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Purpose of this Lecture

e Supervised Learning approaches have been tremendously successful in a
huge number of applications.

e A huge and highly dynamical area of research!
e \We can only take a glimpse on one supervised learning problem: Regression!

e Regression: Approximate continuous functions from (noised) measured data.
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Content of this Lecture

>1 . Introduction to Regression
2. Accuracy, Overfitting and Regularization
3. How to Avoid Handcrafting Features

4. Learning Inverse and Forward Dynamics Models

4

Thursday, May 17, 2012



Motivational Example: Robot Arm

¢ You want to predict the torques of a robot arm:

y=1q+mlgsing — nq = [ §, sing, g ] [ I wilg, —p ]T
= ¢(x)"6
Features Parameters

e(Can we do this with a data
set/ P = {ixiy i — Lawifi}’

e This is a linear regression problem!
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Cost Function |: Least Squared Error

The classical cost function is the one of least-squares
o EN :( fo(x;))?
—_ — . — X- '
9 — Yi G\

Using
e = [ o), $(x2), B(xs) .., S(x) ],
Y = -.yl) Y2, Y35, e .yn:ll-

we can rewrite it as :
J= i(Y — ®0)! (Y — 90).
and solve it

6=(o70) loTY
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Classical Interpretations

Physical Interpretation Geometric Interpretation

/
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Maximum-Likelihood Interpretation

We could maximize the “likelihood” of the data:

N
argmax,p(2|60) = argmax, l_[p(yilxi, 0)p(x;).
i=1

This yields:

N
argmax log p(2|6) argmax, ) logp(y;|x;, 0) +logp(x;),
i=1

1 N
argmaxy - — ) (¥ — fo(x.))°.
i=1
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—xample Problem: a Data Set

T ' Canweapply thisto
| arbitrary functions?
9 2 7 05 mp?:tx 05 i s 2
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Content of this Lecture

1. Introduction to Regression
DZ. Accuracy, Overfitting and Regularization
3. How to Avoid Handcrafting Features

4. Learning Inverse and Forward Dynamics Models
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Model Assumptions: Noise

Additive Noise:

y =f,(x)+¢€ with e ~ A(0, 02)

Linear in Features:

fo(x)=¢(x)'6
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Let us fit our data ...

We need to answer:

25
: . ‘ e Number of parameters?
18 S . ’ * |s your model too rich?

1 * ) .

a * Does it allow

= ' 7 overfitting?
E
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Input

1\Q/e assume a model class: y=¢(x)'0+e=[1,x,x%x3,...,x"1"0 + ¢
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Add a Feature: n=1
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More features... n=2
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More features... Nn=8
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More features... n=15

17

Thursday, May 17, 2012




More features: n=200 '%M
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More features: n=200 i
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Test Error vs Training Error

0.5

Train Error
045 + Test Error

04 -
0.35 |

0.3

Error
o
(g}
W

02t
015
01| S—

0.05 |- The—

0 | | | | | | | | B
0 2 4 B 8 10 112 14 16 18

Features

“Magic” Tool: Leave-one-out-cross-validation (LOOC\/)
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What was the problem with n=200"?
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DARPA Neural Network Study (1988-89), AFCEA International Press
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Cost Function |l
Maximum-A-Priori = Ridge Regression

We could punish the size of the parameters (Complexity Control):

1 ) .
J = 5(Y—<I>9)’(Y—<I>6)+9’W9

This yields Ridge Regression
0 =(®'e+W)loly
with

W = Al A< 10°°

The probabillistic interpretation is called Maximum-A-Priori:

argmax,p(26)p(6) p(6)=A(0,W)
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“Full” Bayesian Regression

e Full Bayesian Regression wants to

p(y12,%) = / p(ylx, 0)p(6]2)d0

* /ntuition: If you assign each estimator a “probability of being right”, the
average of these estimators will be better than the single one.

