
tion learning scenario, at an advanced level of preprocessing of sensory data about the
teachers demonstration, we can suppose that we are given a sample trajectory with
duration T . Based on this in-formation, a supervised learning problem results with the
target for f given by

ftarget = τ ẏdemo − zdemo, (2.10)

where τ żdemo = αz(βz(g − ydemo)− zdemo).
In order to obtain a matching input for ftarget, the canonical system needs to be

integrated. For this purpose, in Equation (2.9), the initial state of the canonical system
is set to v = 0, x = ydemo(0) before integration. An analogous procedure is performed
for the rhythmic DMPs. The time constant τ is chosen such that the DMP with f = 0
achieves 95% convergence at t = T . With this procedure, a clean supervised learning
problem is obtained over the time course of the movement to be approximated with
training samples (v, ftarget) and the solution can be obtrained by modern regression
techniques.

Imitation then yields the first shot for the motor primitive it is clear that many tasks
cannot be learned this way. We therefore need reinforcement learning for reward-related
self-improvement. This will be tackled in Chapter 3 in detail and we will therefore omit
this part here.

24

Chapter 3

Policy Search for Parameterized Motor Primitives

3.1 Introduction

A central problem of this thesis is the aquisition and reward-related refinement of motor
skills from trial and error, i.e., through reinforcement learning. Given a hierachical
motor skill representation for motor skills such as the one discussed in Chapter 2, we
need appropriate methods for adapting the parameters of both motor tasks and motor
primitives in order to improve the resulting behavior with respect to a cost. In this
chapter, we will focus on the aquisition of motor primitives; however, this does not limit
the presented methods which can also be applied to motor tasks or even parameterized
problems not related to motor control.

Throughout this chapter, we will proceed as follows: first, in this section, we will
discuss the relation of reward-related motor skill aquisition to reinforcement learning.
We start with a definition of reinforcement learning and then expand towards policy
search methods.

In Section 3.2, we discuss the theory of “vanilla” or “heuristic” policy gradient
techniques from a roll-out perspective; we derive both previous as well as novel methods
for the estimation of gradients. After noting problems with premature convergence
and fragility towards parameter changes for the “vanilla” policy gradient, we realize
that the steepest descent has to occur not with respect to the policy parameters but
with respect to the probabilities of the actions represented by the policy. This leads
to the main realization in Section 3.3, that the “natural” or “covariant” gradient can
improve here and therefore ease the resulting problems. We show that several previously
successful reinforcement learning approaches are related or even a direct application of
the natural policy gradients. In Section 3.3.2.4, we show how these methods can be
applied to learning with motor primitives.

One of the major drawbacks of gradient methods is that the length of the step along
the gradient, i.e., the learning rate, is an open parameter of large importance which can
decide over success or failure. Probabilistic methods such as the EM algorithm allow the
elimination of such parameters – we therefore show preliminary work on the question
“Can we find a probabilistic policy search method?” in Section 3.4.

25

3.1.1 The Reinforcement Learning Framework

Reinforcement learning is one of the most general frameworks for reward-related aquisi-
tion and refinement of policies from data. In order to demonstrate that motor skills can
be thought of as policies in a reinforcement learning problem in Section 3.1.2, we first
introduce the basic reinforcement learning definitions and problem statements with a
focus on motor control in Sections 3.1.1.1 and 3.1.1.2. Furthermore, we discuss which
class of reinforcement learning techniques is applicable to motor learning problems in
Section 3.1.1.3.

3.1.1.1 Basic Setup

In reinforcement learning, we generally assume problems which can be seperated into a
system1 and an actor. At any instant of time, the system is at a state x ∈ X and the
actor can apply an action u ∈ U on the system. In reaction to the action, the system
transfers to a next state x′ ∈ X and will yield a reward r ∈ R. As most motor learning
problems require continuous states X ⊆ RN and actions U ⊆ RM , we develop our work
in a continuous state-action context but use a discrete-time approach due to the final
implementation on a digital computer. In this scenario, we can describe the system by a
state transfer probability density distribution and a reward distribution while the actor
is given in terms of a policy.

The state transfer distribution is given by xk+1 ∼ p (xk+1|T (x0:k,u0:k), k) where
T (x0:k,u0:k) denotes the sufficient statistics2 of all previous states x0:k and actions u0:k

relevant to the state transfer and k denotes the current time-step. The policy of the
actor is given by a probability distribution

uk ∼ πθ(uk|T (x0:k,u0:k−1), k) = p(uk|T (x0:k,u0:k−1), k,θ), (3.1)

where θ ∈ RL denote the L parameters of the policy πθ; its optimization is the central
element of all sequential planning techniques such as reinforcement learning. The policy
is written here as a probability distribution in order to indicate that exploration of
new actions takes place3. The noisy reward is distributed in accordance to a reward

1The system is also often called the environment.
2The sufficient statistics represent our knowledge on the current state. In the simplest case, it would

be the observed current state xk and the action uk. In more complicated problems which require state
estimation, e.g., POMDPs or control with an unobserved state, the sufficient statistics could denote the
state distribution of an optimal filter.

3While it can be shown that time-variant stochastic and deterministic policies are equivalent in
expectation (Bagnell, Kakade, Ng, & Schneider, 2004), it is clear that for time-invariant policies there
exist cases where the optimal policy is stochastic, e.g., if the sufficient statistics T (x0:k+1, u0:k) are
maintained in a suboptimal filter (Bagnell et al., 2004; Jaakkola, Singh, & Jordan, 1995).

An incorrect filter could for example always tell us that a door is open which would result into the
robot attempting to drive through it. If the suboptimal filter is then not capable of correcting that state
immidiately, a deterministic policy would in this case simply result in a repetition of that scenario.

26

distribution rk+1 ∼ p (rk+1|T (x0:k+1,u0:k), k + 1); however, it is common to simply write
use the average reward rk+1 = r(T (x0:k+1,u0:k), k+ 1) = Er̃{r̃|T (x0:k+1,u0:k), k+ 1} as
it simplifies the notation without loss of generality.

Of particular interest for this thesis are systems and policies which arise commonly
in motor learning, i.e., The Markovian systems which are either observable (or with an
optimal filter available)4. Using the Markov assumptions, we have the simplified the
sufficient statistics in both the system and policy to

T (x0:k,u0:k−1) = xk, T (x0:k,u0:k) = (xk,uk). (3.2)

This significantly simplifies the problem; however, it is not in general applicable. An-
other common assumption is the time-invariance or autonomity of systems, rewards and
policy; this desirable property is not always given in practice but can be used in theory
if time is represented implicitly through phase.

Definition 1 A general sequential reinforcement learning setup is given by

xk+1 ∼ p (xk+1|T (x0:k,u0:k), k) , (3.3)
rk+1 = r(T (x0:k+1,u0:k), k + 1), (3.4)
uk ∼ πθ(uk|T (x0:k,u0:k−1), k) = p(uk|T (x0:k,u0:k−1), k,θ), (3.5)

with states xk ∈ X ⊆ RN , actions uk ∈ U ⊆ RM for all k ∈ N, and policy parameters
θ ∈ RL.

A Markovian system in the sense of Equation (3.2) can be given by

x0 ∼ p (x0) , (3.6)
xk+1 ∼ p (xk+1|xk,uk, k) , (3.7)
rk+1 = r(xk,uk, xk+1, k + 1), (3.8)
uk ∼ πθ(uk|xk, k) = p(uk|xk, k,θ). (3.9)

If the explicit representation of the time-step k ∈ N is dropped, these are called time-
invariant.

Throughout this thesis, we will always start with the general system in the sense
of Definition 1, and subsequently use the simplifications resulting from Markovian and
time-invariance assumptions.

When data is generated from a real system, e.g., from a robot arm in a motor learning
task, we can only generate a history ξj

0:n = (xj
0:n,u

j
0:n−1) of length n with states xj

0:n and
actions uj

0:n−1 where j denotes the number of that history ξj
0:n. Such histories are also

known as paths, roll-outs or trajectories. We are in general interested in a combination

4Optimal filtering is a difficult problem by itsself and beyond the scope of this thesis. We simply
assume that we are either given such a filter or that our filter is sufficiently accurate.

27

r(ξj
0:n) of all rewards rj

k obtained throught the history ξj
0:n. The most common types of

rewards found in the literature (Neumann & Morlock, 2002) are additive combinations
of rewards and most relevant other combinations can be phrased in the same manner.

Definition 2 An additive reward of a history ξ0:n = (x0:n,u0:n−1) of length n is
given by

r(ξ) ≡ g1

(
A−1

n−1∑
k=0

akg2 (r (xk,uk, xk+1, k + 1))

)
, (3.10)

with a normalization constant A =
∑n−1

k=0 ak and g1, g2 : R → R being strictly mono-
tonically increasing functions. If g1, g2 are identity mappings, we call it the strictly
additive reward of a history.

This definition covers most of the definitions in the literature. In reinforcement
learning, two cases are common. The average reward case defined by strictly additive
rewards with ak = 1 is given by r(ξ) = n−1

∑n−1
k=0 r (xk,uk, xk+1, k + 1). The discounted

case, in contrast, is defined by strictly additive rewards with ak = γk and a discount
factor γ ∈ [0, 1) can be expressed by

r(ξ) = (1− γ)−1(1 + γn+1)
n−1∑
k=0

γkr (xk,uk, xk+1, k + 1) (3.11)

where the term γn+1 � 1 for all interesting cases and γn+1 → 0 for the infinite
horizon case n → ∞. The normalization constant (1 − γ)−1(1 + γn+1) is omitted
in most of the reinforcement learning literature. Even the multiplicative case r(ξ) =∏n−1

k=0 r (xk,uk, xk+1, k + 1), often found in the operations research literature (Neumann
& Morlock, 2002) can be expressed by choosing ak = 1/n, g1(r) = exp r and g2(r) = ln r.
The reinforcement learning literature has focussed primarily on strictly additive rewards
and most of the results are coined by that assumption. However, in our preliminary
work on probabilistic policy search methods in Section 3.4, we will see that multiplicative
rewards can become fairly useful when the rewards are probabilities5.

3.1.1.2 Objective of Reinforcement Learning

Let us now assume we can generate histories or roll-outs with our motor system and that
we have chosen a form of a parameterized motor policy for creating actions. As we have
already discussed in our basic definitions in Section 3.1.1.1, we intend to maximize the
rewards over the possible histories. This measure is commonly known as the expected
return (Sutton, McAllester, Singh, & Mansour, 2000b) and is the objective function
of classical reinforcement learning. This formulation allows us to define the goal of
reinforcement learning.

5Note that additive rewards can be transformed into multiplicative ones
P

i ri = ln
Q

i exp (ri). The
optimization problems exp

`
E

˘P
i ri

¯´
6= E

˘Q
i exp (ri)

¯
have different optimal solutions.

28

Definition 3 The objective of reinforcement learning is to find the policy π∗ = πθ∗

with parameters θ∗ ∈ RL which is optimal with respect to an evaluation function J(θ)
using data from trial and error. The most common evaluation function is the expected
return

J(θ) ≡ Eξ{r(ξ)} =
∫

Ξ
pθ(ξ)r(ξ)dξ, (3.12)

where pθ(ξ) denotes the probability density of a complete history ξ ∈ Ξ if the policy
parameters are θ.

For any method introduced in this chapter, we will start with Definition 3 and
subsequently make use of the appropriate assumptions from Section 3.1.1.1 in order to
simplify the problem. We realize that there are three major simplifications, i.e., (1)
the strictly additive rewards assumption from Definition 2, (2) the Markov assumption
and (3) the time-invariance assumption from Definition 1. The strictly additive rewards
assumption allows us to partition the reward into an expectation over a mixture of
history pieces given by

J1(θ) ≡ A−1
n−1∑
k=0

ak

∫
Ξ0:k+1

pθ(ξ0:k+1)r(T (x0:k+1,u0:k), k + 1)dξ0:k+1, (3.13)

where ξ0:k+1 = (x0:k+1,u0:k) denotes the incomplete path up to time step k. As the
trajectory pieces pθ(ξ0:k+1) which are being optimized are shorter, it is usually easier
to find a solution in this formulation. When we make additional usage of the Markov
assumption, we can simplify this kind of problem from a history-based problem into a
state-based one with

J2(θ) ≡ A−1
n−1∑
k=0

∫
X
akd

π
k(x)

∫
U
π(u|x, k)

∫
X
p(x′|x,u, k)r(x,u, x′, k)dx′dudx, (3.14)

with dπ
k+1(xk+1) =

∫
Xk×Uk p(x0:k+1,u0:k)dx0:kdu0:k being the distribution of states at

time step k when following the policy. Note that the expectation is no longer given over
histories but simply over states and actions. At this point, we are leaving path based
policy search and are getting towards a state and action based formulation required
for value function methods. After making use of the third assumption by addition-
ally dropping the dependence on time, we obtain the standard reinforcement learning
scenario

J3(θ) =
∫

X
dπ(x)

∫
U
π(u|x)r(x,u)dudx. (3.15)

using the definitions dπ(x) = A−1
∑n−1

k=0 akd
π
k(x) and r(x,u) = Ex′{r(x,u, x′)}. Note

that the state distribution dπ(x) is a mixture distribution over the states. While this
excercise of simplifying the expected return might appear pointless at this instant, we
assure the reader that it will become very useful in Section 3.2.

29

3.1.1.3 Policy Search or Greedy Value Functions Methods

Already in the early dynamic programming literature which has been one of the inspi-
rations of reinforcement learning, Bellman (1967, 1971) noted that there were two ways
how sequential decision problems can be tackled, i.e., the solution could be searched
in value function space or in policy space (Bellman, 1967, 1971). Since its emergence
as a seperate research field, both solution branches have been present in reinforcement
learning and the popularity of both approaches has varied significantly over the last two
decades. Early policy search methods such as the policy gradient method REINFORCE
(Williams, 1992) as well as the original Actor-Critic (Barto, Sutton, & Anderson, 1983)
received significant attention in the late 1980s and beginning 1990s. Due to the success
of temporal difference learning, greedy value function methods dominated the field dur-
ing most of the 1990s (Sutton, 2000) and significantly reduced interest in policy search
methods. Only recently, policy search methods have received a revival mostly due to
new results in policy gradient methods as well as due to novel simulation methods such
as PEGASUS.

In this section, we do not want to make the point that either greedy value function
methods or policy search methods are in general superior. However, we do want to
show that the combination of the greedy operator with value function methods can be
dangerous when applied to high-dimensional motor control problems.

Greedy value function techniques attempt to learn the value function

Qπ
k(x,u) = E

{
n∑

i=k

airi

∣∣∣∣∣ xk = x,uk = u

}
, (3.16)

and then greedily compute the policy which is optimal with respect to this value func-
tion by π′(u|x, k) = δ(u − argmaxQπ

k(x,u)) where δ(·) is the Dirac impulse or point
mass distribution. In most cases, exploration is added by using a softmax distribution
instead of the point distribution or a low probability for other actions, e.g., as in Sut-
ton’s ε-greedy formulation (Sutton & Barto, 1998b). The major focus in the literature
has been on learning the value function Qπ

k(x,u) from data. In this case, we use a func-
tion approximator given by Qπ

k(x,u) = φ(x, u, k)Tw where w denotes the parameters
and φ(x, u, k) the basis functions of the function approximator. This problem is well-
behaved if appropriate basis functions φ(x, u, k) are known such as in the discrete case
where a look-up table suffices or in the linear quadratic case with a quadratic expan-
sion. For such basis functions, the parameters w can be solved using either temporal
difference methods, monte-carlo rollouts or, in the presence of analytically tractable sys-
tem models, one can apply dynamic programming. However, neither look-up table or
quadratic expansions generalize to higher dimensional, nonlinear systems and therefore
perfect basis functions are rarely available. In most practical cases, approximate basis
functions have to be applied, which results in a variety of problems as the optimal value
function often cannot be represented accurately even if the intial value functions can
(Bartlett, 2002; Tsitsiklis & Roy, 1997) and different reinforcement learning methods

30

converge to different solutions with the more faster methods being biased (Schoknecht,
2003).

Even if we had ideal basis functions, these greedy value function methods are prob-
lematic. No matter how many rollouts the learning system generates, it can never fill
the high-dimensional state-space required for motor skills. As a greedy policy update
cannot guarantee to improve the policy – instead it can get worse proportional to the
maximal error of the learned value function at every single update step, often leading
to divergence (Bertsekas & Tsitsiklis, 1996)6. A simple thought experiment makes the
resulting problems clear: assume we have a robot arm with seven degrees of freedom
which has a state-space of 14 dimensions with both joint velocities and positions. It is
clear that even if we only required p different areas along each joint to be visited, we
would need to p14 data points to fill the whole space. In discrete dynamic program-
ming this is known as the ‘curse of dimensionality’ (Bellman, 1957) for the explosion
of possible states; for methods which sample data we have the same problem with an
explosion of the number of required samples. Thus, the amount of samples required for
motor skill learning with value functions can be too large for all practical purposes.

Therefore, value functions methods are problematic in the application to motor skills
as they need to learn a value function for the complete attainable state space, i.e., they
are global methods. However, let us assume a good initialization of the motor skill
which we attempt to learn, for example through supervised imitation learning. This
knowledge would then yield an initial policy π0 which contains a rudimentary behavior.
If we additionally make use of attractor policies as outlined in Section 2.3, we can make
sure that each policy is defining a tube in the state space in which the exploration tries
out variations of the nominal behaviour. Using data from trial and error, we can now
improve the policy using the rewards of the histories. These methods are commonly
referred to as policy search.

Policy search has numerous advantages in comparison to greedy value function meth-
ods. The difference lies in the use of exploration. Value function need to explore all
dimensions so that the greedy operator can be applied globally. Policy search methods
instead require exploration only as means to determine the direction of improvement
close to the current policy. A special need for complicated basis functions is not required
and the resulting solutions are not limited to strictly additive rewards. Furthermore, in
practice, most successful applications of reinforcement learning to motor skills can be
shown to be policy search methods as we will discuss in Section 3.1.2.2. However, the
big disadvantage is the global optimality is significantly harder to achieve.

6In the special case of localized problems (e.g., discrete grid-worlds), irrelevant or not achievable
states can be negelected; however, for motor skills this is not applicable as we would have to limit the
robot to not enter these regions of the joint- or task-space.

31

3.1.2 Motor Skills through Reinforcement Learning

Up to now, we have introduced reinforcement learning with a focus on motor skills,
but this relation has remained rather abstract. In this section, we attempt to make
this relation more precise through an intoductionary example in Section 3.1.2.1, and a
review on previous work on motor learning through reinforcement learning techniques
in Section 3.1.2.2.

3.1.2.1 Introductionary Example

In this section, we intend to illustrate through an example that the reinforcement learn-
ing framework is an appropriate way to think about motor skills. Assume that we intend
to teach a robot the motor skill of hitting a baseball sitting on a stand, i.e., the “T-ball”
swing shown, similar as children in the USA or Japan learn their early basic baseball
swings. In this case, we have an episodic, discrete task which can be represented by a
single motor primitive M1 and Aθ (q, q̇) q̈ = bθ (q, q̇). Since Aθ (q, q̇) = τI for exam-
ples in the framework outlined in Section 2.3.2, we can fairly easily turn the learning if
such a dynamic system in a reinforcement learning problem. The state of the robot and
of the primitive are combined in a state x and the primitive’s output is turned into an
action policy πθ(u|x) = N (u|µ,Σ) with µ = q̈ = bθ (q, q̇) being the nominal behavior
and Σ being the exploration of our policy.

Let us assume that we have obtained an example for the T-ball motor skill using
supervised learning based on a human presentation. This demonstration would now
allow us to learn a initialization of the motor skill, i.e., the initial parameters θ of the
motor primitive while the exploration parameters Σ have to be set additionally. We
can then create histories ξj

0:n from repeating the experiment of attempting to hit the
ball properly. For each series, the initial state of the robot is brought to a start or
initial state x0 ∼ p(x0), subsequently the motor primitive creates the mean behavior
u0 ∼ πθ(u0|x0) which in turn results into the transfer to a next state x1 ∼ p(x1|x0,u0).
The last two steps are continued until convergence of the phase state of the primitive
at step n. At this instant, the learning system receives a reward r (x0:n,u0:n) – which
in the case of T-ball can depend on (a) how properly the ball was hit, (b) how far the
ball went and (c) how much power the robot learner consumed. The specification of
the reward is left up to the teacher; it is clear that the reward in (a) is available at
one instant on the trajectory, the reward (b) is only available upon completion or later
while (c) can be fed into the learning system during the path.

3.1.2.2 Previous Work

Throughout the literature, there has been a lot of attention on the application of rein-
forcement learning to motor learning problems. However, most of these attempts have
been limited to low-dimensional or linear systems. The most well-known examples are
given here.

32

The most common motor skills aquired through reinforcement learning are toy skills
such as pole balancing where a pole has to be balanced on cart, e.g., (Sutton & Barto,
1998b), or robot end-effector (Atkeson & Schaal, 1997; Schaal, 1997). Further examples
of toy skills are pole swing-ups where the pole has to be brought to the upright position
with a limited torque before being balanced7, and the ball-on-a-beam problem (Ben-
brahim, 1996) where a ball is balanced on a beam (Benbrahim, 1996). In simulation,
other toy skills such as acrobot swing-ups (Sutton & Barto, 1998b) have been discussed.

More complex skills have been obtained by Gullapalli et al. (1993a, 1994, 1995)
who were among the first persons to use reinforcement learning for a real motor skill
involving a robot arm. In their case, the robot had to learn how to insert a peg in a
hole using feedback from the environment. Not so suprisingly, they used policy gradient
based policy search methods (Gullapalli, 1993a; Gullapalli et al., 1994; Gullapalli, 1995).

Recently, there has been a lot of work on learning locomotion using reinforcement
learning. This work ranges from gait pattern learning , balancing to robot stand-ups.
Examples for learning legged locomotion with reinforcement learning can be found in
Morimoto and colleagues (Jun Morimoto, 2000; Morimoto, 2002), Benbrahim & Franklin
(Benbrahim & Franklin, 1997; Benbrahim, 1996), Zhang & Meng (C. Zhou, 2000) and
Salatin et al. (A.W. Salatian, 1997).

In summary, most previous work on aqcuiring motor skills with robotic systems
was developed either in a rather task-specific way, i.e., it is not clear how a presented
learning or representation framework would generalize to another motor skill. It is this
lack to a general learning approach to motor skills which motivates this thesis proposal.

3.2 Policy Gradient Techniques

Policy search methods are the more appropriate kind of reinforcement learning for motor
skill aquisition and refinement since they scale better than global value function based
methods as we have discussed in Section 3.1. Among the most straightforward forms of
policy search for parameterized policies are policy gradient methods. These follow the
gradient of the expected return ∇θJ(θ) with respect to the policy parameters θ, i.e.,

θt+1 = θt + αt ∇θJ(θ)|θ=θt
+ αtεt, (3.17)

where αk ∈ R+ is a time dependent sequence of learnig rates, and εt ∈ RL denotes the
error in the gradient estimate. Gradient methods are guaranteed to converge to at least

7Note that this corresponds the more complicated version of the mountain-car problem studied in
the reinforcement learning literature.

33

a local maximum (Duflo, 1997) if the following conditions hold, i.e., (i) the learning
rates fulfill

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t <∞, (ii) the gradient estimate is crescent8, i.e.,

∇θJ(θ)|Tθ=θt

(
∇θJ(θ)|θ=θt

+ E{εt}
)
> 0, (3.18)

(iii) the errors in the estimator are random but non-zero9, i.e., E{εT
t εt} > 0 and

bounded εT
t εt <∞.

Model-based gradient methods been applied to the optimization of control systems
since at least the 1960s (Hasdorff, 1976; Jacobson & Mayne, 1970; Dyer & McReynolds,
1970) and have remained a useful approach in current research (Morimoto & Atkeson,
2003; Li & Todorov, 2004). However, these traditional techniques require a precise
model of the system and reward function (including the derivatives with respect to
the parameters of both state-transition model and reward functions), and only few of
these are applicable in the presence of uncertainty. In most cases, the evaluation of
the gradient for a given system, given reward, and deterministically executed actions
still has to be achieved numerically as an analytical solution does not exist in most
cases. The numerics of the gradient calculation are not even always stable (Hasdorff,
1976; Jacobson & Mayne, 1970; Dyer & McReynolds, 1970). Thus, these methods
are not generally applicable when models of the environment are not completely known
(which includes hidden state situations), and also when the environment has a stochastic
component, as typically the case when robots have contact with the world (e.g., as in
baseball, locomotion, or object grasping).In our own work we are interested in pursuing
alternative ways of obtaining the gradient by perturbing the system. Instead of building
and using approximate models of the system to obtain the gradient, we can approximate
the gradient from histories of the real system. Such methods are known from a variety
of fields including sensitivity analysis (Fuerverger, McLeish, Kreimer, & Rubinstein,
1989), simulation optimization (Glynn, 1987, 1990; Sutton et al., 2000b), operations
research (Marbach & Tsitsiklis, 1999, 2003; Konda & Tsitsiklis, 2000) and also from
reinforcement learning (Williams, 1986, 1992; Gullapalli, 1993b; Baxter & Bartlett,
1999).

In this section, we will discuss how policy gradients can be estimated efficiently
from data without knowledge of a model. First, we will derive a general form for policy
gradient estimation, and subsequently, we will show how this estimator can be improved
in terms of reducing the variance of the gradient estimate.

8This condition is formalization of the statement that the expected angle between the true gradient
∇θJ(θ)|θ=θt

and its estimate ∇θJ(θ)|θ=θt
+ εt is less than 90◦. Unlike unbiasedness, i.e., E{εt} = 0,

this condition can be fulfilled even for finite samples.
9The requirement for random errors εt in the gradient estimate is only a formality so that the gradient

estimator cannot get stuck near non-isolated saddle points which is unlikely in practice.

34

3.2.1 Policy Gradient Estimation

The main problem in policy gradient methods is to estimate the gradient from data
without biasing the gradient direction such that it is no longer crescent. It is well-known
in the simulation community that there are at least two types of gradient estimators for
the optimization of stochastic systems (Glynn, 1989), i.e., finite-difference methods and
likelihood ratio methods. Finite-difference methods perturb the parameters by a small
amounts δθi and then solve the regression problem

gTδθi = J̃(θ+ δθi)− J̃(θ), (3.19)

where the approximations J̃(·) of the expected return J(·) are obtained by averaging
over histories. Despite being the simplest approach and being very efficient for deter-
ministic problems (Spall, 2003), finite-difference estimators are well-known to be very
inefficient in stochastic settings (Glynn, 1989). The reason for this is that the variance
in the expected return estimates is often larger than the change caused by parameter
variation which complicates the credit assignment problem for the respective parame-
ters10. However, as they require the least knowledge on the system, they are still used
in reinforcement learning (Fidelman & Stone, 2004; Kohl & Stone, 2004) and can be
relatively successful11.

The other branch of gradient estimators, likelihood ratio methods, are theoretically
more involving. Most of the gradient methods applied to multistage optimization rely
upon the “likelyhood ratio trick”, i.e., when differentiating an expectation Eξ{r(ξ)}
with respect to a variable θ, we have

∇θJ(θ) =
∫

Ξ
∇θpθ(ξ)r(ξ)d ξ =

∫
Ξ
pθ(ξ)∇θ log pθ(ξ)r(ξ)dξ = Eξ{∇θ log pθ(ξ)r(ξ)},

(3.20)
assuming r(ξ) does not depend on the variable θ. Most policy gradient estimators in
the reinforcement learning are based upon Equation (3.20) and which is also true for the
ones on which we will focus in this section. To our knowledge, this is the most general
formulation of the policy gradient estimation problem.

3.2.1.1 General Likelyhood Ratio Gradient Estimation

Before entering the topic of policy gradients for sequential control problems, we first need
to make clear how Equation (3.20) allows us to estimate the gradient of the expected

10In fact, a single rollout can do significantly more damage as there is no credit assignment to the
taken actions. However, note that this problem is no longer present if deterministic sampling techniques
such as PEGASUS are employed.

11However a further problem exists as the exploration is limited to admissible policy variations θ+δθi

which have to be carefully checked. Otherwise, for instance, the control system may become unstable.

35

(a) Estimates using a baseline !
!

" #$%$&"
µ

'(')*+ ')*& '&*+ &*&

&*+

&*,

&*-

&*(

&*)

&*&

Controller gain . %) #

C
o
n
tr

o
ll
er

ex
p
lo

ra
ti

o
n

.
%

/
(

&*(

&*,

&*0

&*1

)*&

&*&
&*&)*&&*(&*, &*0 &*1

Parameter .)

P
a
ra

m
et

er
. (

(b) Estimates using a baseline !
!

" #$%"
µ

$ "
!

" #µ

Figure 3.1: This figure shows the effects of baselines on the policy gradient estimates for
a simple toy problem with two states and actions. With bad baselines, the components
point into all directions and the gradient estimator has to average our the error in all
directions.

return. The straightforward estimator of the gradient can be obtained by replacing the
expectation Eξ{f(ξ)} by the sample average

〈
f(ξj)

〉
j=1:m

in Equation (3.20) yielding

∆ =
〈
∇θ log pθ(ξj

2|ξ
j
1)r(ξj)

〉
j=1:m

=
1
m

m∑
j=1

∇θ log pθ(ξj
2|ξ

j
1)r(ξj), (3.21)

with the history parted in ξj = [ξj
1, ξ

j
2] where ξj

2 denotes all variables depending on
θ while ξj

1 not directly dependent on ξj
1. Averaging over samples will result into an

unbiased gradient estimate. However, the variance in the gradient estimate can be
significant. The cause of this variance is that the magnitude of gradient components from
different histories can often be significantly larger than the actual gradient while pointing
in stringly different directions as indicated in Figure 3.1. Therefore, the direction of the
gradient estimate depends completely on the accuracy of the rewards and the sampling
of paths which act as weighting factors for the different log-derivatives. In many cases,
the components ∇θ log pθ(ξj

2|ξ
j
1)r(ξj) are much larger than the actual gradient ∇θJ

and point in all directions as in Figure 3.1. Ideally, we want to extract this large part
out of the gradient components so that it no longer needs to be averaged out. There is
probably only one way to achieve this, i.e., through a baseline. To our knowledge, the
first to notice this detail were Dayan (Dayan, 1990) in a slightly different context and

36

Williams (1986, 1992) in the context of policy gradients. We can make the reasoning
behind baselines concrete in Lemma 4.

Lemma 4 If a random variable ξ can be partitioned into ξ = (ξ1,ξ2) with p(ξ) =
p(ξ1)pθ(ξ2|ξ1) then a baseline b(ξ1) will not bias the gradient estimate and the likelihood
ratio gradient is given by

∇θi
J(θ) = Eξ{∇θi

log pθ(ξ2|ξ1) (r(ξ)− bi(ξ1))}. (3.22)

If ξ1 = ∅ is empty, then b(ξ1) = b ∈ RL can only be a constant vector.

Proof. We can show that the baseline averages out in the expectation. As
∫
Ξ2
pθ(ξ2|ξ1)dξ2 =

1 with any path partition we also have∫
Ξ2

pθ(ξ2|ξ1)∇θi
log pθ(ξ2|ξ1)bi(ξ1)dξ2 = bi(ξ1)

∫
Ξ2

∇θi
pθ(ξ2|ξ1)dξ2 = 0,

and therefore the gradient estimate is not biased by the components.
Note that Lemma 4 has a more general baseline than common in the literature -

the extensive literature on baselines to date (Berny, 2000; Weaver & Tao, 2001a, 2001b;
Greensmith, Bartlett, & Baxter, 2004; Williams, 1992; Greensmith, Bartlett, & Baxter,
2001; Lawrence, Cowan, & Russell, 2003) appears to have overlooked the fact that a
seperate baseline can be selected for each policy parameter.

Baselines can have a significant effect on the convergence speed of the gradient
estimator. This is illustrated in Figure 3.1 where a zero baseline results into gradients
in all directions while a smartly chosen one secures that the gradient estimate always
correlates with the true gradient.

3.2.1.2 Policy Gradient Estimation for Sequential Decision Problems

We can make use of the fact that the probability density of trajectories can be given by

pθ (ξ0:n) =
n−1∏
k=0

p (xk+1|T (x0:k,u0:k), k)πθ(uk|T (x0:k,u0:k−1), k), (3.23)

for any general sequential decision task. It is straightforward from Equation (3.23) that
the log-likelihood derivative of the history can be given by

∇θ log pθ (ξ0:n) =
n−1∑
k=0

∇θ log πθ(uk|T (x0:k,u0:k−1), k). (3.24)

37

This derivative does not include any notion of the system model and therefore the
likelihood ratio gradient can be written by inserting Equation (3.20) into Equation
(3.24) which yields

∇θJ(θ) = Eξ

{(
n−1∑
k=0

∇θ log πθ(uk|T (x0:k,u0:k−1), k)

)
(r(ξ)− b(x0))

}
, (3.25)

without any further assumptions. In here, we can only partition ξ2 = [x1:n,u0:n−1],
ξ1 = x0, thus the baseline is given by b(x0). From Equation (3.25) we can proceed in
several ways. Equation (3.25) can be expanded to have more complicated baselines into

∇θJ(θ) = Eξ

{
n−1∑
k=0

∇θ log πθ(uk|T (x0:k,u0:k−1), k) (r(ξ)− b(T (x0:k,u0:k−1), k))

}
,

(3.26)
which allows a significantly more complicated baseline b(T (x0:k,u0:k−1), k) as we can
partition into ξ2 = [uk], ξ1 = [x0:k,u0:k−1], thus the baseline is given by b(x0). Does
Equation (3.26) gain anything over Equation (3.25)? Not in general – but in the presence
of parametric forms of the baseline this can yield a significant advantage.

Both Equation (3.25) and (3.26) are equivalent to the well-known estimator Episodic
REINFORCE (Williams, 1992) if we assuming that the reward r(ξ) is just a final reward,
i.e., r(ξ) = r(xn). Note that Williams (1992) unnecessarily assumed that the policy and
system had to be Markovian and that he only allowed final rewards. There is no explicit
need for the system to be Markovian or the reward to be additive in order to obtain a
policy gradient.

3.2.1.3 Policy Gradients in Markovian Strictly Additive Problems

By assuming that our problem is Markovian and that our rewards are strictly additive,
we take both Equation (3.25) and (3.26) one step further. First, we realize that Equation
(3.25) can be expanded if the assumption that the problem was strictly additive holds,
and if we furthemore make use of the Markov assumption, we can simplify the gradient
to

∇θJ(θ) = A−1Eξ

{
n−1∑
k=0

ak

(
k∑

h=0

∇θ log πθ(uh|T (x0:h,u0:h−1), h)

)
(r(T (x0:k+1,u0:k))− b(x0, k))

}
,

(3.27)

= A−1Eξ

{
n−1∑
k=0

ak

(
k∑

h=0

∇θ log πθ(uh|xh, h)

)
(r(xk,uk, xk+1, k)− b(k))

}
.

(3.28)

38

Note that Eξ {∇θ log πθ(uh|xh, h)r(xk,uk))} = 0 for k < h as a past reward cannot
depend on future actions. We realize that

∑k
h=0∇θ log πθ(uh|xh, h) can be estimated

recursively in Markovian problems by

dπ
k+1(x)∇θ log dπ

k+1(x) =
∫

Xt×Ut

dπ
k(x)πθ(u|x, k) (∇θ log dπ

k(x) +∇θ log πθ(u|x, k)) dxdu,

(3.29)
as dπ

k+1(x) =
∫

Xt×Ut d
π
k(x)πθ(u|x, k)dxdu. This insight allows another simplification,

particularly when also assuming time-invariance, start-state and next-state indepen-
dance, i.e.,

∇θJ(θ) = A−1Eξ

{
n−1∑
k=0

ak (∇θ log dπ
k(xk) +∇θ log πθ(uk|xk, h)) (r(xk,uk, xk+1, k)− b(k))

}
,

(3.30)

= Ex,u {(∇θ log dπ(x) +∇θ log πθ(u|x)) (r(x,u))− b)} . (3.31)

This type of algorithms is considered the REINFORCE-type and methods such as
GPOMDP employ this gradient.

The focussed reader has probably noticed that the derivatives ∇θ log dπ(x) are non-
trivial to estimate for large horizons as they often become derivatives through stationary
distributions. For obtaining such derivatives, Equation (3.29) becomes an integral equa-
tion (Tricomi, 1985). This lead Sutton et al. (2000a) and Konda et al. (2002, 2000, 2001)
to instead marginalize apply the simplifications to Equation (3.26). If furthermore, we
have one of the standard cases of reinforcement learning, we also have ak+h = akah and
can obtain

∇θJ(θ) = Eξ

{
n−1∑
k=0

ak log πθ(uk|xk, k)

(
n−1∑
h=k

ah−kr(xk,uk, xk+1, k)− b(xk, k)

)}
,

(3.32)

= Eξ

{
n−1∑
k=0

ak log πθ(uk|xk, k) (Qπ
k(x,u)− b(xk, k))

}
, (3.33)

by defining Qπ
k(x,u) = E

{∑n−1
h=k ah−kr(xk,uk, xk+1, k)

∣∣∣ xk = x,uk = u
}

as the value
function. If we additionally assume time-invariance, we obtain

∇θJ(θ) = Ex,u {∇θ log πθ(u|x) (Qπ(x,u)− b(x))} , (3.34)

the main result by Konda et al. (2000) and Sutton et al. (2000). Note that this
gradient – while the prettiest in theory, is actually the most complicated as obtaining
the function Qπ(x,u) usually requires the solution of Bellman integral equations. The
notion that these were easier to solve than solving the integral equation of the stationary

39

distribution derivatives is incorrect as these are the adjungated homogenious form of the
later. This means that both are equally hard to solve and in most cases the adjungated
homogeneous has to be solved in order to solve the later (Sabelfels, 1987).

3.2.2 Variance Reduction Techniques for Policy Gradient Methods

In general, we would want a likelihood ratio policy gradient estimators ∆ to have two
features, (i) we require it to be unbiased, i.e., it always converges to the true gradient
in expectation

∇θJ(θ) = Eξ{∆}, (3.35)

while at the same time, (ii) we need the covariance of the gradient estimate

Σ = Eξ{(∆−∇θJ(θ))(∆−∇θJ(θ))T } → min (3.36)

to be minimal. In many cases, we can settle for minimum variance given by

σ2 = Tr Σ = Eξ{((∆−∇θJ1(θ))T (∆−∇θJ1(θ))} → min,

which can be achieved easier.
In this section, we will deal with two kind of variance reduction techniques. Firstly,

we are going to discuss how to minimize the variance by choosing a minimum variance
baseline. We derive this result in general, such that it will be applicable to any of the
previosuly discussed gradient estimators. However, while baselines can be used to reduce
the variance of the estimate resulting from the sampling of the different histories, they
often cannot handle the credit assignment problem and reduce the variance by adjusting
how much credit is given to past actions.

3.2.2.1 Unbiased Variance Reduction through Optimal Baselines

In this section, we will attempt to find minimum variance baselines. We will first start
with minimum variance scalar baselines and then extend the analysis to parameterized
baselines. Nevertheless, we realize that by minimizing

σ2(b) ∝ Eξ{∆T (b)∆(b)} (3.37)

with respect to a scalar baseline, we only minimize the length of the gradient estimate
∆(b) and not the variance in the direction of the gradient estimate. As not the length
of the gradient determines the performance of gradient methods but the direction, we
need to find the gradient which minimizes the variance in direction. It makes clear that
not the variance of the gradient estimator but its covariance matrix

Σ = Eξ{((∆−∇θJ(θ))(∆−∇θJ(θ))T } (3.38)

40

has to be minimized – an optimization problem which cannot be solved in general as this
problem does not have a single unique solution. The reason for this nonexistence is that
not all objectives functions, i.e., the 0.5

(
L2 − L

)
covariance terms, can be minimized

through setting L baseline components at once.

Scalar Minimum Variance Baselines. In this section, we focus on scalar baselines
as in the literature (Berny, 2000; Weaver & Tao, 2001a, 2001b; Greensmith et al., 2004,
2001; Lawrence et al., 2003) and we realize that we can make a very strong statement
on these. We can in fact derive the unbiased likelyhood ratio gradient estimator with
the minimum variance baseline given in Theorem .

Theorem 5 The unbiased gradient estimator with the minimum variance baseline is
given by

∆ =
〈
∇θ log pθ(ξj

2|ξ
j
1)
(
r(ξj)− b(ξj

1)
)〉

j=1:m
, (3.39)

with the baseline

bi(ξ1) =

〈
∇θ log pθ(ξj

2|ξ
j
1)T∇θ log pθ(ξj

2|ξ
j
1)r(ξj)

∣∣∣ξj
1 = ξ1

〉
j=1:m〈

∇θ log pθ(ξj
2|ξ

j
1)T∇θ log pθ(ξj

2|ξ
j
1)
∣∣∣ξj

1 = ξ1

〉
j=1:m

, (3.40)

where
〈
f(ξj)

∣∣ξj
1 = ξ1

〉
j=1:m

= m−1
∑m

j=1 f(ξj)δ(ξj
1 = ξ1) with

∑m
j=1 δ(ξ

j
1 = ξ1) > 1

denotes the sample average conditioned on ξ1. If ξ1 = ∅ is empty, then b(ξ1) = b is a
constant.

Proof. The average over histories is unbiased in the sense of Equation (3.35) as

∆ =
1
m

m∑
j=1

Eξ

{
∇θ log pθ(ξj

2|ξ
j
1)
(
r(ξj)− b(ξj

1)
)}

= ∇θJ(θ).

We can rewrite the variance of Equation (3.37) using the unbiasedness as

σ2(b) = Eξ{∆T (b)∆(b)} − 2∇θJ(θ)TEξ{∆(b)}+ ‖∇θJ(θ))‖22 ,
= Eξ{∆T (b)∆(b)} − ‖∇θJ(θ))‖22 , (3.41)

where ‖∇θJ(θ))‖22 does not depend on the baseline and can therefore be dropped. We
intend to find the baseline function b(·) which minimizes ∆T (b)∆(b). We realize that the

41

partition of our random variable simplifies that choice as for minimizing Eξ {f(ξ, b(ξ1))}
for any function f(ξ, b(ξ1)) a lower bound is given by

min
b(·)

Eξ {f(ξ2, b(ξ1))} =
∫

Ξ1

p(ξ1)
∫

Ξ2

p(ξ2)f(ξ, b(ξ1))dξ2dξ1,

≥
∫

Ξ1

p(ξ1) min
b̃=b(ξ1)

∫
Ξ2

p(ξ2)f(ξ, b̃)dξ2dξ1,

= Eξ1

{
minb̃=b(ξ1)Eξ2

{
f(ξ, b̃)

∣∣∣ξ1

}}
.

Therefore we can choose the optimal baseline by minimizing just ∆T (b̃,ξ1)∆(b̃,ξ1)
instead of ∆T (b)∆(b). This solution to

∆T (b̃,ξ1)∆(b̃,ξ1) = Eξ2

{
(r(ξ)− b(ξ1))∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1) (r(ξ)− b(ξ1))

∣∣ξ1

}
→ min

with respect to b(ξ1) can be given by

b(ξ1) =
Eξ2

{
∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1)r(ξ)

∣∣ξ1

}
Eξ2

{∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1)|ξ1}
.

We can replace the expectations by the sample averages and obtain Equation (3.48).
Various forms of Theorem 5 have occured in (Berny, 2000; Weaver & Tao, 2001a,

2001b; Greensmith et al., 2004, 2001; Lawrence et al., 2003) for applications to special
cases.