¢ Yields:

= | -1
p(y|D,x) =N (q’)(x)T (%I + <I>T<D) dTY, % (1 + ¢(x)! (%I + @T@) qb(x)))

24
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—xample from Bishop (2000)
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Basic |ldea: Prior controls the Model Class and »>
hence what Data Sets can be explained :}//&@@;

—
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Content of this Lecture

1. Introduction to Regression
2. Accuracy, Overfitting and Regularization

DS. How to Avoid Handcrafting Features

4. Learning Inverse and Forward Dynamics Models

27

Thursday, May 17, 2012



What to do when you don’t know
the features”

* I[n most real applications, we know good
features.

e However, we almost certainly don’t know all
features we need.

e Example: Rigid body dynamics
* Friction has no good features and may w
be self-referential.
e Unknown dynamics causes huge
problems (requires more state variables).

]
5 8

Reibmoment. [Nm
n
[=]

$§ 8 o

3
8

&
&

e There may also be way too many features! S e

T «02

Py
=

-0.4 < .
-056 4 100

08 Drehmoment [Nm]

Geschwindigkeit [rad/s]

- Hand-crafted features are almost never enough...
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Can we avoid having to find good features?

Yes, we can!

We need to find machine learning approaches that generate the features
directly based on data.

Example 1: Radial basis functions create an optimal smooth

Example 2: Locally-Weighted Regression localize in your data and try to
interpolate with similar data.

Example 3: Kernel Regression find the features by going into function space

using a kernel?

29
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—xample |: Radial Basis Function Features

RBF Nebwork - Features
II’K \1\’?' -..__.f/ \L|
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—xample |: Radial Basis Function Solution

RBF Nebwork
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—xample Il: Locally Linear Solutions

32

Qutput y
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ocally all data is linear!-
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—xample Il: Locally Linear Solutions

e |ocally all data is linear ... so why don’t we take the next couple of data
points to predict the solution?

¢ \We select data points in a proximity and use only them in the prediction.

e 1 if”x—quSe,
10 otherwise.

2.5 -

Daka with Subselection

Data Points

33 -7 | | 1 1 | | I |
- -1. - - : 1 2
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2.5

1.5 F

Cutput y
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—xample Il: Locally Linear Solutions

We can formalize this in a cost function. Let us use our on-off function in the
cost function and we obtain:

sz (%) (g — fa(x:))?,

In matrix form with W = diag(w;, we, ws, ..., wy) :

J = %(Y — )T W(Y — ®6),
The solution to this problem
= (' Wo) o' WY.

35 W can be large - don’t implement it in MATLAB like this...
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Solution with Locally-Weighted

* We can use better weighting functions, e.g., w;(x) = exp (—1— Hx = qu|2>

® Yes, just like in RBF networks.

x Locally-Weighted Linear Approximation
J | | | | | | |

36 =5 -1.5 -1 -0.5 0 0.5 1 1.5 2
[npUt X
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—xample lll: Kernel Methods

e ook at the solution to linear regression again:
y(x) = $(x)70 = ¢(x)7 (@7 ®) " 0TY.
e \We know from linear algebra that there is a left and a right pseudo-inverse
L7 = (o1 0) 17 & = (1)1,

e and hence

o(x)1 (&1 ®)'PTY = ¢(x)1 ®(®PT)'Y
e Even more general, the Woodbury matrix identity allows deriving:

(PTW + ) 1o = (9T + AW 1)~
e This yields

y(x) = o(x)10=0x)(®T®+ ) 10TY,
= o(x)1®(®dT + AI)7'Y.

This yields nearly the same solution
37 as linear regression ... so why?
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—xample lll: Kernel Methods

¢ et us define the kernels:

k(x,y) = ¢(x) (),
K;; = k(x;,x;),
ki = Klx %),
e Now we can rewrite the equation by

y(x) = ¢(x)T &(@PT + A\I)7'Y = k(K + A\I) LY.
e This is called kernel ridge regression. \Why would this be cool?

e Because we can use another kernel if we are unhappy with our features!

k(x,y) = exp (% [x — y||2) :
38
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—xample lll: Using an exponential kernel...

39

2.5

Kernel Ridge Regression Solution

Without damage to ou
data, we obtain thi soluti

-1.5 -1 -0.5 0 0.5 1 1.5
Inpuk
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Outline of the Lecture

1. Introduction to Regression
2. Accuracy, Overfitting and Regularization
3. How to Avoid Handcrafting Features

>4. Learning Inverse and Forward Dynamics Models

40
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Application: Model Learning for
Accurate Control in Joint-Space

f you system that uniquely maps states to action,
learning an Inverse Model directly yields a Policy

action
state > Inverse > Robot > state

Model

41
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Learning to Control with Models

e Compliant, low-gain control of fast & accurate movements
requires precise models.