Minimum Variance Parametric Baselines. However, as we are usually interested
into continuous or very large discrete problems where a random variable ξ1 rarely reoc-
curs, we see that the condition

∑m
j=1 δ(ξ

j
1 = ξ1) > 1 is fairly academic. Unless ξ1 = ∅

is empty with a constant baseline, this can rarely occur in an implementation of the
algorithm. Instead if we assume that the baseline generalizes over a larger region than
just the point ξj

1 = ξ1, we can rewrite the baseline as

b(ξ1) =
K∑

h=1

bhp(h|ξ1), (3.42)

where bh ∈ R is the baseline for this region and p(h|ξ1) is the conditional probability
that region h contains variable ξ1. We can write this baseline a parametric form of

b(ξ1) = ψ(ξ1)Tbp, (3.43)

with basis functions ψ(ξ1) = [p(1|ξ1), p(2|ξ1), . . . , p(K|ξ1)]T , and baseline parameters
bp = [b1, b2, . . . , bK] ∈ RK . Finding the optimal baseline now reduces to finding the
optimal baseline parameters bp.

42

Theorem 6 If the baseline is given in a parametric form b(ξ1) = ψ(ξ1)Tbp, we can
estimate the minimum variance baseline parameters by

bp = Ũ
−1
ṽ, (3.44)

with

Ũ =
〈
ψ(ξ1)∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1)ψ(ξ1)T

〉
, (3.45)

ṽ =
〈
ψ(ξ1)∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1)r(ξ)

〉
. (3.46)

Proof. We take up Equation (3.41) and rewrite the problem as

σ2(bp) ∝ Eξ{∆T (bp)∆(bp)} = bT
pUbp − 2vTbp +w,

with

U = Eξ{ψ(ξ1)∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1)ψ(ξ1)T },
v = Eξ{ψ(ξ1)∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1)r(ξ)},
w = Eξ{∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1)r2(ξ)}.

The optimal solution is given by b = U−1v. When replacing the expectations by sample
averages, we obtain Ũ, ṽ, and Equation (3.44).

The optimal baseline for K = 1 is obviously equivalent to the constant baseline for
the case where ξ1 = ∅ is empty. The usage of parametric baselines has to our knowledge
been suggested both by Berny (2000) and Lawrence et al. (2003). Theorem is fairly
similar to the one in (Lawrence et al., 2003). Lawrence et al. (2003) also showed that
parametric baselines can yield a dramatic improvement over constant baselines.

Multidimensional Baselines. As noted before in Section 3.2.1.1, it has to our knowl-
edge not yet been noted in the literature that the baseline is not confined to a scalar
but can be a vector. The extension multidimensional baselines allows us to estimate
the baseline for each gradient direction seperately and therefore minimize the variance
in the gradients direction instead of its length. The baselines are suprisingly simple to
find as we show in Theorem 7.

Theorem 7 The unbiased policy gradient estimator ∆ = [∆1,∆2, . . . ,∆L] ∈ RL with
a baseline b(ξj

1) = [b1, b2, . . . , bL] ∈ RL is given by

∆i =
〈
∇θi

log pθi
(ξj

2|ξ
j
1)
(
r(ξj)− bi(ξ

j
1)
)〉

j=1:m
, (3.47)

43

for i = 1, 2, . . . , L. The baseline which minimizes each element of the trace of the
covariance matrix (i.e., the variance) is given by

bi(ξ1) =

〈
∇θi

log pθ(ξj
2|ξ

j
1)∇θi

log pθ(ξj
2|ξ

j
1)r(ξj)

∣∣∣ξj
1 = ξ1

〉
j=1:m〈

∇θi
log pθ(ξj

2|ξ
j
1)∇θi

log pθ(ξj
2|ξ

j
1)
∣∣∣ξj

1 = ξ1

〉
j=1:m

, (3.48)

while the baseline which minimizes the unweighted sum of all covariance matrix elements
is given by

b = F−1H1, (3.49)

where F denoted the Fisher information matrix, H the Hessian.
If ξ1 = ∅ is empty, then b(ξ1) = b is a constant vector.

Proof. As in Theorem 7, by requiring unbiasedness, we can simplify the gradient
estimator into

Σ = Eξ{∆∆T } − ‖∇θJ(θ)‖2 ∝ Eξ{∆∆T }.

As we can rewrite the components of the covariance matrix in Equation (3.38) into

Σih ∝ Fihbhbi −Hih (bh + bi) + Cih,

with

Fih = Eξ{∇θi
log pθ(ξ2|ξ1)∇θh

log pθ(ξ2|ξ1)},
Hih = Eξ{∇θi

log pθ(ξ2|ξ1)∇θh
log pθ(ξ2|ξ1)r(ξ)},

Cih = Eξ{∇θi
log pθ(ξ2|ξ1)∇θh

log pθ(ξ2|ξ1)r2(ξ)}.

The term Cih is not relevant for the optimization problem. When just minimizing
σ2 = Tr Σ, we obtain Equation (3.48). When minimizing the average of all elements
Σih of Σ, we obtain

Σ̄ =
L∑

i=1

L∑
h=1

Σih = bTFb− 2hTb+ c, (3.50)

where h =
∑L

h=1Hih, c =
∑L

i=1

∑L
h=1Cih. This has an obvious solution given by

Equation (3.49).
Theorem 7 shows that the optimal scalar baselines is nothing only but a projection

of the multidimensional baselines.

44

3.2.2.2 Biased Variance Reduction through Credit Assignment

In sequential problems, we have seen the eligibility terms

∇θ log dπ
k(x) ≈

k∑
h=0

∇θ log πθ(uh|xh, h), (3.51)

and have realized that these grow over time k. This growth only holds when the mixing
time k∗ of the Markov chain has been reached where dπ

k(x) ≈ dπ
∞(x). From that point

the summands start averaging each other out. However, in many practical cases, the
mixing time is large and can never be reached in practice. Furthermore, the stationary
distribution may be so large that it will never be completely visited. In fact, in many
cases the actions past the mixing time are not even relevant, e.g., the actions taken
after the T-ball player in the example in Section 3.1.2.1 has hit the ball will barely be
relevant to achieving the hitting in the first place. Therefore, alternate ways have to be
found in order to prevent these sums to become too large.

Nevertheless, not all past actions have contributed to the reward but will obtain a
large amount of credit simply because they happened early on in the action sequence.
This makes our goal clear: How can we give past actions less credit for the newly
received reward? If appropriately chosen, such credit assignment will limit the size and
the variance of the terms.

Exponentially Weighted Eligibilities The problem of credit assignment to past
actions is well-known in the value function based literature; Sutton and Barto (1998)
spends a whole chapter on the application of exponentially weighted eligibilities when
used for estimating value functions12. For gradient methods, it has been noted expo-
nential forgetting of the contributing eligibility terms

∇θ log dπ
k(x) ≈ (1− λ)

k∑
h=0

λk−h∇θ log πθ(uh|xh, h), (3.52)

with a forgetting factor λ ∈ [0, 1] can reduce the variance in the gradient estimate
significantly (Kimura & Kobayashi, 1998; Baxter, Bartlett, & Weaver, 2001; Baxter
& Bartlett, 1999) while biasing the gradient estimate (Baxter et al., 2001; Baxter &
Bartlett, 1999). As long as the gradient is still decrescent, i.e., Equation (3.18) holds, the
convergence to the optimal solution can be guaranteed. Nevertheless, this is obviously
not the case in general as a reweighting can bias the gradient arbitrarily. However,
if the factor λ is set to 0 ≤ λ0 < 1, this can be used to reduce the variance in the
gradient estimate initially by biasing the gradient to go for the optimal solution for

12However, note that for value function methods, eligibilities do not bias the value function estimate
for ideal basis functions. This is not the case for eligibilities in gradient methods where they change the
optimal solution like a discounting factor.

45

! = 0

! = 1

(a) 1d LQR optimal controller gains

C
o
n
tr

o
ll
er

g
a
in

!

Discount factor !

"#"

$"#%

$"#&

$"#'

$"#(

$"#)

$"#*

$"#+
"#" "#& "#("#* "#, %#"

! = 0

! = 1

(b) 2d LQR optimal controller gains

Controller gain !&

C
o
n
tr

o
ll
er

g
a
in

!
%

"#"

$"#)

$%#)

$%#"

$&#)

$&#"

$'#"
"#"$"#%$"#& "#% "#& "#'

λ = 0 λ = 0

λ = 1
λ = 1

Figure 3.2: This figure shows that the optimal controller parameters are in fact functions
of the eligibility rate λ. In (a), you can see the optimal controller parameter k for a one
dimensional LQR system with A = b = Q = R = 1 as a function of the discount rate γ.
In (b), the optimal controller parameters k1 and k2 of a two dimensional LQR system
with A = diag(1, 2), b = [2, 1]T , Q = I, and R = 1 are given as in implicit function
of γ. It is clear from these plots, that the discount rate affects the optimal controller
parameters.

a short horizon initially. When gradually increasing λ from λ0 to 1, we increase the
planning horizon and can make sure that we will converge to the optimal solution.

While there are significant results using such biased gradient methods (Baxter et al.,
2001; Baxter & Bartlett, 1999), it is not clear whether this concept is really in general
helpful. It is quite easy to show that already for simple problems such as linear quadratic
regulation, the exponentially weighted gradient converges to significantly different op-
timal solution θ∗ depending on the parameter λ as shown in Figure 3.2. The chosen
optimal solutions can be distributed over most of the search space – we clearly gain little
if go away from our optimal solution by using a lower horizon λ0 < 1 as demonstrated
in Figure 3.2.

Estimated Elibilities As an interesting alternative to exponential forgetting, we can
also estimate the eligibility weightings of the different time steps. Let us discuss this for

46

general sequential problems with no assumptions on the rewards using Equation (3.25),
where we approximate the gradient with the estimatior

∇θi
J(θ) ≈ Eξ

{(
n−1∑
k=0

λ̃k,i log πθi
(uk|T (x0:k,u0:k−1), k)

)
(r(ξ)− b(x0))

}
, (3.53)

with λ̃k,i ∈ R being a sequence of numbers which tells us how much credit we give
this time-step for achieving the rewards. Note, by setting λ̃k,i = λn−1−k, we can turn
this estimate into exponential forgetting. As pointed out in (Lawrence et al., 2003), for
the eligibility weightings λ̃k,i, we can often do guaranteed better than this. Just as in
(Lawrence et al., 2003), we rewrite the gradient estimator into

∆ = ΛVT , (3.54)

with Λki = λ̃k,i and VT
i = log πθi

(uk|T (x0:k,u0:k−1), k) (r(ξ)− b(x0)). For Λ = 1, we
have the unbiased estimator with ∇θJ(θ) = 1Eξ{VT }.

Theorem 8 The optimal eligibility matrix is given by

Λ = Eξ{VTV}−1Eξ{V}T∇θJ(θ), (3.55)

Proof. As we cannot guarantee unbiasedness, we can only simplify the gradient esti-
mator into

Σ = Eξ{∆∆T } − 2Eξ{∆}∇θJ(θ)T + ‖∇θJ(θ)‖2 ,
∝ Eξ{ΛVTVΛT } − 2Eξ{ΛVT }∇θJ(θ)T ,

= ΛEξ{VTV}ΛT − 2ΛEξ{V}T∇θJ(θ)T .

We can minize the whole covariance matrix for every single element which results into
Equation (3.55).

As ∇θJ(θ) is unknown, Theorem 8 appears rather useless on the first inspection.
Lawrence et al. obtain upper bounds Λ̂ki on the matrix elements Λki = λ̃k,i so that
Λki ≤ Λ̂ki ≤ 1. However, their results show little improvements over the compared
methods without estimated eligibilities.

3.2.3 Compatible Function Approximation

As we have noted before, the accumulated reward r(ξ) of a history can be noisy, i.e.,
r(ξ) = r̄(ξ) + ε. Particularly, this is the case if we are estimating just Qπ

k(x,u) for
the gradient given in Equation (3.33) which is after all the central problem of value
function reinforcement learning. In such cases, function approximation for the reward
function is required – one of the main difficulties of value function methods. However,
policy gradient methods come with an important additional feature, i.e., they give a

47

clear form of what kind of linear function approximation fβ(ξ) = φ(ξ)Tβ can be used
for approximating r(ξ) without biasing the gradient.

Theorem 9 The only linear function approximation fβ(ξ) which approximates r(ξ) in
a mean-squared error sense

min
β

MSE(ω) = min
β
Eξ

{(
r(ξ)− fβ(ξ)

)2}
. (3.56)

which does not bias the gradient estimator

∇θJ(θ) = Eξ

{
∇θ log pθ(ξ2|ξ1)

(
fβ(ξ)− b(ξ1)

)}
, (3.57)

his given by
fβ(ξ) = φ(ξ1,ξ2)Tw+ψ(ξ1)Tv, (3.58)

with the basis functions
φ(ξ1,ξ2) = ∇θ log pθ(ξ2|ξ1), (3.59)

while ψ(ξ1) can be chosen arbitrarily. The parameters of the approximator are β =
[w, v].

Proof. If the mean-squared error is minimized with respect to the parameters ω, we
have

Eξ

{(
r(ξ)− fβ(ξ)

)
∇βfβ(ξ)

}
= 0.

which combined with Equations (3.58) yields

Eξ

{(
r(ξ)− fβ(ξ)

) [
φ(ξ1,ξ2)T ,ψ(ξ1)T

]T}
= 0.

As Equation (3.59) yields

Eξ

{(
r(ξ)− fβ(ξ)

)
∇θ log pθ(ξ2|ξ1)

}
= 0, (3.60)

we realize that the error in fβ(ξ) has to be orthogonal to the gradient ∇θpθ(ξ2|ξ1). As
the expression is zero we can subtract it from the likelyhood ratio gradient with baseline
in Equation (3.22) and obtain

∇θJ(θ) = Eξ

{
∇θ log pθ(ξ2|ξ1)

(
fβ(ξ)− b(ξ1)

)}
. (3.61)

We see that component ψ(ξ1)Tv can be chosen arbitrarily. It cannot bias the gradient
as it can be seen as part of the baseline, i.e., b(ξ1) = b̃(ξ1) +ψ(ξ1)Tv.

In the proof of Theorem 9, we have realized that all additional basis functions are
simply part of the baseline. This poses the question whether the estimated baseline
b(ξ1) = ψ(ξ1)Tv is of any significance. Let us assume the scenario that we estimate w
with a seperate estimator, i.e., we have a mean-squared error as a function of v given
by

48

MSE(v) = Eξ

{
vTψ(ξ1)ψ(ξ1)Tv+

(
r(ξ)−φ(ξ1,ξ2)Tw

)
2ψ(ξ1)Tv (3.62)

+
(
r(ξ)−φ(ξ1,ξ2)Tw

) (
r(ξ)−φ(ξ1,ξ2)Tw

)}
. (3.63)

As Eξ2

{
φ(ξ1,ξ2)Tw

}
= 0, we have a least-squares problem with the solution

v = Eξ

{
ψ(ξ1)ψ(ξ1)T

}−1
Eξ {ψ(ξ1)r(ξ)} . (3.64)

This solution is not the same as the one for the parametric minimum-variance baseline
in Section 3.2.2.1. However, it is the minimum variance baseline with respect to a
metric – if we reformulate the baseline derivations in Section 3.2.2.1, we realize that
if the problem of having the minimum variance baseline for an unbiased gradient with
respect to the metric

m(ξ) = ∇θ log pθ(ξ2|ξ1)T∇θ log pθ(ξ2|ξ1), (3.65)

we arrive at the baseline in Equation (3.64). At this point, this metric defies our
comprehension of the topic and it might even appear “wrong” to estimate the baseline
like this. Nevertheless, it will become very important in Section 3.3 where the metric
will suddenly re-appear from a different point of view. However, this is not the only
strange change in comparison to the optimal baselines. A baseline in Section 3.2.2.1
could also be a vector, i.e., there would be one baseline per parameter. Baseline in the
sense of the compatible function approximation has to be a scalar.

We intend to find the minimum variance unbiased estimator so that we can find the
optimal ω in the sense of Equation (3.56) based upon data from roll-outs; this data
corresponds to the rewards and basis functions of the m rollouts of length n. In order
to achieve this, we rewrite Equation (3.56) as

MSE = (Y − Xβ)T (Y − Xβ) , (3.66)

with β = [w, v] denoting possible compatible function approximations, Xi = [φ(ξi
1,ξ

i
2);ψ(ξi

1)]T

denoting the basis functions for the data points, and Y i = r(ξi) denoting the targets of
the regression. The minimum variance unbiased estimator to this regression problem is
given by

β∗ = argminβ (Y − Xβ)T (Y − Xβ) =
(
XTX

)−1
XTY. (3.67)

We will now derive such estimators for the compatible function approximation of all
three kind of gradients explained before, i.e., we attempt to find a compatible function
estimator for general gradient estimators such as in Equation (3.25), and for both the
REINFORCE/GPOMDP in Equation (3.26) and Policy Gradient Theorem in Equation
(3.34). While these are all the same in expectation, their baselines result in fairly
specialized estimators.

49

3.2.3.1 Reward Sequence Approximation for General Gradient Estimators

As we have seen in Section 3.2.1.2 for the estimator g1, the baseline b can only be a
constant, the compatible function approximation is obviously given by

fw(ξj) =

(
N∑

τ=0

∇θ log π(uj
τ |T (xj

0:τ ,u
j
0:τ−1), τ)

)T

w, (3.68)

for history ξj and the targets are the accumulated rewards along the trajectory r(ξj).
When we bring this into the standard regression form in Equation (3.66), the basis
functions are given by

XT =
[
φ1

1:n, φ2
1:n, . . . , φm

1:n

1, 1, . . . , 1

]
, (3.69)

where φj
1:n =

∑N
τ=0∇θ log π(uj

τ |T (xj
0:τ ,u

j
0:τ−1), τ) denotes the log-probability of the

j-th roll-out, and the targets are given by

YT =
[
r11:n, r21:n, . . . , rm

1:n

]
, (3.70)

where rj
1:n = r(ξj) denotes the sum of the rewards of the j-the roll-out. The solution

β∗ = [wT , b]T can then be derived as shown in Theorem 10.

Theorem 10 The solution β∗ = [wT
1 , b1]T to the regression problem can be given by

w1 = F−1
1 g1, (3.71)

b1 = m−1

(
1 + φ̄T

(
mF1 − φ̄φ̄

T
)−1

φ̄

)(
r̄ − φ̄T

F−1
1 g

)
(3.72)

with Fisher information F1, average eligibility φ̄, average reward r̄,policy gradient with
baseline g1 and without baseline g given by

F1 =
m∑

j=1

φ
j
1:n(φj

1:n)T , φ̄ =
m∑

j=1

φ
j
1:n, r̄ =

m∑
j=1

rj
1:n, (3.73)

g1 =
m∑

j=1

φ
j
1:n

(
rj
1:n − b1

)
, g =

m∑
j=1

φ
j
1:nr

j
1:n. (3.74)

Proof. We make use of Theorem 17 in the Appendix. We first obtain

XT
1X1 = F1, XT

1X2 = φ̄, XT
2X2 = m, XT

1 Y = g = g1 +φ̄ b, XT
2 Y = r̄. (3.75)

50

We insert these into Equations (A.2, A.3, A.4) from Theorem 17, and obtain

w = β1 = F−1
1

(
g− φ̄b

)
= F−1

1 g1, (3.76)

b = β2 = Q−1
(
r̄ − φ̄T

F−1
1 g

)
, (3.77)

with Q−1 = m−1(1 + φ̄T (mF1 − φ̄φ̄
T)−1φ̄).

Note that this gradient estimator is in fact using exactly the REINFORCE gradient
and just one, constant baseline. This can alternatively be derived using Suttons form by
adding up the advantages along a path and is also known as episodic natural actor-critic
(Peters et al., 2003a, 2003b). As this point, it might appear that we have thrown the
child out together with the water as we need the reward sequence to approximate the
gradient and at the same time need the gradient to approximate the reward sequence.

3.2.3.2 Reward Prediction for G(PO)MDP Estimators

As we have seen in Section 3.2.1.2 for the estimator g2, the baseline b depends only on
time (and the initial state), the compatible function approximation is obviously given
by

fw(ξj
0:k) =

(
k∑

τ=0

∇θ log π(uτ |xτ , τ)

)T

w, (3.78)

and the targets are the actual rewards along the trajectory, i.e., r(ξ0:t) = rt. When we
bring this into the standard regression form in Equation (3.66), the basis functions are
given by

X =
[
φ1

1:1, φ1
1:2, . . . , φ1

1:n, φ2
1:1, . . . , φm

1:n

u1, u2, . . . , un, u1, . . . , un

]
, (3.79)

where φj
1:n =

∑n
t=1∇θ log π(uj |xj , t) denotes the log-probability of the j-th roll-out,

and ui denotes the i-th unit vector basis function of length n. The targets are given by

Y =
[
r11, r12, . . . , r1n, r21, . . . , rm

n

]
, (3.80)

where rj
t denotes the rewards at time t of the j-the roll-out. The solution β∗ = [wT , b]T

can then be derived as shown in Theorem 11.

Theorem 11 The solution β∗2 = [wT
2 , b2]T to the regression problem can be given by

w2 = F−1
2 g2, (3.81)

b2 = m−1

(
In + Φ̄T

(
mF2 − Φ̄Φ̄T

)−1
Φ̄
)(
r̄− Φ̄T

F−1
1 g

)
(3.82)

51

!" !" "

" "

"

!

#$%$& !!

'
($
)*
+
!"!

#$%$& !

,%-./%01&.21+($)*+!#!,!""- ,3-.'45%+$%6&.21+($)*+!$!,!""-

'
($
)*
+
"

!" !"

Figure 3.3: This figure shows the state-action value function and the advantage function
for LQR. It is obvious that these have very little structure in common as one is bowl
while the other is a saddle.

with Fisher information F1, average eligibility φ̄, average reward r̄, policy gradient with
baseline g1 and without baseline g given by

F2 =
m∑

j=1

n∑
i=1

φ
j
1:i

(
φ

j
1:i

)T
, Φ̄ =

m∑
j=1

n∑
i=1

φ
j
1:ie

T
i , r̄ =

m∑
j=1

n∑
i=1

rj
iei, (3.83)

g2 =
m∑

j=1

n∑
i=1

φ
j
1:i

(
rj
i − bi

)
, g =

m∑
j=1

n∑
i=1

φ
j
1:ir

j
i . (3.84)

Proof. We make use of Theorem 17 in the Appendix. We first obtain

XT
1X1 = F2, XT

1X2 = Φ̄, XT
2X2 = mIn, XT

1 Y = g = g2 +Φ̄b2 , XT
2 Y = r̄. (3.85)

We insert these into Equations (A.2, A.3, A.4) from Theorem 17, and obtain

w = β1 = F−1
2

(
g− Φ̄b

)
= F−1

2 g2, (3.86)

b = β2 = Q−1
(
r̄ − Φ̄T

F−1
2 g

)
, (3.87)

with Q−1 = m−1(In + Φ̄T (mF2 − Φ̄Φ̄T)−1Φ̄).
Note that this gradient compatible reward estimator is in fact using exactly the

GPOMDP gradient with a time-variant scalar baseline bk. However, just like in the last
section, we not the apparant problem.

52

3.2.3.3 Compatible Value Function Approximation for the Policy Gradient
Theorem

The whole idea of compatible function approximation was originally phrased in terms
of approximating the value function Qπ(x,u) without biasing the gradients (Konda,
2002; Sutton et al., 2000a; Konda & Tsitsiklis, 2000, 2001), i.e., it was thought up for
the third case. While it is obvious that it is for the third case more important than
for the other two as Qπ(x,u) is never available without large noise, it is also the most
difficult as the baseline depends on the state x and a good parametric baseline is often
not available apriori.

At this point, a most important observation is that the compatible function approx-
imation fπ

w(x,u) is mean-zero with respect to the action distribution, i.e.,∫
U
π(u|x)fπ

w(x,u)du =
∫

U
∇θπ(u|x)Tdu w = 0, (3.88)

since from
∫

Uπ(u|x)du = 1, differention with respect to θ results in
∫

U∇θπ(u|x)du = 0
(which is equivalent to the baseline in Lemma). Thus, fπ

w(x,u) can in general only
represent an advantage function Aπ(x,u) = Qπ(x,u)− V π(x). This different structure
makes the learning problem significantly more difficult as these two functions have
very little structure in common as can be observed for the example of linear quadratic
regulation in Figure 3.3. We will show in this section, how this problem can be tackled
from three different points of view.

Monte Carlo Approach. In (Sutton et al., 2000b) and (Konda & Tsitsiklis, 2000) it
was suggested to estimate fπ

w(x,u) from unbiased estimates Q̂π(x,u) of the action value
function, e.g., obtained from roll-outs and using least-squares minimization between fw

and Q̂. While possible in theory, one needs to realize that this approach implies a func-
tion approximation problem where the parameterization of the function approximator
only spans a much smaller subspace of the training data – e.g., imagine approximating a
quadratic function with a line. In practice, the results of such an approximation depends
crucially on the training data distribution and has thus unacceptably high variance –
e.g., fit a line to only data from the right branch of a parabula, the left branch, or data
from both branches.

However, when we add the parametric baseline b(x) = ψ(x)Tv into the least-squares
problem as in previous sections, we can obtain an easiert estimation problem. In this
case, we can write our least squares problem in the standard regression form in Equation
(3.66) and the basis functions are given by

X =
[
φ1

1, φ1
2, . . . , φ1

n, φ2
1, . . . , φm

n

ψ1, ψ2, . . . , ψn, ψ1, . . . , ψn

]
, (3.89)

53

where φj
k = ∇θ log π(uj |xj , k) denotes the log-probability derivative of the k-th time-

step of the j-th roll-out, and ψk = ψ(xk) denotes the additional basis functions at that
time-step. The targets are given by

Y =
[
r11:n, r12:n, . . . , r1n:n, r21:n, . . . , rm

n:n

]
, (3.90)

where rj
t denotes the rewards at time t of the j-the roll-out. The solution β∗ = [wT , v]T

can then be derived as shown in Theorem 11. While we can apply Theorem 17 like
before, it will not result in any simplificantions in comparison to Equation (3.67) and
can only be used in order to show the baseline does not bias the estimator.

Temporal Difference Learning. Another method suggested in (Konda & Tsitsiklis,
2000) was to apply temporal difference learning to the compatible function approxima-
tion. The advantage function cannot be learned with temporal difference bootstrapping
without knowledge of the value function as it is the essence of temporal difference learn-
ing is to compare the value V π(x) of the two adjacent states – but this value has been
subtracted out in Aπ(x,u). Hence, a TD-like bootstrapping using exclusively the com-
patible function approximator is impossible. To remedy this situation, we observe that
we can write the Bellman equations (e.g., see (Baird, 1993)) in terms of the advantage
function and the state-value function

Qπ(x,u) = Aπ(x,u) + V π(x) = r (x,u) + γ

∫
X
p(x′|x,u)V π(x′)dx′,

given here in the discounted form. Inserting Aπ(x,u) = fπ
w(x,u) and an appropriate

basis functions representation of the value function as V π(x) = ψ(x)Tv = b(x), we can
rewrite the Bellman Equation as a set of linear equations

∇θ log π(ut|xt)Tw+ψ(xt)Tv = r(xt,ut) + γψ(xt+1)Tv+ ε(xt,ut, xt+1) (3.91)

where ε(xt,ut, xt+1) denotes an mean-zero error term. These equations enable us to
formulate some novel algorithms in the next sections. For solving these equations, we
cannot plainly apply the normal least-squares reasoning, i.e., just treat ψ(xt)−ψ(xt+1)
as additional basis function (Sutton et al., 2000a) unless we have a model which lets
us explore more actions in the same state13. However, at the cost of being biased
(Schoknecht, 2003) by the additional basis functions, we can apply LSTD regression
methods to this problem (Peters et al., 2003a, 2003b). However, this form requires
significantly better basis functions than monte carlo methods just to give us a good
gradient – bad basis functions can arbitrarily turn the gradient around and for bad
basis functions there are examples where the policy can become worse at every single
step (Peters et al., 2003a, 2003b).

13This class of methods is called the residual gradient methods. From our experience, they are only
efficient if the problem and policy are deterministic or discrete.

54

Episodic Natural Actor-Critic. Surprisingly, the Bellman equation offers another
way out of this dilemma. We can sum up the state-action-next state-reward samples up
along a trajectory and obtain the equation(

n∑
t=0

γn∇θ log π(ut|xt)Tw

)
+ γnψ(xn)Tv−ψ(x0)Tv =

n∑
t=0

r(xt,ut) + εt. (3.92)

As γn → 0 for n→∞ at exponential pace, we can omit that term and the term ψ(x0)Tv

can be arbitrary; however, in most cases, a scalar basis function is sufficient. We realize
that our regression problem simply becomes(

n∑
t=0

γn∇θ log π(ut|xt)T

)
w+ V =

n∑
t=0

r(xt,ut) + ε(xt,ut, xt+1), (3.93)

which can be shown to be exactly equivalent to the general problem given in Section
3.2.3.1.

3.2.3.4 Notes on the Compatible Function Approximation

In this context, we discuss a few further notes on the compatible function approximation
in order to clarify the results of this section.

Is the Compatible Function Approximation useful? What did we gain with the
compatible function approximation? The hope was that the compatible function ap-
proximation would elivate problems with the gradient estimation as it would reduce the
error in the gradient estimate by projecting the reward or value function depending on
the problem in a lower-dimensional space. Seemingly, this is not the case as every time
when we intend to estimate the compatible function approximation, we seemingly have
to estimate the gradient, a complex matrix and the baseline first – just to obtain the
parameters of the compatible function approximation. Furthermore, we have noticed
that the baseline which is estimated together with the compatible function approxima-
tion does not minimize the variance of the vanilla policy gradient estimator – do we
need a second baseline?

All Action. However, if we had a relatively good value ofw, it can make the gradient
estimation problem easier to a certain extent. Based on both the policy gradient theorem
and the compatible function approximation, we derive an estimate of the policy gradient
as

∇θJ(θ) =
∫

X
dπ(x)

∫
U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)Tdudx w = G(θ)w. (3.94)

55

Since π(u|x) is chosen by the user, even in sampled data, the integral

G(θ, x) =
∫

U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)Tdu (3.95)

can be evaluated analytically or empirically without actually executing all actions. It is
also noteworthy that the baseline does not appear in Eq. (3.94) as it integrates out, thus
eliminating the need to find the second baseline postulated in the previous paragraph.
Nevertheless, the estimation of G(θ) =

∫
X d

π(x)G(θ, x)dx is still expensive since dπ(x)
ist not known.

3.3 Natural Policy Gradients

While there has been a lot of work on obtaining policy gradients as we have seen in the
last section, even perfectly estimated or analytically derived policy gradients converge
tremendously slow or prematurely and are fragile towards reparameterization. The
problems are already apparant for toy problems as can be seen in Figure 3.4 for two toy
problems. As shown in (Kakade, 2001) even higher order methods such as Hessian based
gradients do not help. This has led Kakade to question whether we are obtaining the
right gradient, i.e., the gradient which is invariant to reparameterization and converges
robustly for most parameterizations.

Amari (1998) suggested that in such cases, the natural policy gradient is preferable to
the policy gradient. A natural gradient is the one with respect to the Fisher information
matrix

∇̃θJ(θ) = F−1(θ)∇θJ(θ). (3.96)

This led Kakade (2001) to investigate the possibility of researching of natural gradients
in reinforcement learning. As we have noted before in Section 3.2.3.4, when inserting
the compatible function approximation into the gradient, we obtain

∇θJ(θ) = Eξ{∇θ log pθ(ξ)∇θ log pθ(ξ)T }w = G(θ)w, (3.97)

where the matrix G(θ) does not depend on the rewards at all. In previous work, this
has been named the all-action matrix (Peters et al., 2003a, 2003b; Sutton, McAllester,
Singh, & Mansour, 2001). Kakade (Kakade, 2001) argued that G(θ, x) is the point
Fisher information matrix for state x, and that G(θ) =

∫
Xd

π(x) G(θ, x)dx, therefore,
denotes the ‘average Fisher information matrix’. However, going one step further, we
demonstrate in Appendix A.2 that G(θ) = F(θ) is indeed the true Fisher informa-
tion matrix and does not have to be interpreted as the ‘average’ of the point Fisher
information matrices. Therefore, the natural gradient can be computed as

∇̃θJ(θ) = G−1(θ)F (θ)w = w, (3.98)

56

!" !#$% !#$& !&$% &$&

Controller gain ' (
#

!

&$&

&$%

&$)

&$*

&$"

&$#

C
o
n
tr

o
ll
er

ex
p
lo

ra
ti

o
n

'
(

+
"

(a) LQR policy gradients

!" !#$% !#$& !&$% &$&

Controller gain ' (
#

!

&$&

&$%

&$)

&$*

&$"

&$#

C
o
n
tr

o
ll
er

ex
p
lo

ra
ti

o
n

'
(

+
"

(b) LQR natural gradients

&$& #$&&$" &$) &$, &$-

Parameter '
#

P
a
ra

m
et

er
'

"

(c) Two state problem policy gradients

&$& #$&&$" &$) &$, &$-

Parameter '
#

&$"

&$)

&$,

&$-

#$&

&$&

P
a
ra

m
et

er
'

"

(d) Two state problem natural gradients

&$"

&$)

&$,

&$-

#$&

&$&

Figure 3.4: This figure compares the natural gradient to the policy gradient. In (a), the
policy gradient, and in (b) the natural gradient of the LQR problem with a Gaussian
policy is shown. The LQR again had the parameters A = b = R = Q = 1, and
γ = 0.95. The natural gradient had to be normalized to be nicely visible. In (c), the
policy gradient, and in (d) the natural gradient of the two state problem with a decision
border policy. The natural gradient of the two-state problem has not been normalized.
The discount factor of the two-state problem is γ = 0.95.

since G(θ) = F (θ) (c.f. Appendix A.2). The resulting policy improvement step is thus
θi+1 = θi + αw where α denotes a learning rate.

Several properties of the natural policy gradient are worthwhile highlighting (and
will be more substantiated in later sections):

• Convergence guarantees are the same as for ‘vanilla gradients’ (Amari, 1998)

• By choosing a more direct path to the optimal solution in parameter space, the
natural gradient has, from empirical observations, faster convergence and avoids
premature convergence of ‘vanilla gradients’ (cf. Figure 3.4).

57

• The natural policy gradient can be shown to be covariant, i.e., if independent
of the coordinate frame chosen for expressing the policy parameters (cf. Section
3.3.1.1).

• As the natural gradient analytically averages out the influence of the stochastic
policy (including the baseline of the function approximator), it requires fewer data
point for a good gradient estimate than ‘vanialla gradients’.

3.3.1 Properties of the Natural Policy Gradient

In this section, we will emphasize certain properties of the natural actor-critic. In par-
ticular, we want to give a simple proof of covariance of the natural policy gradient, and
discuss Kakade’s (2002) observation that in his experimental settings the natural pol-
icy gradient was non-covariant. Furthermore, we will discuss another surprising aspect
about the Natural Actor-Critic (NAC) which is its relation to previous algorithms. We
briefly demonstrate that established algorithms like the classic Actor-Critic archietc-
ture(Sutton & Barto, 1998a), ε-soft SARSA (Sutton & Barto, 1998a), and Bradtke’s
Q-Learning (Bradtke, Ydstie, & Barto, 1994) can be seen as special cases or approxi-
mations of NAC.

3.3.1.1 Clarification of the Covariance Discussion

When Kakade (2002) originally suggested natural policy gradients, he came to the
disappointing conclusion that they were not covariant. As counterexample, he suggested
that for two different linear Gaussian policies, (one in the normal form, and the other
in the information form) the probability distributions represented by the natural policy
gradient would be affected differently, i.e., the natural policy gradient would be non-
covariant. We intend to give a proof at this point showing that the natural policy
gradient is in fact covariant under certain conditions, and clarify why Kakade (2002)
experienced these difficulties.

Theorem 12 Natural policy gradients updates are covariant for two policies πθ param-
eterized by θ and πh parameterized by h if (i) for all parameters θi a function there
exists a function θi = fi(h1, . . . , hk), (ii) the derivative ∇hθ and its inverse ∇hθ

−1

exist, and (iii) the stepsize α is infinitesimally small.

Proof. For small parameter changes ∆h and ∆θ, we have ∆θ = ∇hθ
T ∆h. If the

natural policy gradient is a covariant update rule, a change ∆h along the gradient
∇hJ(h) would result in the same change ∆θ along the gradient ∇θJ(θ) for the same
scalar step-size α. By differentiation, we can obtain ∇hJ(h) = ∇hθ∇θJ(θ). It is

58

straightforward to show that the Fisher information matrix includes the Jacobian ∇hθ

twice as factor, i.e.,

F(h) =
∫

X
dπ(x)

∫
U
π(u|x)∇h log π(u|x)∇h log π(u|x)Tdudx,

= ∇hθ

∫
X
dπ(x)

∫
U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)Tdudx∇hθ

T ,

= ∇hθF(θ)∇hθ
T .

This shows straightforwardly that natural gradient in the h parameterization is given
by

∇̃hJ(h) = F−1(h)∇hJ(h) =
(
∇hθF(θ)∇hθ

T
)−1 ∇hθ∇θJ(θ).

This has a surprising implication as it makes it straightforward to see that the natural
policy is covariant since

∆θ = α∇hθ
T ∆h = α∇hθ

T ∇̃hJ(h),

= α∇hθ
T
(
∇hθF(θ)∇hθ

T
)−1 ∇hθ∇θJ(θ),

= αF−1(θ)∇θJ(θ) = α∇̃θJ(θ),

assuming that ∇hθ is invertable. This concludes that the natural policy gradient is in
fact a covariant gradient update rule.

Practical experiments show that the problems occurred for Gaussian policies in
(Kakade, 2002) are in fact due to the selection the stepsize α which determines the
length of ∆θ. As the linearization ∆θ = ∇hθ

T ∆h does not hold for large ∆θ, this
can cause divergence between the algorithms even for analytically determined natural
policy gradients. Theorem 1 can therefore explain the difficulties occurred by Kakade.

Bagnell & Schneider (2002) recently clarified that natural policy gradients were
covariant; however, this theorem extends their results by explaining the difficulties oc-
curred by Kakade.

3.3.1.2 Relation to previous algorithms

In this section, we want to clarify the relation of our algorithm to several previous
algorithms, i.e., the original Actor-Critic, SARSA and Bradtke’s Q-Learning.

Original Q-Learning. Surprisingly, the original Actor-Critic algorithm (Sutton &
Barto, 1998a) is a form of the Natural Actor-Critic. By choosing a Gibbs policy
π(ut|xt) = exp(θxu)/

∑
b exp(θxb), with all parameters θxu lumped in the vector θ,

(denoted as θ = [θxu]) in a discrete setup with tabular representations of transition
probabilities and rewards. A linear function approximation V π(x) = ψ(x)Tv with

59

v = [vx] and unit basis functions ψ(x) = ux was employed. Sutton et al.’s (Sutton &
Barto, 1998a) online update rule is given by

θt+1
xu = θt

xu + α1 (r(x, u) + γvx′ − vx) ,

vt+1
x = vt

x + α2 (r(x, u) + γvx′ − vx) ,

where α1, α2 denote learning rates. The update of the critic parameters vt
x equals the

one of the Natural Actor-Critic in expectation as TD(0) critics converges to the same
values as LSTD(0) and LSTD-Q(0) for discrete problems (Boyan, 1999). Since for the
Gibbs policy we have

∂ log π(b|a)
∂θxu

=


1− π(b|a) if a = x and b = u,
−π(b|a) if a = x and b 6= u,
0 if otherwise,

and
∑

b π(b|x)Aπ(x, b) = 0, we can evaluate the advantage function and derive

Aπ(x, u) = Aπ(x, u)−
∑

b
π(b|x)Aπ(x, b)︸ ︷︷ ︸

=0

(3.99)

=
∑

b

∂ log π(b|x)
∂θxu

Aπ(x, b) =
∂ log π(u|x)

∂θ

T

a.

with a = [Aπ(x, u)]. Since the compatible function approximation represents the ad-
vantage function, i.e., fπ

w(x,u) = Aπ(x, u), we realize that the advantages equal the
natural gradient, i.e., a = w. Furthermore, the TD(0) error of a state-action pair (x, u)
equals the advantage function in expectation, and therefore the natural gradient update

wxu = Aπ(x, u) = Ex′{r(x, u) + γV π(x′)− V π(x)|x, u},

corresponds to the average online updates of Actor-Critic. As both update rules of
the Actor-Critic correspond to the ones of NAC, we can see the Original Actor-Critic
algorithm as a Natural Actor-Critic algorithm.

SARSA. SARSA with a tabular, discrete state-action value function Qπ(x, u) and an
ε-soft policy improvement π(ut|xt) = exp(Qπ(x, u)/ε)/

∑
û exp(Qπ(x, u)/ε) can also be

seen as an approximation of NAC. When treating the table entries as parameters of a
policy θxu = Qπ(x, u), we realize that the TD update of these parameters corresponds
approximately to the natural gradient update since wxu = εA(x, u) ≈ εEx′{r(x, u) +
γQ(x′, u′)−Q(x, u)|x, u}. However, the SARSA-TD error equals the advantage function
only for policies where a single action u∗ has much better action values Q(x, u∗) than
all other actions; for such special cases, ε-soft SARSA can be seen as an approximation
of NAC. This also corresponds to Kakade’s (2002) observation that greedy update step
(such as the ε-soft greedy update), approximates the natural policy gradient.

60

Bradtke’s Q-Learning Bradtke et al. (1994) proposed an algorithm with policy
π(ut|xt) = N (ut|kT

i xt, σ
2
i) and parameters θi = [kT

i , σi]T (where σi denotes the ex-
ploration, and i the policy update time step) in a linear control task with linear state
transitions xt+1 = Axt + but, and quadratic rewards r(xt,ut) = xT

t Hxt + Ru2
t . They

evaluated Qπ(xt,ut) with LSTD(0) using a quadratic polynomial expansion as basis
functions, and applied greedy updates:

ki+1 = argmaxki+1
Qπ(xt,ut = kT

i+1xt) (3.100)

= −(R+ γbTPib)−1γbPiA, (3.101)

where Pi denotes policy-specific value function parameters related to the gain ki; no
update the exploration σi was included. Similarly, we can obtain the natural policy
gradient w = [wk, wσ]T , as yielded by LSTD-Q(λ) analytically using the compatible
function approximation and the same quadratic basis functions. As discussed in detail
in (Peters, Vijayakumar, & Schaal, 2004), this gives us

wk = (γATPib+ (R+ γbTPib)k)Tσ2
i , (3.102)

wσ = 0.5(R+ γbTPib)σ3
i . (3.103)

Similarly, it can be derived that the expected return is J(θi) = −(R + γbTPib)σ2
i for

this type of problems, see (Peters et al., 2004). For a learning rate αi = 1/ ‖J(θi)‖, we
see that

ki+1 = ki + αtwk

= ki − (ki + (R+ γbTPib)−1γATPib)

= (R+ γbTPib)−1γATPib, (3.104)

which demonstrates that Bradtke’s Actor Update is a special case of the Natural Actor-
Critic. NAC extends Bradtke’s result as it gives an update rule for the exploration –
which was not possible in Bradke’s greedy framework.

3.3.2 Evaluations and Applications

In this section, we present several evaluations comparing the natural policy gradient
estimation with general reward function approximation with previous algorithms. As
comparisons, we consider the GPOMDP algorithm as good example for a vanilla policy
gradient algorithm, the estimation of the compatible function approximation for the
policy gradient theorem (Konda & Tsitsiklis, 2000) and (Sutton et al., 2000b), which
we call projection Qπ → Aπ. First, we evaluate how fast these different methods get
to a good gradient estimate on analytically tractable problems in Section 3.3.2.1 and
compare them to both forms of NAC. Second, we compare them in optimization tasks
such as cart-pole balancing, underactuated pole swing-ups, and simple motor primitive

61

5 10 15 20 25 30
!"#$%&'$

0

40

80

120

20 40 60 80 100 120
!"#$%&'$

0

50

100

150
('#)*%+,'
-+%.',/#%)
!"#$%&#,0123
12304#/506789:;<

2
)=

>'
0?
'/

4
''

)0
/+
@'

0A
)&

0
A"

"+
%B

#C
A/
'&

0=
+A
&#
')

/$

:A<085+''07/A/'0-+%?>'C 0000:?<0D%@+0&#C')$#%)A>069(

2
)=

>'
0?
'/

4
''

)0
/+
@'

0A
)&

0
A"

"+
%B

#C
A/
'&

0=
+A
&#
')

/$

Figure 3.5: This figure shows the angle between the gradient estimate and the true
gradient for (a) the three state and three action MDPs with randomly chosen rewards,
transition probabilities, and policies, (b) for randomly chosen stable 4 dimensional linear
quadratic Gaussian regulation problems.

evaluations and comapre them only with episodic NAC. Furthermore, we apply the
combination of episodic NAC and the motor primitive framework to a robotic task on
a real robot, i.e., ‘hitting a T-ball with a baseball bat’.