® A changing world requires only adaption to altered dynamics.
e Control both directly in joint (here) and task space (next)

Analytical Rigid-Body
Model with CAD data Offline Trained Online Trained

Nguyen-Tuong, Peters, IROS 2008 (Finalist for Best Paper Award)
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-unction Approximation

Joint Accelerations, Velocities, Positions

lv l&

Torques

M )a+c(q,q

Mass Matrlx

Coriolis & Centripetal Forces

training data

true y

Grawty

Problem

Inverse Dynamics is a giant
function approximation
problem

(q) *Robot arm

e 3 x 7 =21 state dimensions,

e 7/ action dimensions

e Humanoid
¢ 3 x 30 = 90 state dimensions
¢ 30 action dimensions

¢ | earning in real-time!

e Unlimited continuous stream of
data...
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-unction Approximation Problem

What methods can deal with this
problem?

Joint Accelerations, Velocities, Positions

Torques x x ‘

e Neural networks?

M q + C q, (q) e Mixture of Experts?
e Kernel Regression? SVR? GPR?
Mass Matr.x Gra"'ty X These methods only in offline settings!!!

Coriolis & Centripetal Forces Local methods can perform online:

training data ® Loca"y Weighted PLS
true y - Regression (LWPR) (Schaal,
<L Atkeson & Vijayakumar, 2002)

e Local Gaussian Processes
(LGP) (Nguyen-Tuong, Peters,
2008)
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Learning to Control: Inverse Dynamics

1L

' —hl_gld Body Dynamics Model

D. Nguyen-Tuong, J. Pefers: Computed Torque Control with Non-parametric Regression "

AR -
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Comparison of Methods

BMLWPR

1 2 3 4 5 6 7
Degree of Freedom

(a) Approximation Error on
SL data (SARCOS model)

0.07

0.06/

0.05

| w o.04l
w004

=
£ 0.03

0.02;

0.01

(b) Approximation Error on

Prediction Time [ms] (log. Scale)

N W s o

= L WPR o 2 |
-4-v-SVR prae !
¢ GPR -9
- LGP
A’ .9
Io B -
: ST
;' ----- -
t’-—’
°
£
//v— - =
0 5000 10000 15000

Nr. of Training Points

BLWPR

T 8. & Bl

Degree of Freedom

SARCOS data

BLwPR
Hoap
. |lv-SVR
IGPR
[ [Nl

1 2 3 4 5 6 7
Degree of Freedom

(c) Approximation Error on
Barrett WAM data

Thursday, May 17, 2012



’. / _w,‘.
1\ , ,‘.., ~, A\ _,

™ R L;?;m ,/,,, G
e, / Y ? \ A &259

I ! :.v B _,;_ ;www,/,/m%%éé
_.. i e %&Egg,/,ﬁé

Off

Learns a model of the forces in the arm!

8

-

S O

25

2l e NG
oo [l il ,__p %5%
= C a;_zz ;g,%
2 Wl , _5;2% ,,,,_
c 2 ..m:.;_i il , ,//,
c 2 M

S5

9o dimensional regression!
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Learning Forward Kinematics
for Humanoid Robots

earns a model of the position ot the hand!
48 60 dimensional regression!
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Goal of the Next Lecture

2. Step: Use your favorite
Optimal Control Method
to get an optimal policy

1. Step: Learn an
Forward Model

Policy

i Robot _
aCtV \st;te action l
\ Forwara / Forwarc

Model Model

state

49
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The state-of-the-art

e Kernel-based Regression is currently yielding the highest accuracy in function
approximation. The Bayesian version of Kernel Ridge Regression is called
Gaussian Process Regression (GPR) and the current gold standard!

* The fastest accurate methods usually are locally linear weighted regression

methods. The fastest off-the-shelf method that scales is Locally Weighted
Projection Regression.

* |t is very expensive - cubic in the data points while the others are cubic in the
dimension and linear in the number of data points!

e |f you have few data points (up to ~15.000), use GPR.
e |f you want to be fast, rather use LWPR.

e |f you need to make a trade-off, use LGP as the mix of LWPR and GPR.

50
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