3.3.2.1 Gradient Estimation Comparison

Intially, we are interested in the convergence speed of gradient estimators to the true
(natural or ‘vanilla’) policy gradient. We therefore chose to study problems which are
analytically tractable, i.e., discrete problems and linear-quadratic Gaussian regulation
problems. We randomly generated both discrete systems with Gibbs policies with three
states, and four dimensional linear quadratic Gaussian systems with stable linear Gaus-
sian policies as benchmark. Furthermore, we determined the analytical policy gradients.
We compared the angle between true and approximated gradients for the reasons that it
easy to understand (e.g., a gradient should be within ±90◦ of the true gradient in order
to be useful), and because it is more objective than an L2 norm which would not reflect
small but important direction differences. In Figure 3.5, you can see that this method
easily out performs both the projection Qπ → Aπ, the separate estimation of Fisher in-
formation matrix and gradient suggested in (Kakade, 2002), and GPOMDP (which esti-
mates the ‘Vanilla Policy gradient’). However, LSTD-Q(λ) clearly outperforms Episodic
Natural Actor-Critic at the price of needing basis functions which do not bias the gra-
dient. It becomes clear from this plot that the convergence of GPOMDP to the true
policy gradient has similar convergence properties as the projection of Qπ(x,u) onto the
natural gradient. However, the convergence of Natural Actor-Critic with LSTD-Q(0)
and episodic Natural Actor-Critic to the true natural policy gradients is at least several
order of magnitude faster.

62

!, !
mg

l

mc x, xF

0 200 400 600 800 1000 1200 1400 1600 1800

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

!"#$%&'()*"+$('(,-. !/#$%-0120."3*-

4
56

-*
,-
7
$0
-,
8
03
!!
"!
#

46)(27-(!"

GPOMDP
Projection Method
Episodic NAC

Figure 3.6: This figure shows the physical set-up of a cart-pole balancing in (a), and
in (b) the performance of GPOMDP, the projection natural gradient, and the Episodic
Natural Actor-Critic in comparison. The latter clearly outperforms the first two - one
of the main reasons is the significantly lower variance.

3.3.2.2 Cart-Pole Balancing

Cartpole balancing is a well-known benchmark for reinforcement learning. We assume
the cart as shown in Figure 3.6 (a) is given by the dynamics equations of

mlẍ cos θ +ml2θ̈ −mgl sin θ = 0, (3.105)

(m+mc)ẍ+mlθ̈ cos θ −mlθ̇2 sin θ = F, (3.106)

with l = 0.75m, m = 0.15kg, g = 9.81m/s2 and mc = 1.0kg. The resulting state is
given by x = [x, ẋ, θ, θ̇]T , and the action u = F . The system is treated as if it was
sampled at a rate of h = 60Hz, and the reward is given by r(x,u) = xTQx + uTRu

with Q = diag(1.25, 1, 12, 0.25), R = 0.01. We chose a linear Gaussian policy given by

π(u|x) = N (u|kTx, 1/(1 + exp(−ξ))), (3.107)

with parameters θT = [kT , ξ]. While this can also be treated with LSTD-Q(λ), see
(Peters, Vijaykumar, & Schaal, 2003), we will focus on comparing it with GPOMDP
and the projection suggested in (Konda & Tsitsiklis, 2000), and in (Kakade, 2002). The
results can be seen in Figure 3.6 which makes clear that episodic natural actor-critic
clearly outperforms both other methods.

63

0 200 400 600 800 1000 1200 1400 1600 1800

-3.5

-3

-2.5

-2

-1.5

-1

GPOMDP
Projection Method
Episodic NAC!

"#
$%
&$
'
()
$&
*
)+
!!
"!
#

!#,-.'$-!"

!, !

mg

l

/01(234-,%05(-4-&$6 /71(2$)8.)60+%$

GPOMDP
Projection Method
Episodic NAC

Figure 3.7: This figure shows the physical set-up of a pole swing-up in (a), and in (b) the
performance of GPOMDP, the projection natural gradient, and the Episodic Natural
Actor-Critic in comparison. The latter clearly outperforms the first two.

3.3.2.3 Underactuated Pole Swing-ups

The dynamics equations of an underactuated pole swing-up as shown in Figure 3.7 (a)
can be give by

ml2θ̈ = −µθ̇ +mgl sin θ + τ, (3.108)

for θ ∈ [−π,+π]. Furthermore, we have m = 1kg, l = 1m, g = 9.81m/s2, µ =
0.05Ns/m, andτmax = 5Nm. We define the state to be x = [θ, θ̇]T , and the ac-
tion u = max{min{τ, τmax} − τmax}). The reward is given by r(x,u) = (x1/π)2 −
0.01(2/π)2 log cos (πτ/(2τmax)).

As a policy, we chose novel approach to stochastic policies, i.e., a mixture of stochas-
tic policies. In this approach, we have a number of local policies πi(u|x, i), which are
selected via the gating policies πi(i|x). This gives us the following structure

π(u|x) =
N∑

i=1

πi(i|x)πi(u|x, i). (3.109)

In this particular example, we choose πi(i|x) = N (x1|ci, σ̂2
i)/
(∑N

i=1N (x1|ci, σ̂2
i)
)

, and

πi(u|x, i) = N (u|ki
T [x, 1]T , σ2

i). In practice, this policy is used as follows: first draw a
local policy i ∼ πi(i|x), and then draw an action u ∼ πi(u|x, i) from the local policy.
This mixture of stochastic policies combined with Natural Actor-Critic can also be seen
as an hierarchical approach to reinforcement learning. For the swing-up we use three

64

!"#$%"

Figure 3.8: This figure shows the convergence of both GPOMDP and the episodic
Natural Actor-Critic in a one DOF motor primitive planning tasks.

models (N = 3) with centers c = [−π, 0,+π]T . All local controllers are initialized to be
unstable, and the local exploration is set high in order to make local minima less likely
to occur.

The results of the usage of this policy for the swing-up are somehow surprising. As
can be seen in Figure 3.7(b), both GPOMDP and the natural gradient obtain from the
projection fail do not always converge to a swing-up. Despite that they occasionally
converge to an swing-up, they very often remain unstable and yield limit cycles. It is of
course possible that further performance enhancements can improve these algorithms.
Episodic Natural Actor-Critic yields a surprising high pace in learning, needed little
tuning, and is hardly affected by the perturbations on the initial parameters.

3.3.2.4 Motor Primitive Learning for Baseball

While the previous examples demonstrated the feasibility and performance of the episodic
Natural Actor Critic in a classical example of motor control, this section will turn to-
wards optimizing nonlinear dynamic motor primitives for robotics. In (Ijspeert et al.,
2001, 2003), a novel form of representing movement plans (qd, q̇d) for the degrees of
freedom (DOF) robot systems was suggested in terms of the time evolution of the non-
linear dynamical systems q̇d,k = h(qd,k, zk, gk, τ, θk) where (qd,k, q̇d,k) denote the desired
position and velocity of a joint, zk the internal state of the dynamic system, gk the
goal (or point attractor) state of each DOF, τ the movement duration shared by all
DOFs, and θk the open parameters of the function h. The original work in (Ijspeert
et al., 2001, 2003) demonstrated how the parameters θk can be learned to match a tem-
plate trajectory by means of supervised learning – this scenario is, for instance, useful

65

!"#$%&'()$*+$
",$-.*/'/*0+

!(#$-+*/*'1$2&3$
42056(&5$.0/*0+

!5#$-.4207&5$2&3$
42056(&5$.0/*0+

!'#$8&2902.'+(&$
09$/)&$:,:/&.

0 100 200 300 400
-10

-8

-6

-4

-2

0
x 105

;4*:05&:

8
&2
90
2.

'+
(&
$!
!!
#

Figure 3.9: This figure shows (a) the performance of a baseball swing task when using
the motor primitives for learning. In (b), you can see how it is initialized by teach-in
or imitation learning, in (c) you see a failing reproduction of the motor behavior, and
in (d) you see the system several hundred episodes further exhibiting a nicely learned
batting.

as the first step of an imitation learning system. Here we will add the ability of self-
improvement of the movement primitives by means of reinforcement learning, which is
the crucial second step in imitation learning. The system is a point-to-point movement,
i.e., this task is rather well suited for episodic Natural Actor-Critic. In Figure 3.8,
we show a comparison with GPOMDP for simple, single DOF task with a reward of
rk(x0:N , u0 : N) =

∑N
i=0 c1q̇

2
d,k,i + c2(qd; k;N − gk); where c1 = 1, c2 = 1000, and gk is

chose appropriately. We also evaluated the same setup in a challenging robot task, i.e.,
the planning of these motor primitives for a seven DOF robot task. The task of the
robot is to hit the ball properly so that it flies as far as possible. Initially, it is taught in
by supervised learning as can be seen in Figure 3.9 (b); however, it fails to reproduce the
behavior as shown in (c); subsequently, we improve the performance using the episodic
Natural Actor-Critic which yields the performance shown in (a) and the behavior in (c).

3.4 Probabilistic Policy Search

In supervised learning and function approximation, research which employs gradient
methods is slowly fading out as these methods have a very complicated open parameter,
i.e., the learning rate. However, it has become apparant that natural gradients in
supervised learning are highly related to parameterized probabilistic methods such as
the EM algorithm. In this spirit, we review the sparse literature on probabilitic methods
for reinforcement learning and show that it is also related to natural policy gradients.

3.4.1 Probability Matching

In the early 1990s, two papers in the the idea of probability matching have shown
probably the only attempt of achieving probabilistic methods in reinforcement learning

66

−5 0 5
0

0.5

1
Step 1

Action u
P

ro
ba

bi
lit

y
de

ns
ity

−5 0 5
0

0.5

1
Step 2

Action u

P
ro

ba
bi

lit
y

de
ns

ity

−5 0 5
0

0.5

1
Step 3

Action u

P
ro

ba
bi

lit
y

de
ns

ity

−5 0 5
0

0.5

1
Step 4

Action u

P
ro

ba
bi

lit
y

de
ns

ity

−5 0 5
0

0.5

1
Step 5

Action u

P
ro

ba
bi

lit
y

de
ns

ity

−5 0 5
0

0.5

1
Step 6

Action u

P
ro

ba
bi

lit
y

de
ns

ity

−5 0 5
0

0.5

1
Step 7

Action u

P
ro

ba
bi

lit
y

de
ns

ity

−5 0 5
0

0.5

1
Step 8

Action u

P
ro

ba
bi

lit
y

de
ns

ity

−5 0 5
0

0.5

1
Step 9

Action u

P
ro

ba
bi

lit
y

de
ns

ity
Figure 3.10: This figure visualizes the probability matching principles. The actions are
sampled from an initial policy πθ(u) = N (u|θ, 1) shown in green, and the actor receives
the rewards r(u) = c exp(−0.5(u−2)2) shown in blue. By adjusting the single parameter,
the mean θ, the new policy will attempt to match πθ(u)r(u) as well as possible. After
just nine iterations, the policy matches the optimal policy in this parameterized policy
class perfectly.

(Dayan & Hinton, 1997; Sabes & Jordan, 1996). This probability matching principle
states the following:

The expected return of a single decision problem can be maximized by se-
quentially picking a new policy πn+1(u) over actions u which matches the
reward-weighted action probabilities πn(u)r(u) of the previous solution.

Both papers give basic evaluation in a single-stage decision context with no temporal
credit assignment, and their papers have been largely overlooked. The reason for this
appears to be not only the pessimism of the authors but also the fact the 1990s were
dominated by value function based policy search methods (Sutton et al., 2000b).

Let us illustrate the resulting behavior in the single-stage decision case as they
were described originally. In the first step, we would sample a collection of actions
{u1, . . . , un} from an initial policy π0(u), for example with a Gaussian policy, and obtain

67

a variety of rewards r(u1), . . . , r(un), as shown in Figure 3.10. Then we attempt to match
the next policy to the reward weighted one π1(u)r(u). We will match the policy to the
probability weighted reward as well as possible in our policy class. In the next step,
we sample from the new policy, and obtain a new set of rewards - and again match the
reward-weighted probabilities. After 9 steps we converge to a limit point and stay there
stably as shown in Figure 3.10.

3.4.2 Convergence of Probability Matching

At this point, the reader will certainly have three questions on his mind: how do I
decided that a policy matches another? How does it relate to the cost function

J (θ) =
∫

U
πθ(u)r(u)du? (3.110)

Why should this always improve the policy? The most common way to compare
probability distributions is the Kullback-Leibler divergence, i.e., we would try to find
πθ′(u) so that D (πθ(u)r(u)||πθ′(u)) is minimal. Let us define a function Q(θ, θ′) =∫

U πθ (u) r(u) log πθ′ (u) du. Using this function, we can show thatD (πθ(u)r(u)| |πθ′(u)) =
Q(θ, θ)−Q(θ, θ′) +

∫
U πθ(u)r(u) log r(u)du, and that minimizing D (πθ(u)r(u)| |πθ′(u))

is equivalent to maximizing the expected return. We use Dayan & Hintons (Dayan &
Hinton, 1997) proof that

log
J (θ′)
J (θ)

= log
∫

U
πθ′(u)

r(u)
J(θ)

du = log
∫

U

πθ (u) r(u)
J(θ)

πθ′(u)
πθ (u)

du, (3.111)

≥
∫

U

πθ (u) r(u)
J(θ)

log
πθ′(u)
πθ (u)

du =
1

J(θ)
(
Q(θ, θ′)−Q(θ, θ)

)
, (3.112)

using the Jensen-inequality. It is clear that for any θ′ for which Q(θ, θ′) ≥ Q(θ, θ) is true,
we also have J(θ′) ≥ J(θ). As minimizing D (πθ(u)r(u)| |πθ′(u)) is equivalent to maxi-
mizing Q(θ, θ′), we can guarantee that we always improve the policy. This implies that
an algorithm which first computes the expectationQ (θ, θ′) =

∫
U πθ (u) r(u) log πθ′ (u) du,

and then maximizes Q (θ, θ′) with respect to θ′ is guaranteed to converge, i.e., θn+1 =
argmaxθ′ Q (θn, θ

′) and has no open parameters like learning rates. Such algorithms are
called Expectation-Maximization algorithms. Similarly, we can guarantee the improve-
ment in incremental methods update with the gradient of Q (θ, θ′) with respect to θ′.
However, it is clear that this method assumes that we are not affected by the sampling
dynamics – this assumption does not hold for multi-step learning problems.

3.4.3 Relation to Previously Discussed Methods

While we cannot solve the problems resulting from sampling dynamics yet and therefore
cannot show more efficient algorithms, we can make clear that probability matching

68

methods when applied to histories are highly related to natural policy gradient methods.
Let us demonstrate this by using the cost function

JPM(θ,θn) = −D (r(ξ)p (ξ|θn) ||p (ξ|θ)) = −
∫

T
r(ξ)p (ξ|θn) log

r(ξ)p (ξ|θn)
p (ξ|θ)

dξ,

(3.113)
which we intend to maximize. This yields the first derivative of JPM(θ) is equal in θ0,
i.e.,

∇θJPM(θn,θn) =
∫

T
r(ξ)p (ξ|θn) ∇θ log p(ξ|θ)dξ

∣∣∣∣
θ=θn

= ∇θJ(θn). (3.114)

That proves that a probability matching gradient approach is a generalization of a
policy gradient approach, equivalent to REINFORCE. The second derivative is more
interesting as it yields

∇2
θJPM(θn,θn) =

∫
T
r(ξ)p (ξ|θn) ∇2

θ log p(ξ|θ)dξ
∣∣∣∣
θ=θn

, (3.115)

6=
∫

T
r(ξ)∇2

θp(ξ|θ)dξ
∣∣∣∣
θ=θn

= ∇2
θJ(θn). (3.116)

This result is very interesting as it shows that the curvature between both function
differs.

∇2
θJ(θn) =

∫
T
r(ξ)p(ξ|θn)∇2

θ log p(ξ|θn)dξ+
∫

T
r(ξ)p(ξ|θn)∇θ log p(ξ|θn)∇θ log p(ξ|θn)Tdξ,

(3.117)

= ∇2
θJPM(θn,θn) +

∫
T
r(ξ)p(ξ|θn)∇θ log p(ξ|θn)∇θ log p(ξ|θn)Tdξ.

(3.118)

However, it is not clear what the second term represents14.
Particularly interesting is the case where we take a long, greedy step along the

gradient, i.e., we do θn+1 = argmaxθ′ Q
(
θn,θ

′). In this case, we have p (ξ|θn+1) ≈
r(ξ)p (ξ|θn). This implies that in this case, we have

∇2
θJPM(θn+1,θn) =

∫
T
r(ξ)p (ξ|θn) ∇2

θ log p(ξ|θ)dξ
∣∣∣∣
θ=θn+1

, (3.119)

≈
∫

T
p (ξ|θn+1) ∇2

θ log p(ξ|θ)dξ
∣∣∣∣
θ=θn+1

= −F (θn+1). (3.120)

14Similar evaluations for the distance metric D (p (ω|θ) ||r(τ)p (τ |θ0)) yields that there we have
∇2

θJPM(θn, θn) = ∇2
θJ(θn) + F (θn). This result is easier to understand, however, does not apply as

the Kullback-Leibler divergence is not symmetric.

69

Therefore, close to the optimal solution, natural gradients should perform similarly well
to the a second order method in probability matching. Note that the Hessian ∇2

θJ(θn)
is very small at this point while the Fisher information matrix can be arbitrarily large.
This also means that in the limit point when both sampling and target policy are close to
each other, i.e., p (ξ|θn) ≈ r(ξ)p (ξ|θn), we will have the second order taylor-expension

JPM(θn + ∆θ,θn) = JPM(θn,θn) + ∇θJ(θn)∆θ−∆θTF(θn)∆θ. (3.121)

This gives us the optimal update step ∆θ = F−1(θn)∇θJ(θn). With other words, the
direction of the update approximates the natural policy gradient update.

70

Chapter 4

Executing Motor Skills through a Generalization of Gauss’
Principle

4.1 Introduction

Despite the progress in robotics over the last decades, only a few general building prin-
ciples for designing robot controllers have been obtained. To date, robot controllers are
often derived from insights such as the reduction of the controlled system onto a linear
system by linearization or by inversion of the dynamics of the robot (Yoshikawa, 1990;
De Wit et al., 1996). While this approach is viable for many problems, it is in a sense
limiting because it ignores potentially useful properties of the inherent nonlinearities.
Only few statements can be made about the quality of such controllers underlying cost
functions which sometimes cannot even be obtained. General optimal control tech-
niques on the other hand are often not applicable as a closed-form solution usually does
not exist and numerical solutions for high-dimensional systems are often prohibitively
expensive in terms of computations due to the ‘Curse of Dimensionality’ (Bellman &
Kalaba, 1965), (Bryson, 1981).

Recently, a novel way of thinking about the control of mechanical systems was sug-
gested in (Udwadia, 2003) inspired by results from analytical dynamics with constrained
motion. The major insight in (Udwadia, 2003) is that tracking control can be reformu-
lated in terms of constraints, which in turn allows the application of a generalization
of Gauss’ principle of least constraint1 (Udwadia & Kalaba, 1996) in order to derive
a controller. As it is outlined already in (Udwadia, 2003), this insight leads to a spe-
cialized optimal control framework for controlled mechanical systems. While it is not
applicable to non-mechanical control problems with arbitrary cost functions, it yields
an important class of optimal controllers, i.e., the class where the problem requires task
achievement under minimal squared motor commands with respect to a specified met-
ric. In this chapter, we develop this line of thinking a step further and show that it

1Gauss’ principle of least constraint (Udwadia & Kalaba, 1996) is a general axiom on the mechanics of
constrained motions. It states that if a mechanical system is constrained by another mechanical structure
the resulting acceleration ẍ of the system will be such that it minimizes (ẍ−M−1F)T M−1(ẍ−M−1F)
while fulfilling the constraint.

71

can be used as a general way of solving robotic control problems which unifies many
approaches to robot control found in the literature to date. We can demonstrate stabil-
ity of the controller in task space if the system can be modeled with sufficient precision
and the chosen metric is appropriate. For assuring stability in the joint space further
considerations may apply. To demonstrate the feasibility of our framework, we evaluate
a few derived controllers on a robot arm with a simple end-effector tracking task.

This chapter is organized as follows: firstly, a novel optimal control framework based
on (Udwadia, 2003) is presented and analyzed. Secondly, we discuss different robot
control problems in this framework including joint and task space tracking, force and
hybrid control. We show how both established and novel controllers can be derived in
a unified way. Finally, we evaluate some of these controllers on a Sarcos Master robot
arm.

4.2 A Novel Methodology for the Execution of Motor Skills

A variety of robot control problems can be motivated by the desire to achieve a task
perfectly while minimizing the squared motor commands. In this section, we will show
how the robot dynamics and the control problem can be brought into a general form
which will then allow us to compute the optimal control with respect to a desired metric.
We will augment this framework so that we can assure stability both in the joint space
of the robot as well as in the task space of the problem.

4.2.1 Formulating Robot Control Problems

In order to formulate our framework, we will introduce the specifics of the assumed
underlying robot model and show how a task can be specified.

Robot Model: We assume the well-known rigid-body dynamics model of manipu-
lator robot arms with n degrees of freedom given by the equation

u = M(q)q̈+C(q, q̇) +G(q), (4.1)

where u ∈ Rn is the vector of motor commands (i.e., torques or forces), q, q̇, q̈ ∈ Rn

are the vectors of joint position, velocities and acceleration, respectively, M(q) ∈ Rn×n

is the mass or inertia matrix, C(q, q̇) ∈ Rn denotes centrifugal and Coriolis forces,
and G(q) ∈ Rn denotes gravity (Yoshikawa, 1990; De Wit et al., 1996). At many
points we will write the dynamics equations by M(q)q̈ = u(q, q̇) + F(q, q̇) where
F(q, q̇) = −C(q, q̇)−G(q) as specified in (Udwadia & Kalaba, 1996; Udwadia, 2003).
We assume that an accurate model of our robot system is available.

Task Description: A task for the robot is assumed to be described in the form of
a constraint description, i.e., it is given by a function

h(q, q̇, t) = 0. (4.2)

72

where h ∈ Rk where the dimensionality is arbitrary. For example, if the robot is sup-
posed to follow a desired trajectory qdes(t) ∈ Rn, we could formulate it by h(q, q̇, t) =
q− qdes(t) = 0; this case is analyzed in detail in Section 4.3.1. We consider only tasks
wherein Equation (4.2) can be reformulated as

A(q, q̇,t)q̈ = b(q, q̇,t), (4.3)

which can be achieved for most tasks by differentiation of Equation (4.2) with respect
to time, assuming that h is sufficiently smooth. For example, our previous task, upon
differentiation, becomes q̈ = q̈des(t) so that A = I and b = q̈des(t). An advantage
of this task formulation is that non-holomonic constraints can be treated in the same
general way. Note that Equation (4.2) is also a general way to represent the motor
primitives we have introduced in Chapter 2.

In Section 4.3, we will always give the task description first in the general form in
Equation (4.2), and then derive the resulting controller using the form which is the
linear in accelerations, given in Equation (4.3).

4.2.2 Optimal Control Framework

Let us assume that we are given a robot model and a constraint description of the task as
described in the previous section. In this case, we can describe the desired properties of
the framework as follows: first, the task has to be achieved perfectly, i.e., h(q, q̇, t) = 0,
or equivalently, Aq̈ = b, holds at all times. Second, we intend to minimize the control
force with respect to some given metric, i.e., J(t) = uTN(t)u, at each instant of time.
The solution to this can be derived from a generalization of Gauss’ principle as originally
suggested in (Udwadia, 2003). We formalize this here in the following theorem.

Theorem 13 The class of controllers which minimizes

J(t) = uTN(t)u, (4.4)

for a mechanical system M(q)q̈ = u(q, q̇) + F(q, q̇) while fulfilling the task constraint

Aq̈ = b, (4.5)

is given by

u = N−1/2
(
AM−1N−1/2

)+ (
b−AM−1F

)
, (4.6)

where D+ denotes the pseudo-inverse for a general matrix D, and D1/2 denotes the
symmetric, positive definite matrix for which D1/2D1/2 = D.

Proof. By defining z = N1/2u = N1/2(Mq̈− F), we obtain q̈ = M−1N−1/2(z +
N1/2F). Since the task constraint Aq̈ = b has to be fulfilled, we obtain

AM−1N−1/2z = b−AM−1F. (4.7)

73

The vector z which minimizes J(t) = zTz while fulfilling Equation (4.7), is given by
z = (AM−1N−1/2)+(b−AM−1F), and as the motor command is given by u = N−1/2z,
the theorem holds.

The choice of the metric N plays a central role, because it determines the type of
solution. Often, we require a solution which has a kinematic interpretation; such a
solution is usually given by a metric like N = M−2. In other cases, the control force u
may be required to comply with the principle of virtual displacements by d’Alembert
for which the metric N = M−1 is more appropriate. In Section 4.3, we will see how the
choice of N results in several different controllers.

Note that this framework has been suggested in general in (Udwadia & Kalaba,
1996; Udwadia, 2003), and the special case with a metric N = M−1 has been presented
in (Bruyninckx & Khatib, 2000) with respect to robot control.

4.2.3 Stability Analysis

Up to this point, this framework has been introduced in an idealized fashion neglecting
the possibility of imperfect initial conditions and measurement noise. Therefore, we
modify this framework slightly and show how we can ensure stability. This modification
will be introduced in Section 4.2.3.1. Furthermore, we realize that the case of under-
constrained tasks, i.e., tasks where some degrees of freedom of the robot are redundant
for the given task, can cause undesired properties or even instability in joint-space; we
will treat this problem in Section 4.2.3.2.

4.2.3.1 Stability in Task Space

Up to this point, we have assumed that we always have perfect initial conditions and
that we know the robot model perfectly. However, we have to compensate for the
fact that we might not be sitting perfectly on the trajectory from the start or that we
might get disturbed out of this trajectory. (Udwadia, 2003) suggested that this can be
achieved by requiring that the desired task is an attractor, e.g., it could be prescribed
as a dynamical system in the form

ḣ(q, q̇, t) = fh(h, t), (4.8)

where h = 0 is a globally asymptotically stable equilibrium point – or a locally asymp-
totically stable equilibrium point with a sufficiently large region of attraction. Note that
h can be a function of robot variables (as in end-effector trajectory control in Section
4.3.2) but often it suffices to choose it to be state vector (for example for joint-space
trajectory control as in Section 4.3.1). In the case of holomonic tasks (such as track-
ing control for a robot arm), i.e. hi(q, t) = 0, i = 1, 2,. . ., k we can make use of a
particularly simple form as suggested in (Udwadia, 2003) and turn this task into an
attractor

ḧi + δiḣi + κih = 0, (4.9)

74

where δi and κi are chosen appropriately. We will make use of this ‘trick’ in order to
derive several algorithms. Obviously, different attractors with more desirable conver-
gence properties (and/or larger basins of attraction) can be obtained by choosing fh
appropriately.

If we have a task-space stabilization as discussed in the paragraph above, we can
assure that the control law is stable in task space at least in a region near about the
desired trajectory. We show this in the following theorem.

Theorem 14 If we can assure the attractor property of the task h(q, q̇, t) = 0, or
equivalently, Aq̈ = b, and if our robot model is accurate, it is straightforward to show
that the controller is stable in task space.

Proof. When combining the robot dynamics equation with the controller, and after
reordering the terms, we obtain

AM−1 (Mq̈− F) =
(
AM−1N−1/2

)+ (
b−AM−1F

)
. (4.10)

If we now premultiply the equation with D = AM−1N−1/2, and noting that DD+D =
D, we obtain Aq̈ = GG+b = b. The equality follows because the original trajectory
defined by Aq̈ = b yields a consistent set of equations. If this is an attractor, we will
have perfect task achievement asymptotically.

An analysis of the stability properties of the derived controllers when an imperfect
robot model is given will be part of future work.

4.2.3.2 Stability in Joint Space

While the stability in task space is fairly well-understood, it is not immediately clear
whether the control law is stable in joint-space. It is fairly straightforward to create a
counter-example. Example 15, illustrates a situation where a redundant robot arm is
stable in task-space while unstable in joint-space.

Example 15 Let us assume the simplest possible robot, a prismatic robot with two
horizontal, parallel links. The mass matrix of this robot is a constant given by M =
diag(m1, 0) +m21 where 1 denotes a matrix having only ones as entries, and the addi-
tional forces are F = 0. Let us assume the task is to move the end-effector x = q1 + q2
along a desired position xdes, i.e., the task can be specified by A = [1, 1], and b =
ẍdes + δ(ẋdes− ẋ) +κ(xdes−x) after double differentiation and task stabilization. While
this obviously is stable in task-space, the initial condition q1(t0) = xdes(t0)−q2(t0) would
result into both qi(t)’s diverging into opposite directions. The reason for this is obvious:
the effort of stabilizing in joint space is not task relevant – any solution stabilizing this
problem in joint-space would increase the cost.

From this example, we see that the general framework does not always suffice but
that it has to be modified so that we can incorporate a minimal control which in practice

75

stabilizes the robot without affecting the task achievement. One possibility to stabilize
the robot in joint-space is by having a joint-space motor command u1 as an additional
component of the the motor command u, i.e.,

u = u1 + u2 (u1) , (4.11)

where the first component u1 denotes an arbitrary joint-space motor command for sta-
bilization, while the second component u2 (u1) denotes the task-space motor command
generated with the previously explained equations. The task-space component depends
on the joint-space component as it has to compensate for it. We can show that the
fulfillment of the task Aq̈ = b by the controller is not affected by the choice of the
joint-space control law u1.

Theorem 16 For any chosen joint-stabilizing control law u1 = f(q), the resulting task
space control law u2 (u1) ensures that the joint-stabilizing control law acts in the null-
space of the task.

Proof. When determining u2, we consider u1 to be part of our forces, i.e., we have

F̃ = F + u1. We obtain u2 = N−1/2
(
AM−1N−1/2

)+ (
b−AM−1F̃

)
using Theorem

13. By reordering the complete control law u = u1 + u2 (u1), we obtain

u = u1 +N−1/2
(
AM−1N−1/2

)+ (
b−AM−1(F+ u1)

)
,

= N−1/2
(
AM−1N−1/2

)+
(b−AM−1F) + (I−N−1/2

(
AM−1N−1/2

)+
AM−1)u1,

= N−1/2
(
AM−1N−1/2

)+
(b−AM−1F)

+N−1/2[I−
(
AM−1N−1/2

)+
(AM−1N−1/2)]N1/2u1,

The task space is defined by N−1/2
(
AM−1N−1/2

)+
, and that the matrix N−1/2[I −(

AM−1N−1/2
)+

(AM−1N−1/2)] makes sure that the joint-space control law and the
task space control law are N-orthogonal.

Despite that the task is still achieved, the optimal control problem is affected by the
restructuring of our control law. While we originally minimized J(t) = uTN(t)u, we
now have a modified cost function

J̃(t) = uT
2N(t)u2 = (u− u1)T N(t) (u− u1) , (4.12)

which is equivalent to stating that the complete control law u should be as close to the
joint-space control law u1 as possible under task achievement.

This reformulation can have significant advantages if used appropriately. For ex-
ample, a variety of applications – such as using the robot as a haptic interface – a

76

compensation of the robot’s gravitational, coriolis and centrifugal forces in joint space
can be useful. Such a compensation can only be derived when making use of the modified
control law. In this case, we set u1 = −F = C+G, which allows us to obtain

u2 = N−1/2
(
AM−1N−1/2

)+
b, (4.13)

which does not contain these forces, and we would have a complete control law of

u = C+G+N−1/2
(
AM−1N−1/2

)+
b.

4.3 Robot Control Laws

The previously described framework offers a variety of applications in robotics – we will
only be able to give the most important ones in this chapter. Most of these controllers
which we will derive are known from the literature but often from very different build-
ing principles. In this section, we show how a vast variety of control laws for different
situations can be derived in a simple and straightforward way by using the unifying
framework that has been developed hereto. We derive control laws for joint-space tra-
jectory control for both fully actuated and overactuated “muscle-like” robot systems
from our framework. We also discuss task-space tracking control systems, and show
that most well-known inverse kinematics controllers are applications of the same princi-
ple. Additionally, we will discuss how the control of constrained manipulators through
impedance and hybrid control can be easily handled within our framework.

4.3.1 Joint-Space Trajectory Control

The first control problem we attempt to tackle is joint-space trajectory control. We
consider two different situations: (a) We control a fully actuated robot arm in joint-
space, and (b) we control an overactuated arm. The case (b) could, for example, have
agonist-antagonist muscles as actuators similar to a human arm2.

4.3.1.1 Fully Actuated Robot

The first case which we consider is the one of a robot arm which is actuated at every
degree of freedom. We have the trajectory as constraint with h(q, t) = q(t)−qd(t) = 0.
We turn this constraint into an attractor constraint using the idea in Section 4.2.3.1,
yielding

(q̈− q̈d) +KD (q̇− q̇d) +KP (q− qd) = 0, (4.14)

2An open topic of interest is to handle underactuated robot arm control. This will be part of future
work.

77

where KD = (δi,j) are positive-definite damping gains, and KP = (κij) are positive-
definite proportional gains. We can bring this into the form A(q, q̇)q̈ = b(q, q̇) with

A = I, (4.15)
b = q̈d +KD (q̇d − q̇)−KP (qd − q) . (4.16)

In this case, we can use Theorem 13 and derive the controller. Using (M−1N−1/2)+ =
N1/2M as both matrices are of full rank, we obtain

u = u1 +N−1/2
(
AM−1N−1/2

)+ (
b−AM−1(F+ u1

)
),

= M1/2
(
M−1/2

)−1
(q̈d +KD (q̇d − q̇) +KP (qd − q)−M−1 (−C−G)),

= M(q̈d +KD (q̇d − q̇) +KP (qd − q)) +C+G. (4.17)

Note that all joint-space motor commands or virtual forces u1 always disappear from
the control law and that the chosen metric N is not relevant – the derived solution is
unique and general. It turns out that this a well-known control law, i.e., the Inverse
Dynamics Control Law (Yoshikawa, 1990; De Wit et al., 1996).

4.3.1.2 Overactuated Robots

Overactuated robot arms as they can be found in biological systems are inheritently
different from previously discussed robot arms. For instance, these arms are actuated by
several linear actuators, e.g., muscles that often act on the system in form of opposing
pairs. These interactions of the opposing pairs of muscles can be modeled using the
dynamics equations of

Du = M(q)q̈+C(q, q̇) +G(q), (4.18)

where D depends on our type of muscle. In the simplest model for a two degrees of
freedom robot it could be given by

D =
[
−l +l 0 0
0 0 −l +l

]
. (4.19)

We can bring this equation into the standard form by multiplying it with D+, which
results in a modified system where M̃(q) = D+M(q), and F̃(q, q̇) = −D+C(q, q̇) −
D+G(q). If we have expressed the trajectory like in previous examples, and we obtain
the following controller

u = M̃
1/2
(
AM̃

−1/2
)+ (

b−AM̃−1
F̃
)
, (4.20)

= D+M(q̈d +KD (q̇d − q̇)−KP (qd − q)) +D+ (C+G) . (4.21)

78

While immidiately intuitive, it is somehow surprising that this particular controller
should fall out of the presented framework. Due to a lack of hardware and realistic
simulators, we cannot evaluate this approach within the scope of this chapter.

4.3.2 End-effector Trajectory Control

While joint-space control of a trajectory q(t) is straightforward and the presented
methodology appears to simply repeat earlier results from the literature, the same
cannot be said about end-effector control where the position x(t) of the end-effector
is moved along some given trajectory. This problem is generically more difficult as the
choice of the metric N determines the type of the solution and as the joint-space of the
robot often has redundant degrees of freedom resulting in problems as already presented
in Example 15. In the following context, we will show how to derive different approaches
to end-effector control from the presented framework; this yields both established as well
as novel control laws.

The task description is given by the end-effector trajectory as constraint with h(q, t) =
f(q(t))− xd(t) = x(t)− xd(t) = 0, where x = f(q) denotes the forward kinematics. We
turn this constraint into an attractor constraint using the idea in Section 4.2.3.1, yielding

(ẍ− ẍd) +KD (ẋ− ẋd) +KP (x− xd) = 0, (4.22)

where KD = (δi,j) are positive-definite damping gains, and KP = (κij) are positive-
definite proportional gains. We make use of the differential forward kinematics, i.e.,

ẋ = J(q)q̇, (4.23)

ẍ = J(q)q̈+ J̇(q)q̇. (4.24)

These allow us to formulate the problem in form of constraints, i.e., we intend to fulfill

ẍd +KD (ẋd − ẋ) +KP (xd − x) = Jq̈+ J̇q̇, (4.25)

and we can bring this into the form A(q, q̇)q̈ = b(q, q̇) with

A(q, q̇) = J, (4.26)

b(q, q̇) = ẍd +KD (ẋd − ẋ) +KP (xd − x)− J̇q̇. (4.27)

These equations determine our task constraints. However, the resulting controller de-
pends on the chosen metric and joint-space control law; it is not a unique, general
solution as for joint-space control.

79

4.3.2.1 Separation of Kinematics and Dynamics

The choice of the metric N determines the type of the task. A metric of particular
importance isN = M−2 as this metric allows the decoupling of kinematics and dynamics
as we will see in this section. Using this metric in Theorem 13, we obtain a control law

u = u1 +N−1/2
(
AM−1N−1/2

)+ (
b−AM−1(F+ u1)

)
,

= MJ+(ẍd +KD (ẋd − ẋ) +KP (xd − x)− J̇q̇)−MJ+JM−1F

+M(I− J+J)M−1u1.

If we choose the joint-space control law u1 = u0 − F, we obtain the control law

u = MJ+(ẍd +KD (ẋd − ẋ) +KP (xd − x)− J̇q̇) +C+G (4.28)

+M(I− J+J)M−1u0.

This control law is the combination of a resolved-acceleration kinematic controller
(Yoshikawa, 1990; Hsu, Hauser, & Sastry, 1989) with a model-based controller and an
additional null-space term. Similar controllers have been introduced in (Park, Chung,
& Youm, 2002, 1995; Chung, Chung, & Y.Youm, 1993; K.C.Suh & Hollerbach, 1987).
The null-space term can be eliminated by setting u0 = 0; however, this can result in
instabilities if there are redundant degrees of freedom. This controller will be evaluated
in Section 4.4.

4.3.2.2 Dynamically Consistent Decoupling

As noted earlier, another important metric is N = M−1 as it is consistent with the
principle of d’Alembert, i.e., it is dynamically consistent and therefore the resulting
control force can be re-interpreted as mechanical structures (e.g., springs and dampers)
attached to the end-effector. Again, we apply Theorem 13, and by defining F̃ = F+ u1

obtain the control law

u = u1 +N−1/2
(
AM−1N−1/2

)+ (
b−AM−1F̃

)
,

= u1 +M1/2
(
JM−1/2

)T (
JM−1JT

)−1
(
b− JM−1F̃

)
,

= u1 + JT
(
JM−1JT

)−1
(
b− JM−1F̃

)
,

= JT
(
JM−1JT

)−1
(ẍd +KD (ẋd − ẋ) +KP (xd − x)− J̇(q)q̇+ JM−1 (C+G))

+M(I−M−1JT
(
JM−1JT

)−1
J)M−1u1.

It turns out that this is another well-known control law suggest in (Khatib, 1987) with
an additional null-space term. This control-law is used in (Udwadia, 2003) and is
especially interesting as it has a clear physical interpretation (Bruyninckx & Khatib,

80

2000; Udwadia & Kalaba, 1996; Udwadia, 2003): the metric used is consistent with
principle of virtual work of d’Alembert. Similarly as before we can compensate for
coriolis, centrifugal and gravitational forces in joint-space, i.e., setting u1 = C+G+ u0.
This yields a control law of

u = JT
(
JM−1JT

)−1
(ẍd +KD (ẋd − ẋ) +KP (xd − x)− J̇(q)q̇) +C+G (4.29)

+M(I−M−1JT
(
JM−1JT

)−1
J)M−1u0.

The compensation of the forces in joint-space is often desirable for this metric in order
to have full control over the resolution of the redundancy as the gravity compensation
in task space often results into strange postures.

4.3.2.3 Further Metrics

Using the identity matrix as metric, i.e., N = I, punishes the squared motor command
without reweighting. This metric could be of interest as it distributes the “load” created
by the task evenly on the actuators. This metric results in a control law

u =
(
JM−1

)+ (ẍd +KD (ẋd − ẋ) +KP (xd − x)− J̇(q)q̇+ JM−1 (C+G)) (4.30)

+ (I−
(
JM−1

)+
JM−1)u1.

To our knowledge, this controller has not been presented in the literature.
Another, fairly practical idea would be to weight the different joints depending on the

maximal torques τmax,i of each joint resulting in a metric N = diag(τ−1
max,1, . . . , τ

−1
max,n).

4.3.3 Controlling Constrained Manipulators: Impedance & Hybrid
Control

Contact with outside objects fundamentally alters the robot’s dynamics, i.e., a general-
ized contact force FC ∈ R6 acting on the end-effector changes the dynamics of the robot
to

u = M(q)q̈+C(q, q̇) +G(q) + JTFC . (4.31)

In this case, the interaction between the robot and the environment has to be controlled.
This kind of control can both be used to make the interaction with the environment
safe (e.g., in a manipulation task) as well as to use the robot to simulate a behavior
(e.g., in a haptic display task). We will discuss impedance control and hybrid control as
examples of the application of the proposed framework; however, further control ideas
such as parallel control can be treated in this framework, too.

81

4.3.3.1 Impedance Control

In impedance control, we want the robot to simulate the behavior of a mechanical system
such as

Md(ẍd − ẍ) +Dd(ẋd − ẋ) + Pd(xd − x) = FC , (4.32)

where Md ∈ R6×6 denotes the mass matrix of the desired system, FC ∈ R6 denotes
the measured external forces exerted onto the system, Dd ∈ R6 denotes the desired
damping, and Pd ∈ R6 denotes the gains towards the desired position. Using Equation
(4.24) from Section 4.3.2, we see that this can simply be brought in the standard form
for tasks by

MdJq̈ = FC −Mdẍd −Dd(ẋd − Jq̇)− Pd(xd − f(q))−MdJ̇q̇,

after dropping all indices. From this we can infer the task description given by

A = MdJ, (4.33)

b = FC −Mdẍd −Dd(Jq̇− ẋd)− Pd(f(q)− xd)−MdJ̇q̇.

A major question in this context is the choice of the correct joint-space control law
u1(q, q̇), and the right metric to achieve such tasks.

Separation of both Systems through Kinematics. Similar as in end-effector
control, a practical metric isN = M−2 as this basically separates both dynamic systems
into two separate ones as it will become apparent in this section. For simplicity, we make
use of the joint-space control law u1 = C +G+ u0 similar as before. This results in
the control law

u = u1 +N−1/2
(
AM−1N−1/2

)+ (
b−AM−1(F+ u1

)
),

= M (MdJ)
+ (FC −Mdẍd −Dd(Jq̇− ẋd)− Pd(f(q)− xd)−MdJ̇q̇) +C+G

+ (I−M (MdJ)
+MdJM

−1)u0.

As (MdJ)
+ = JTMd

(
MdJJ

TMd

)−1
= J+M−1

d since Md is invertible, we can simplify
this control law into

u = MJ+M−1
d (FC −Mdẍd −Dd(Jq̇− ẋd)− Pd(f(q)− xd)) (4.34)

−MJ+J̇q̇+C+G+M(I− J+J)M−1u0.

We note that ẍd = M−1
d (FC −Mdẍd − Dd(Jq̇ − ẋd) − Pd(f(q) − xd)) is a desired

acceleration in task-space. This clarifies the previous remark: we have a first system
which describes the interaction with the environment – and additionally we use a second,
inverse-model type controller to execute the desired accelerations with our robot arm.

82

Dynamically Consistent Combination. Similar as in end-effector control, a prac-
tical metric is N = M−1 which combines both dynamic systems into a big one em-
ploying Gauss’ principle. For simplicity, we make use of the joint-space control law
u1 = C+G+ u0 similar as before. This results into the control law

u = u1 +N−1/2
(
AM−1N−1/2

)+ (
b−AM−1(F+ u1

)
),

= u1 + JT
(
JM−1JT

)−1 (
b−AM−1(F+ u1

)
),

= M1/2
(
MdJM

−1/2
)+

(FC −Dd(Jq̇− ẋd)− Pd(f(q)− xd)−MdJ̇q̇) (4.35)

+C+G+ (I−M (MdJ)
+MdJM

−1)u0.

As (MdJM
−1/2)+ = M−1/2JT

(
JM−1JT

)−1
M−1

d sinceMd is invertible, we can simplify
this control law into

u = JT
(
JM−1JT

)−1
M−1

d (FC −Dd(Jq̇− ẋd)− Pd(f(q)− xd)) (4.36)

−MJ+J̇q̇+C+G+ (I−MJ+JM−1)u0.

We note that the main difference between the two control law is the location of the
matrix M.

4.3.3.2 Hybrid Control

In hybrid control, we intend to control the desired position of the end-effector xd and the
desired contact force exerted by the end-effector Fd. Modern, common hybrid control
approaches are essentially similar to our introduced framework (De Wit et al., 1996).
Both are inspired by constrained motion and use this insight in order to achieve the
desired task. In traditional hybrid control, a natural or artificial, idealized holomonic
constraint φ(q, t) = 0 acts on our manipulator, and subsequently the direction of the
forces is determined through the virtual work principle of d’Alembert. We can make
significant contributions here as our framework is a generalization of the Gauss’ principle
that allows us to handle even non-holomic constraints φ(q, q̇, t) = 0 as long as they
are given in the form

Aφ(q, q̇)q̈ = bφ(q, q̇). (4.37)

Aφ, bφ depend on the type of the constraint, e.g., for scleronomic, holomonic con-
straints φ(q) = 0, we would have Aφ(q, q̇) = Jφ and bφ(q, q̇) = −J̇φq̇ with
Jφ = ∂φ/∂q as in (De Wit et al., 1996). Additionally, we intend to exert the con-
tact force Fd in the task; this can be achieved if we choose the joint-space control law

u1 = C+G+ JTφFd. (4.38)

83

From the previous discussion, this constraint is achieved by the control law

u = u1 +N−1/2
(
AφM

−1N−1/2
)+

(bφ −AφM
−1(F+ u1)), (4.39)

= C+G+N−1/2
(
AφM

−1N−1/2
)+
bφ (4.40)

+N−1/2(I−
(
AM−1N−1/2

)+
AM−1N−1/2)N1/2JTφFd.

Note that the exerted forces act in the null-space of the achieved; therefore both the
constraint, and therefore the force can be set independently.

4.4 Evaluations

The main contribution of this chapter is the unifying methodology for deriving robot
controllers. In order to demonstrate the framework’s feasibility for providing imple-
mentable controllers for real robots, we have chosen a few of the controllers derived here
and evaluate them with a simple tracking task. In future work, we plan to evaluate all
controllers presented in this chapter with more complex tasks.

The joint-space trajectory controller derived in this chapter is already well estab-
lished in the literature, and such that further evaluation is not necessary. Of more
interest to us are the end-effector controllers, since they introduce added complexity,
particularly the problem of redundancy resolution. Due to a lack of force sensors
on our experimental platform, we are unable to implement the impedance or hybrid
controllers, but plan to do so in our future work. For this chapter, we evaluate the
three end-effector controllers from Section 4.3.2: (i) the resolved-acceleration kinematic
controller (with metric N = M−2) in Equation (4.28), (ii) Khatib’s operational space
control law (N = M−1) in Equation (4.29), and (iii) the identity metric control law
(N = I) in Equation (4.30).

As an experimental platform, we use the Sarcos Dextrous Master Arm, a hydraulic
manipulator with an anthropomorphic design shown in Figure 4.1 (b). Its seven degrees
of freedom mimic the major degrees of freedom of the human arm, i.e., the three in the
shoulder, one in the elbow and in the wrist.

The robot’s end-effector tracks a planar “figure-eight (8)” pattern in task space at
two different speeds. In order to stabilize the null-space trajectories, we choose a PD
control in joint space which pulls the robot towards a fixed rest posture, qrest; this
control law is given by

u0 = M (KP0 (qrest − q)−KD0q̇) .

Additionally we apply gravity, centrifugal and Coriolis force compensation, such that
u1 = u0 + C+ G. For consistency, all three controllers are assigned the same gains
both for the task and joint space stabilization.

84

(a) Simulated Robot Arm (b) SARCOS Master Arm

Figure 4.1: Setups in which we evaluate the designed controllers: (a) a physical simula-
tion of the SARCOS Master Arm, (b), the robot arm.

Figure 4.2 shows the end-point trajectories of the three controllers in a slow pattern
of 8 seconds per cycle “figure-eight (8)”. Figure 4.3 shows a faster pace of 4 seconds
per cycle. All three controllers have similar end-point trajectories and result in fairly
accurate task achievement. Each one has an offset from the desired (thin black line),
primarily due to the imperfect dynamics model of the robot. The root mean squared
errors (RMS) between the actual and the desired trajectory in task-space for each of
the controllers are shown in the Table 4.1.

As expected, the performance of the three controllers is very similar in task space.
However, the resolved-acceleration kinematic controller (N = M−2) appears to have
a slight advantage here. The reason is most likely due to errors in the dynamics

Table 4.1: This table shows the root mean squared error results of the tracking achieved
by the different control laws.

Metric Slow RMS error [m] Fast RMS error [m]

N = M−2 0.0122 0.0130
N = M−1 0.0126 0.0136
N = I 0.0130 0.0140

85

0.3 0.35 0.4 0.45 0.5 0.55

−0.1

−0.05

0

0.05

0.1

0.15

z
ax

is

x axis
0.34 0.36 0.38

−0.1

−0.05

0

0.05

0.1

0.15

y axis

Desired

Res. Accel.

Khatib

Identity

Figure 4.2: This figure shows the three end-effector trajectory controllers tracking a
“figure eight (8)” pattern at 8 seconds per cycle. On the left is the x-z plane with the
y-z plane on the right. All units are in meters.

model, since the effect of these is amplified by the inversion of the mass matrix in the
control laws given in Equations (4.29, 4.30) while the decoupling of the dynamics and
kinematics provided by the controller in Equation (4.28) can be favorable as the effect
of the modeling error is not increased. Clearly, more accurate model parameters of the
manipulator’s rigid body dynamics would result in a reduction of the gap between these
control laws as we have confirmed in simulations. Figure 4.4 shows how the joint space
trajectories appear for the fast cycle. Although end-point trajectories were very similar,
joint space trajectories differ significantly due to the different optimization criteria of
each control law.

4.5 Conclusion and Proposed Future Work

In this section, we give a short conclusion on the current state of our motor skill execu-
tion framework and subsequently discuss the future topics which we intend to address
in this area until the completion of this thesis.

86

0.3 0.35 0.4 0.45 0.5 0.55

−0.1

−0.05

0

0.05

0.1

0.15

z
ax

is

x axis
0.34 0.36 0.38

−0.1

−0.05

0

0.05

0.1

0.15

y axis

Figure 4.3: The same three controllers tracking the same “figure eight (8)” pattern at
a faster pace of 4 seconds per cycle. The labels and units remain the same as in Figure
4.2.

4.5.1 Conclusion on the Current State

In this chapter we have presented a novel optimal control framework which allows the
development of a unified approach for deriving robot control laws. We have shown
in detail how we can make use of both the robot model and a task description in
order to create the control law which is optimal with respect to the squared motor
command under a metric while perfectly fulfilling the task at each instant of time. We
have discussed how to realize stability both in task as well as in joint-space for this
framework.

Building on that foundation, we demonstrated how a variety of control laws–which
on first inspection appear rather unrelated to one another–can be derived using this
straightforward framework. The covered types of tasks include joint-space trajectory
control for both fully actuated and overactuated robots, end-effector trajectory control,
impedance and hybrid control.

The implemention of three of the end-effector trajectory control laws resulting from
our unified framework on a real-world Sarcos Master Arm robot has been carried out.
As expected, the behavior in task space is very similar for all three control laws; yet,

87

1 2 3 4 5 6 7 8

0.05

0.1

0.15

S
F

E

1 2 3 4 5 6 7 8
−0.5

−0.4

−0.3

−0.2

S
A

A

1 2 3 4 5 6 7 8

−0.2

0

0.2

0.4

0.6

H
R

1 2 3 4 5 6 7 8

1

1.2

1.4

1.6

1.8

E
B

F
E

time (sec.)

Figure 4.4: Joint space trajectories for the four major degrees of freedom, i.e., shoulder
flexion-extension (SFE), shoulder adduction-abduction (SAA), humeral rotation (HR)
and elbow flexion-extension (EBFE), are shown here. Joint angle units are in radians.
The labels are identical to the ones in Figure 4.2.

they result in very different joint-space behaviors due to the different cost functions
resulting from the different metrics of each control law.

The major contribution of this chapter is the unified framework that we have devel-
oped. It allows a derivation of a variety of previously known controllers, and promises
the easy development of a host of novel ones. The particular controllers reported in this
chapter were selected primarly for illustarting the applicability of this framework and
showing its strength in unifying different control algorithms using a common building
principle.

4.5.2 Proposed Future Work

Up to now, we have only presented the Gauss’ control framework as a unifying framework
for the generation tracking control laws in joint and task space as well as a framework
for creating force control laws. Let us here outline the projects which we are currently
working on and which we intend to complete together with this thesis:

88

1. The major advantage of the Gauss’ control law in comparison to other frameworks
for control is that can handle non-holomonic robots and tasks in exactly the same
way as holomonic ones. We are therefore currently working on evaluations and
comparisons for non-holomonic control using mobile robots.

2. When using an underactuated system, we can treat this in a similar fashion where
part of the system becomes a constraint.

3. Particularly important and obvious is the application of this framework towards
motor primitives, i.e., the motor primitives become attractor constraints in the
Gauss’ framework.

4. As we have seen in the evaluations, the rigid body model does not completely
capture the dynamics of our SARCOS robot arm and the control law for this
reason has a significant offset from the trajectory. For this reason, we need to
bring model learning into this framework. It is fairly likely that this point will
result into a complete new chapter of this thesis.

Points 1-3 are straightforward and will most likely be achieved by Fall 2005. Point 4
is of particular importance and has to be done with care. It is clear that here a pseudo-
inverse needs to be learned which for example can be achieved using the forward-inverse
model approach (Wolpert & Kawato, 1998) and that the chosen joint-space control law
determines the type of model learned.

89

Chapter 5

Application to Robotics

In this chapter, we intend to give a brief overview on the intended application to robotics.
This overview can at this point only demonstrate what foundations exist and where we
want to take these. Therefore, this chapter is rather short in comparison with the
previous ones.

5.1 T-ball Swing

As already outlined in Chapter 3, we are working on an implementation of T-ball on a
real robot as shown in Figure 3.8. For this, we are using both policy search techniques
presented in Chapter 3 as well as the motor primitive framework outlined in Chapter 2.
As we have made clear in previous sections this work has already started and preliminary
results are available. This piece of work has to be finished up until the completion.

5.2 Learning of Locomotion

The project of learning locomotion using the motor primitive framework is slightly more
complicated as it involves a variety of different types of problems, i.e., the generations of
gaits patterns, foot placement problems (which can even involve perceptual problems)
and the stabilization of the robot so that it does not fall over. From this perspective,
learning of locomotion is a prime example of motor skill aquisition. To date, there has
only been work on the aquisition of gait patterns through supervised learning (Schaal
et al., 2003).

We have a variety of different platforms for testing learning biped locomotion sys-
tems. These include the simulations of the robot DB-2 in Figure 5.1 (a), the small biped
robot DB-chan in Figure 5.1 (b) as well as the real robot DB-2 in Figure 5.1 (c). Both
physical robots are located with our collaborators at ATR in Japan. There has been
work on DB chan with gait patterns through supervised learning (Schaal et al., 2003)
as mentioned before.

We intend to tackle the following problems which together will allow us to learn
basic forms of locomotion:

90

(a) (b) (c)

Figure 5.1: This figure shows the different simulations and robots of which we can make
use for accomplishing the tasks outlined in this thesis proposal. In (a) our simulation
platform is shown, in (b) the robot DB chan, and in (c) the legs of DB 2.

1. We intend to learn Gauss control laws for the stabilization of the biped using
model-based learning.

2. We intend to improved gaits based on rythmic motor primitives and learned with
supervised learning in (Schaal et al., 2003) using reinforcement learning.

Further work on foot placement with discrete primitives on a nonuniform terrain
might become useful.

5.3 Complex Movements

For complex skill learning tasks, we propose to work on problems similar as in Figure
5.1, i.e., box tumbling and motorized travelling salesman problems. In here, we can
make use of a variety of further plattforms such as out robot arm as before in Figure
5.1.

91

Chapter 6

Conclusion

In conclusion, we have accomplished the following steps

1. We have discussed what hierachical frameworks exist and how they could be em-
ployed for learning motor skills.

2. We have presented a hierarchical framework for the representation and learning
of motor skills.

3. The natural actor-critic methods have yielded a variety of theoretical insights into
previous reinforcement learning problems and has been successfully applied to
motor primitives for simple and complex motor tasks including the T-ball swing
on an antropomorphic robot arm.

4. We have shown theoretically and in experiments that the generalized Gauss’ con-
trol framework with a squared metric is suitable when accurate robot dynamics
models exist and connects to previous control approaches.

Until the completion of this thesis in Fall 2006, we propose the following projects.
Each of these projects has a approximate date of completion.

1. Complete project on policy search based T-ball learning with comparisons. Ap-
proximate Date of Completion: May, 2005.

2. Extend the Gauss’ control framework to more complicated metrics and apply it to
at least one nonholomonic system. Approximate Date of Completion: June-July,
2005.

3. Aquire Gauss’ controllers using model learning. This step is independent from
Step 2. Approximate Date of Completion: August, 2005.

4. Move from the policy-gradient based method for learning motor primitives towards
a probabilistic policy search method which is applied both on the motor primitive
as well as motor task level. Approximate Date of Completion: October, 2005.

92

5. Use the currently best methods for policy search and the model-learning based
Gauss’ control to learn locomotion for legged robots. The success of this step
depends on steps 1–4. Approximate Date of Completion: January-February, 2006.

6. Learning complex motor skills such as box tumbling and the motorized traveling
salesman problem which employ both sequencing and superposition of motor prim-
itives, and require primitives for forces as well. Approximate Date of Completion:
July, 2006.

If time permits, we would like to insert a project on how probabilistic policy search
techniques can be extended to infer cost functions for motor policies.

93

References

Albu-Schaefer, A. (2002). Regelung von robotern mit elastischen gelenken am beispiel
der dlr-leichtbauarme. Unpublished doctoral dissertation, Munich University of
Technology, Munich, Germany.

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation,
10.

Amit, R., & Mataric, M. (2002). Learning movement sequences from demonstration.
In International conference on development and leanring (icdl-2002). Cambridge,
MA: June 12-15.

Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B.
Brooks (Ed.), Handbook of physiology, section 2: The nervous system vol. ii, motor
control, part 1 (pp. 1449–1480). Bethesda, MD: American Physiological Society.

Atkeson, C. G., & Schaal, S. (1997). Robot learning from demonstration. In D. H. Fisher
Jr. (Ed.), Machine learning: Proceedings of the fourteenth international conference
(icml ’97) (pp. 12–20). Nashville, TN, July 8-12, 1997: Morgan Kaufmann.

A.W. Salatian, Y. Z., K.Y. Yi. (1997). Reinforcement learning for a biped robot to
climb sloping surfaces. J. Robot. Syst., 14, 283–296.

Bagnell, J. A., Kakade, S., Ng, A. Y., & Schneider, J. (2004). Policy search by dynamic
programming. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural
information processing systems 16. Cambridge, MA: MIT Press.

Baird, L. (1993). Advantage updating. Wright-Patterson Air Force Base, OH: Wright
Laboratory.

Bartlett, P. (2002). An introduction to reinforcement learning theory: Value function
methods. 184-202.

Barto, A., & Mahadevan, S. (2003). Recent advances in hierachical reinforcement
learning. Discrete Event Dynamic Systems: Theory and Applications, 13, 41–77.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics, 13, 834–846.

94

Baxter, J., & Bartlett, P. (1999). Direct gradient-based reinforcement learning. Journal
of Artificial Intelligence Research.

Baxter, J., Bartlett, P., & Weaver, L. (2001). Experiments with infinite-horizon, policy-
gradient estimation. Journal of Artificial Intelligence Research, 15.

Bellman, R. (1957). Dynamic programming. Princeton, NJ: Princeton University Press.

Bellman, R. E. (1967). Introduction to the mathematical theory of control processes
(Vol. 40-I). New York, NY: Academic Press.

Bellman, R. E. (1971). Introduction to the mathematical theory of control processes
(Vol. 40-II). New York, NY: Academic Press.

Bellman, R. E., & Kalaba, R. E. (1965). Dynamic programming and modern control
theory. Academic Press.

Benbrahim, H. (1996). Biped dynamic walking using reinforcement learning. (Ph.D.
Thesis at University of New Hampshire)

Benbrahim, H., & Franklin, J. (1997). Biped dynamic walking using reinforcement
learning. Robotics and Autonomous Systems.

Berny, A. (2000). Statistical machine learning and combinatorial optimization. In L.
Kallel, B. Naudts, and A. Rogers, editors, Theoretical Aspects of Evolutionary
Computing, Lecture Notes in Natural Computing, 0 (33).

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Belmont, MA:
Athena Scientific.

Billard, A., & Mataric, M. (2001). Learning human arm movements by imitation: Eval-
uation of a biologically-inspired architecture. Robotics and Autonomous Systems,
941, 1–16.

Billard, A., & Schaal, S. (2002). Computational elements of robot learning by imita-
tion. In American mathematical society central section meeting. Madison, Oct.12-
13,2002: Providence, RI: American Mathematical Society.

Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford
University Press.

Boyan, J. (1999). Least-squares temporal difference learning. 49–56.

Bradtke, S., Ydstie, E., & Barto, A. (1994). Adaptive linear quadratic control using
policy iteration. Amherst, MA: University of Massachusetts.

Branicky, M., & Mitter, S. (1995). Algorithms for optimal hybrid control. In Proceedings
of the ieee conference on decision and control (pp. 2661–6). .

95

Branicky, M. S. (1998). Multiple lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Trans. on Automatic Control, 43 (4), 475–482.

Bruyninckx, H., & Khatib, O. (2000). Gauss’ principle and the dynamics of redun-
dant and constrained manipulators. Proceedings of the 2000 IEEE International
Conference on Robotics & Automation, 2563–2569.

Bryson, A. E. (1981). Applied optimal control: Optimization, estimation, and control.
Hemisphere Pub. Corp.

Burridge, R. R., Rizzi, A. A., & Koditschek, D. E. (1999). Sequential composition
of dynamically dexterous robot behaviors. The International Journal of Robotics
Research, 18 (6), 534-555.

Buss, M., Stryk von, & O., G., Schmidt. (2000). Towards hybrid optimal control.
at-Automatisierungstechnik, 48 (09), 448-459.

Caines, P. E., & Wei, Y. jun. (1998). Hierarchical hybrid control systems: A lattice
theoretic formulation. IEEE AC, 43 (4), 501-508.

Chung, W., Chung, W., & Y.Youm. (1993). Null torque based dynamic control for
kinematically redundant manipulators. Journal of Robotic Systems, 10 (6), 811–
834.

C. Zhou, Q. M. (2000). Reinforcement learning with fuzzy evaluative feedback for a
biped robot. In Proceedings of the ieee international conference on robotics and
automation (pp. 3829–3834). .

Dautenhahn, K., & Nehaniv, C. L. (Eds.). (2002). Imitation in animals and artifacts.
Cambridge, MA: MIT Press.

Dayan, P. (1990). Reinforcement comparison. In D. Touretzky, J. Elman, T. Sejnowski,
& G. Hinton (Eds.), Proceedings of the 1990 connectionist models summer school
(p. 45-51). San Mateo, CA: Morgan Kaufmann.

Dayan, P., & Hinton, G. E. (1997). Using expectation-maximization for reinforcement
learning. Neural Computation, 9 (2), 271-278.

De Wit, C. A. C., Siciliano, B., & Bastin, G. (1996). Theory of robot control. Springer-
Verlag Telos.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the maxq value
function decomposition. Journal of Artificial Intelligence Research, 13, 227-303.

Doya, K., Samejima, K., Katagiri, K., & Kawato, M. (2002). Multiple model-based
reinforcement learning. Neural Comput, 14 (6), 1347–69.

Duflo, M. (1997). Random iterative models. Springer Verlag.

96

Dyer, P., & McReynolds, S. R. (1970). The computation and theory of optimal control.
New York: Academic Press.

Edstroem, K. (1999). Switched bond graphs: Simulation and analysis. Unpublished
doctoral dissertation, Linkoeping University, Linkoeping, Sweden.

Febbraro, A. D., Giua, A., & Menga, G. (Eds.). (2001, January). Special issue on
”hybrid petri nets” (No. 1/2). Kluwer Academic.

Fidelman, P., & Stone, P. (2004). Learning ball acquisition on a physical robot. In 2004
international symposium on robotics and automation (isra). Queretaro. Mexico.

Fuerverger, A., McLeish, D., Kreimer, J., & Rubinstein, R. (1989). Sensitivity analysis
and the “what if” problem in simulation analysis. Math. Comput. Modelling, 12,
193–219.

Glynn, P. (1987). Likelihood ratio gradient estimation: an overview. In Proceedings of
the 1987 winter simulation conference (p. 366-375). Atlanta, GA.

Glynn, P. (1989). Optimization of stochastic systems via simulation. In Proceedings of
the 1989 winter simulation conference (pp. 90–105). Atlanta, GA.

Glynn, P. (1990). Likelihood ratio gradient estimation for stochastic systems. Commu-
nications of the ACM, 33 (10), 75–84.

Greensmith, E., Bartlett, P., & Baxter, J. (2001). Variance reduction techniques for
gradient estimates in reinforcement learning. Advances in Neural Information
Processing Systems, 14 (34).

Greensmith, E., Bartlett, P. L., & Baxter, J. (2004). Variance reduction techniques
for gradient estimates in reinforcement learning. Journal of Machine Learning
Research, 5, 1471–1530.

Gullapalli, V. (1993a). Learning control under extreme uncertainty. 327–334.

Gullapalli, V. (1993b). Learning control under extreme uncertainty. In S. J. Hanson,
J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing
systems (Vol. 5, pp. 327–334). Morgan Kaufmann, San Mateo, CA.

Gullapalli, V. (1995). Skillful control under uncertainty via direct reinforcement learn-
ing. Robotics and Autnomous Systems, 15, 237–246.

Gullapalli, V., Franklin, J., & Benbrahim, H. (1994). Aquiring robot skills via rein-
forcement learning. IEEE Control Systems, -(39).

Hardt, M., & Stryk, O. von. (2000). Towards optimal hybrid control solutions for gait
patterns of a quadruped. In M. Armada & P. Gonzalez de Santos (Eds.), Proc.
clawar 2000 – 3rd international conference on climbing and walking robots (p. 385-
392). Bury St. Edmunds and London, UK: Professional Engineering Publishing.

97

Harville, D. A. (2000). Matrix algebra from a statistician’s perspective. Springer Verlag.

Hasdorff, L. (1976). Gradient optimization and nonlinear control. John Wiley & Sons.

Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings of the 11th an-
nual symposium on logic in computer science (lics) (p. 278-292). IEEE Computer
Society Press.

Hirzinger, G., Sporer, N., Albu-Schäffer, A., Hähnle, M., Krenn, R., Pascucci, A., &
Schedl, M. (2002). Dlr’s torque-controlled light weight robot iii - are we reaching
the technological limits now? In Icra (p. 1710-1716).

Hsu, P., Hauser, J., & Sastry, S. (1989). Dynamic control of redundant manipulators.
Journal of Robotic Systems, 6 (2), 133–148.

Ijspeert, A., Nakanishi, J., & Schaal, S. (2001). Trajectory formation for imitation with
nonlinear dynamical systems [conference]. In Proceedings of the IEEE/RSJ Int.
Conference on Intelligent Robots and Systems (IROS2001) (p. 752-757). Maui,
Hawai.

Ijspeert, A., Nakanishi, J., & Schaal, S. (2002a). Learning attractor landscapes for
learning motor primitives [conference]. In S. Becker, S. Thrun, & K. Obermayer
(Eds.), Advances in neural information processing systems 15 (nips2002) (pp.
1547–1554).

Ijspeert, A., Nakanishi, J., & Schaal, S. (2002b). Learning rhythmic movements
by demonstration using nonlinear oscillators [conference]. In Proceedings of the
ieee/rsj int. conference on intelligent robots and systems (iros2002) (pp. 958–963).

Ijspeert, A., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for
learning motor primitives. In Advances in neural information processing systems
15. Cambridge, MA: MIT Press.

Inamura, T., Iwaki, T., Tanie, H., & Nakamura, Y. (2004). Embodied symbol emergence
based on mimesis theory. International Journal of Robotics Research, 23 (4-5),
363–377.

Inamura, T., Toshima, I., & Nakamura, Y. (2002). Acquisition and embodiment of
motion elements in closed mimesis loop. In International conference on robotics
and automation (icra2002) (pp. 1539–1544). Washinton, May 11-15 2002.

Jaakkola, T., Singh, S. P., & Jordan, M. I. (1995). Reinforcement learning algorithm
for partially observable Markov decision problems. In G. Tesauro, D. Touretzky,
& T. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp.
345–352). The MIT Press.

98

Jacobson, D. H., & Mayne, D. Q. (1970). Differential dynamic programming. New
York: American Elsevier Publishing Company, Inc.

Johansson, K. H. (2000, Spring). Eecs291e hybrid systems. (UC Berkeley Lecture)

Johansson, M., & Rantzer, A. (1998). Computation of piecewise quadratic lyapunov
functions for hybrid systems. IEEE Trans. on Automatic Control, 43 (4), 555–559.

Jun Morimoto, K. D. (2000). Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. In Icml (p. 623-630).

Kakade, S. (2001). A natural policy gradient. In Advances in neural information
processing systems (Vol. 14).

Kakade, S. A. (2002). Natural policy gradient. Advances in Neural Information Pro-
cessing Systems 14.

Kawato, M. (1999). Internal models for motor control and trajectory planning. Curr
Opin Neurobiol, 9 (6), 718–727.

Kawato, M., Gandolfo, F., Gomi, H., & Wada, Y. (1994). Teaching by showing in
kendama based on optimization principle. In Proceedings of the international
conference on artificial neural networks (icann’94) (Vol. 1, pp. 601–606).

K.C.Suh, & Hollerbach, J. M. (1987). Local versus global torque optimization of re-
dundant manipulators. Proc. IEEE Int. Conference on Robotics and Automation,
619–624.

Khatib, O. (1987). A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation. IEEE Journal of Robotics and
Automation, 3 (1), 43–53.

Kimura, H., & Kobayashi, S. (1998). An analysis of actor/critic algorithms using
eligibility traces: Reinforcement learning with imperfect value function. 15th
International Conference on Machine Learning, 278–286.

Kohl, N., & Stone, P. (2004). Policy gradient reinforcement learning for fast quadrupedal
locomotion. In Proceedings of the IEEE international conference on robotics and
automation. New Orleans, LA.

Konda, V. (2002). Actor-critic algorithms. Ph.D. Thesis (MIT), 3 (36).

Konda, V., & Tsitsiklis, J. (2000). Actor-critic algorithms. Advances in Neural Infor-
mation Processing Systems 12.

Konda, V., & Tsitsiklis, J. (2001). Actor-critic algorithms. Submitted to SIAM Journal
on Control and Optimisation(38).

99

Lawrence, G., Cowan, N., & Russell, S. (2003). Efficient gradient estimation for motor
control learning. In Proc. uai-03. Acapulco, Mexico.

Leithead, D. J. (2000). Survey of gain-scheduling analysis and design. International
Journal of Control, 73 (11), 1001-1025.

Lemmon, M., He, K., & Markovsky, I. (1999). Supervisory hybrid systems. IEEE
Control Systems, 19 (4), 42-55.

Li, W., & Todorov, E. (2004). Iterative linear-quadratic regulator design for nonlinear
biological movement systems. In Proceedings of the 1st international conference on
informatics in control, automation and robotics (Vol. 1, pp. 222–229). INSTICC
Press.

Lozano-Perez, T., Mason, M. T., & Taylor, R. H. (1984). Automatic synthesis of
fine-motion strategies for robots. Int. J. Rob. Res., 3 (1), 3–23.

Lygeros, J., Tomlin, C., & Sastry, S. S. (2005). Hybrid systems and control. In preper-
ation.

Lynch, N., Segala, R., Vaandrager, F., & Weinberg, H. (1996). Hybrid i/o automata. In
R. Alur, T. Henzinger, & E. Sontag (Eds.), Hybrid systems iii: Verification and
control (Vol. 1066, p. 496-510). Springer-Verlag.

Marbach, P., & Tsitsiklis, J. (1999). Simulation-based optimization of markov reward
processes: implementation issues.

Marbach, P., & Tsitsiklis, J. N. (2003). Approximate gradient methods in policy-space
optimization of markov reward processes. Journal of Discrete Event Dynamical
Systems, 13, 111-148.

McGovern, A., & Barto, A. G. (2001). Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proceedings of the 2001 international conference
on machine learning.

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Osu, R., Nakano, E., &
Kawato, M. (1995). A kendama learning robot based on a dynamic optimization
theory. In Preceedings of the 4th ieee international workshop on robot and human
communication (ro-man’95) (pp. 327–332). Tokyo.

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Rieka, O., Nakano, E.,
Wada, Y., & Kawato, M. (1996). A kendama learning robot based on a dynamic
optimiation principle. In Preceedings of the international conference on neural
information processing (pp. 938–942). Hong Kong.

Miyamoto, H., & Kawato, M. (1998). A tennis serve and upswing learning robot based
on bi-directional theory. Neural Networks, 11, 1331–1344.

100

Miyamoto, H., Schaal, S., Gandolfo, F., Koike, Y., Osu, R., Nakano, E., Wada, Y., &
Kawato, M. (1996). A kendama learning robot based on bi-directional theory.
Neural Networks, 9 (8), 1281–1302.

Moon, T., & Stirling, W. (2000). Mathematical methods and algorithms for signal
processing. Prentice Hall.

Morimoto, J. (2002). Robust low torque biped walking using differential dynamic
programming with a minimax criterion. submitted to CLAWAR.

Morimoto, J., & Atkeson, C. G. (2003). Minimax differential dynamic programming:
An application to robust biped walking. In S. T. S. Becker & K. Obermayer
(Eds.), Advances in neural information processing systems 15 (pp. 1539–1546).
Cambridge, MA: MIT Press.

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004).
Learning from demonstration and adaptation of biped locomotion. Robotics and
Autonomous Systems, 47 (2-3), 79–91.

Neumann, K., & Morlock, M. (2002). Operations research. Hanser Verlag.

Paine, R. W., & Tani, J. (2004). Motor primitive and sequence self-organization in a
hierarchical recurrent neural network. Neural Netw, 17 (8-9), 1291–309.

Park, J., Chung, W.-K., & Youm, Y. (1995). Specification and control of motion for
kinematically redundant manipulators. Proc. Internationational Conference of
Robotics Systems.

Park, J., Chung, W.-K., & Youm, Y. (2002). Characterization of instability of dynamic
control for kinematically redundant manipulators. Proc. IEEE Int. Conference on
Robotics and Automation.

Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of machines. In
M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information
processing systems (Vol. 10). The MIT Press.

Perkins, T., & Barto, A. (2001). Lyapunov-constrained action sets for reinforcement
learning. In Proceedings of the eighteenth international conference on machine
learning (pp. 409–416).

Peters, J., Mistry, M., & Udwadia, F. E. (2005). A novel methodology for the control
of robotic systems. In Submitted to the international conference on robot systems
(iros).

Peters, J., Vijayakumar, S., & Schaal, S. (2003a). Reinforcement learning for humanoid
robotics. In Humanoids2003, third ieee-ras international conference on humanoid
robots. Karlsruhe, Germany, Sept.29-30.

101

Peters, J., Vijayakumar, S., & Schaal, S. (2003b). Scaling reinforcement learning
paradigms for motor learning. In Proceedings of the 10th joint symposium on
neural computation (jsnc 2003). Irvine, CA, May 2003.

Peters, J., Vijayakumar, S., & Schaal, S. (2004). Linear quadratic regulation as bench-
mark for policy gradient methods. Los Angeles, CA: USC Technical Report.

Peters, J., Vijaykumar, S., & Schaal, S. (2003). Reinforcement learning for humanoid
robotics. IEEE International article on Humandoid Robots (HUMANOIDS).

Pollard, N. (2004). Closure and quality equivalence for efficient synthesis of grasps from
examples. International Journal of Robotics Research, 6 (23), 595–614.

Pollard, N. S., & Hodgins, J. K. (2002). Generalizing demonstrated manipulation tasks.
In Workshop on the algorithmic foundations of robotics (wafr ’02).

Pook, P. K., & Ballard, D. H. (1993). Recognizing teleoperated manipulations. In
Proceedings ieee international conference on robotics and automation (Vol. 3, pp.
913–918). Atlanta, GA, May 1993: Piscataway, NJ: IEEE.

Ramadge, P. J., & Wonham, W. M. (1987). Supervisory control of a class of discrete
event processes. SIAM J. Contr. Optimiz., 25, 206-230.

Sabes, P. N., & Jordan, M. I. (1996). Reinforcement learning by probability matching.
Advances in Neural Information Processing Systems, 8, 1080–1086.

Samejima, K., Doya, K., & Kawato, M. (2003). Inter-module credit assignment in
modular reinforcement learning. Neural Netw, 16 (7), 985–94.

Schaal, S. (1997). Learning from demonstration. In M. C. Mozer, M. Jordan, &
T. Petsche (Eds.), Advances in neural information processing systems 9 (pp. 1040–
1046). Cambridge, MA: MIT Press.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in
Cognitive Sciences, 3 (6), 233–242.

Schaal, S., Ijspeert, A., & Billard, A. (2004). Computational approaches to motor
learning by imitation. In C. D. Frith & D. Wolpert (Eds.), The neuroscience of
social interaction (pp. 199–218). Oxford: Oxford University Press.

Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2003). Control, planning, learn-
ing, and imitation with dynamic movement primitives. In Workshop on bilateral
paradigms on humans and humanoids, ieee international conference on intelligent
robots and systems (iros 2003). Las Vegas, NV, Oct. 27-31.

Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2004). Learning movement prim-
itives. In International symposium on robotics research (isrr2003). Ciena, Italy:
Springer.

102

Schoknecht, R. (2003). Optimality of reinforcement learning algorithms with linear
function approximation. In S. T. S. Becker & K. Obermayer (Eds.), Advances in
neural information processing systems 15 (pp. 1555–1562). Cambridge, MA: MIT
Press.

Sentis, L., & Khatib, O. (2004). Task-oriented control of humanoid robots through
prioriization. In Ieee-ras/rsj international conference on humanoid robots. Santa
Monica, CA, November 2004.

Spall, J. C. (2003). Introduction to stochastic search and optimization: Estimation,
simulation, and control. Hoboken, NJ: Wiley.

Sternad, D., & Schaal, S. (1998). Segmentation of endpoint trajectories does not imply
segmented control. In Abstracts of the eigth annual meeting of neural control of
movement (ncm) (p. F-6). Key West, Florida, April 14-19.

Stryk, M. G. O. von. (2000). Decomposition of mixed-integer optimal control problems
using branch and bound and sparse direct collocation. In Adpm. Dortmund,
Germany.

Stryk, O. von. (1999). User’s guide for dircol version 2.1: A direct collocation method
for the numerical solution of optimal control problems (Report). Lehrstuhl M2
Hoehere Mathematik und Numerische Mathematik, Technische Universit ?at M
?unchen.

Sutton, R. (2000). Policy gradient methods for reinforcement learning with function
approximation. Presentation at NIPS, 12 (22).

Sutton, R., & Barto, A. (1998a). Reinforcement learning. Boston, MA: MIT Press.

Sutton, R., & Barto, A. (1998b). Reinforcement Learning. MIT PRESS.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2000a). Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in Neural
Information Processing Systems, 12 (22).

Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2000b). Policy gradient methods
for reinforcement learning with function approximation. In Advances in neural
information processing systems 12. Cambridge, MA: MIT Press.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2001). Comparing policy gradient
methods. (Unfinished paper)

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cam-
bridge: MIT Press.

103

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: a
framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112, 181–211.

T.Henzinger, & Toi, H. (1996). Linear phase-portrait approximations for nonlinear
hybrid systems. In Proceedings of the 1995 dimacs workshop on verification and
control of hybrid systems.

Tricomi, F. G. (1985). Integral equations. Dover Publications.

Tsitsiklis, J. N., & Roy, B. V. (1997). An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic Control, 42 (5),
674–690.

Udwadia, F. E. (2003). A new perspective on tracking control of nonlinear structural
and mechanical systems. Proc. R. Soc. Lond. A, 2003, 1783–1800.

Udwadia, F. E., & Kalaba, R. E. (1996). Analytical dynamics: A new approach.
Cambridge University Press.

Wada, Y., & Kawato, M. (1994). Trajectory formation of arm movement by a neural
network with forward and inverse dynamics models. Systems and Computers in
Japan, 24, 37–50.

Wada, Y., & Kawato, M. (1995). A theory for cursive handwriting based on the
minimization principle. Biological Cybernetics, 73 (1), 3–13.

Weaver, L., & Tao, N. (2001a). The optimal reward baseline for gradient-based re-
inforcement learning. Uncertainty in Artificial Intelligence: Proceedings of the
Seventeenth Conference, 17 (29).

Weaver, L., & Tao, N. (2001b). The variance minimizing constant reward baseline for
gradient-based reinforcement learning. Technical Report ANU, -(30).

Williams, R. (1986). Reinforcement learning in connectionist networks: A mathematical
analysis (Technical Report No. ICS-8605). San Diego, CA: University of Califor-
nia, Institute for Cognitive Science.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8 (23).

Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for
motor control. Neural Networks, 11 (7-8), 1317–1329.

Xu, X., & Antsaklis, P. (2002). An approach to optimal control of switched systems with
internally forced switchings. In Proceedings of the american control conference (pp.
148 –153). Anchorage, USA.

104

Yang, Z. (2001). Introduction to hybrid systems - modeling and control (Tech. Rep.).
Aalborg University.

Yoshikawa, T. (1990). Foundations of robotics: Analysis and control. MIT Press.

105

Appendix A

Additional Derivations

As the rather long derivation of theorems required for the proofs in this thesis proposal
would interrupt the flow in this appendix, we have collected them here. The theorems
and discussions include (i) the solution of partitioned regression problem, and (ii) the
Fisher information property of the All-Action matrix.

A.1 Partitioned Regression Problems

In this section, we derive a Theorem needed for the derivation of estimators which
simplifies the estimation of the compatible function approximation.

Theorem 17 A regression problem of the form

β∗ =
[
β1 β2

]T = argmin
β

(Y − Xβ)T (Y − Xβ) , (A.1)

with basis function X =
[
X1 X2

]
has the unique solution

β1 =
(
XT

1X1

)−1
XT

1 (Y − X2b) , (A.2)

β2 = Q−1XT
2

(
Y − X1

(
XT

1X1

)−1
XT

1 Y
)
, (A.3)

with

Q−1 =
(
XT

2X2

)−1
(A.4)

+
(
XT

2X2

)−1
XT

2X1

(
XT

1X1 − XT
1X2

(
XT

2X2

)−1
XT

2X1

)−1
XT

1X2

(
XT

2X2

)−1
.

Proof. The solution of the regression problem in Equation (A.1) is given by

β∗ =
(
XTX

)−1
XTY, (A.5)

106

see (Harville, 2000). By defining T = XT
1X1, U = XT

1X2, W = XT
2X2, and subsequently

applying the Matrix Inversion Theorem (see (Harville, 2000), pages 98–101), we obtain

(
XTX

)−1
=
[
T U

UT W

]−1

=
[
T−1 + T−1UQ−1UTT−1 −T−1UQ−1

−Q−1UTT−1 Q−1

]
, (A.6)

with Q = W −UTT−1U. We can simplify Q−1 using the Sherman-Morrison Theorem
(see (Moon & Stirling, 2000), pages 258–259) which yields

Q−1 = W−1 +W−1UT
(
T −UW−1UT

)−1
UW−1. (A.7)

When multiplying
(
XTX

)−1
by XTY =

[
XT

1 Y XT
2 Y
]T , we obtain

β1 =
(
T−1 + T−1UQ−1UTT−1

)
XT

1 Y − T−1UQ−1XT
2 Y , (A.8)

= T−1
(
XT

1 Y −Uβ2

)
, (A.9)

β2 = Q−1
(
XT

2 Y −UTT−1XT
1 Y
)
. (A.10)

After inserting the definitions for T , U, and W, we obtain Equations (A.2, A.3, A.2).

A.2 Fisher Information Property

In Section 3.98, we explained that the all-action matrix F (θ) equals in general the Fisher
information matrix G(θ). In (Moon & Stirling, 2000), we can find the well-known lemma
that by differentiating

∫
Rn p(ξ)dξ = 1 twice with respect to the parameters θ, we can

obtain ∫
Rn

p(ξ)∇2
θ log p(ξ)dξ = −

∫
Rn

p(ξ)∇θ log p(ξ)∇θ log p(ξ)Tdξ (A.11)

for any probability density function p(ξ). Furthermore, we can rewrite the probability
p(ξ0:n) of a history as

p (ξ0:n) = p (x0)
n∏

t=0

p (xt+1 |xt,ut)π (ut |xt) ,

which implies that the log-policy derivatives are given by

∇2
θ log p (τ0:n) =

n∑
t=0

∇2
θ log π (ut |xt) . (A.12)

107

Using Equations (A.11), and the definition of the Fisher information matrix (Amari,
1998), we can determine Fisher information matrix for the average reward case in sample
notation, i.e,

G(θ) = lim
n→∞

1
n
Eξ0:n

{
∇θ log p(ξ0:n)∇θ log p(ξ0:n)T

}
, (A.13)

= − lim
n→∞

1
n
Eξ0:n

{
∇2

θ log p(ξ0:n)
}
,

= − lim
n→∞

1
n
Eξ0:n

{
n∑

t=0

∇2
θ log π (ut |xt)

}
,

= −
∫

X
dπ(x)

∫
U
π(u|x)∇2

θ log π(u|x)dudx,

=
∫

X
dπ(x)

∫
U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)Tdudx,

= F (θ)

This proves that the all-action matrix is indeed the Fisher information matrix for
the average reward case. For the discounted case, with a discount factor γ we re-
alize that we can rewrite the problem where the probability of rollout is given by
pγ(ξ0:n) = p(ξ0:n)(

∑n
i=0 γ

iIxi,ui). It is straightforward to show that ∇2
θ log p (ξ0:n) =

∇2
θ log pγ(ξ0:n), and derive that the all-action matrix equals the Fisher information ma-

trix by the same kind of reasoning as in Eq.(A.13). Therefore, we can conclude that in
general, i.e., G(θ) = F (θ).

108

