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Where we are?

Reinforcement Learning Data
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Goal of this Lecture

2. Step: Use your favorite
Optimal Control Method
to get an optimal policy

1. Step: Learn an
Forward Model

Policy

i Robot _
aCtV \st;te action l
\ Forwara / Forwarc

Model Model

state
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Outline of the Lecture

D1 Introduction to Optimal Control
2.S0lving Linear-Quadratic Optimal Control Problems
3.0ptimal Control with Learned Models
4.Hot story: Marc Deisenroth’s PILCO Approach

5.Final Remarks
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—xample:

Ball Paddling

Ball
Position

What are the states x?

Ball
I Velocity
T T LECLELECEEEEEEPEP PR @ .........

Racket
Position

X Racket

Internal & External State: x(t)

5

- Action: u(t)

Thursday, May 17, 2012



—xample:

What are the actions u’

Sall

Paddling

e All motor torques?

e |f you do not have a model ...

e Joint Accelerations?

¢ Perfect, if you have a good model ...

¢ Maybe identify the proper degrees of

freedom?

e Accelerations in Operational

Space?
o [deally!

e ... but only if you have a good
operational space control law!

6
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—xample: Ball Paddling

What are good rewards r?

e Task knowledge or success/failure?

¢ For some algorithms rewards in {1,0} are
perfect ...

¢ Real problems often require reward
shaping...

e What’s a good reward for our
problem?
¢ Height of the ball?
¢ Distance between ball and the paddle?
¢ Ball needs to move in a certain region?
e All of the above?

e Additional punishments? v -

= All of these together do the job!

/
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SO can we get this to work”?

® [he state space has at least 12 dimensions.
® [he action space has at least 3 dimensions.
e Can discretizations deal with such spaces?

eNo! Finding an Optimal Value Function is limited by the curse of
dimensionality.

3 D
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Outline of the Lecture

1.Introduction to Optimal Control

DQ.Solving Linear-Quadratic Optimal Control Problems
3.0ptimal Control with Learned Models
4.Hot story: Marc Deisenroth’s PILCO Approach

5.Final Remarks
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Optimal Control Goal

e The goal of optimal control is find a policy u ~ 1(x) such that
T
1

J(m) = lim =F Zr(xt,ut)

T—oo [’
k=0

IS maximal for a given

reward function such as ’I“(X, u) = —XTQX — uTRu

system: X/ _ Ax+Bu—|>< For Simplicity of Derivation!

Nothing Changes!

11 ...S0 how do we solve this?
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Plot the Problem

X':AX—I—BUM

Next Temperature

controis u

| 1

9
30 32 34 36 38 40 42 30 32 34 36
Tempearature or State x Temperature or State x
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Bellman’ Recipe: Steps 1+2

1.At the last step, we have the value function

Vr(x) =0

2.For t=T-1, compute optimal policy such that

i (ul) = argmax, {r(x,u) + V1 (f(x,u))}

Value Function

determined by

d * )
d_ll {T(Xa u) T t—l—l(f(X7 U))} = 0 2 U
dcil [—x'Qx—u Ru)} = 0 -
) &

1 3 30 32 34 36 38 40 42
Temperature or State X
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Bellman’ Recipe: Step 3+4

3.0btain next value function V;"(z) = max, {r(x,u) + V1 (f(x,u))}

r1(x) = rixu’)+ Vi, (f(x,u’))
= —x'Qx—u""Ru"
= —x1Qx

4.As not converged, go back to Step 2.

14
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Bellman’ Recipe: Step 2 again!

2.For t<]-1, compute optimal policy such that
7t (ulr) = argmax, {r(x,u) + V3, (f(x,u))}

determined by

L) + Vi (ew)) = 0

S XTQx —uRu— fxw) P fGew)} = 0

diu [—x"Qx—u'Ru— (Ax+Bu)'P;1;(Ax+Bu)} = 0
C;iu {—Ru _BTP,,1(Ax + Bu)} = 0

which implies
Policy Parameters!

15 uw=—(R+B'P,;B)"'B'P,, 1 Ax = 0;x *
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Bellman’

Vi (%)

Recipe: Step 3+4

3.0Obtain next value function

4. We have a converged to Recursion:

~Q -6 \RO,11 — (A+BO; 1) "Pry1 + (A +BO1)
1660: = —(R+B'P,.1B)"'B P, ;A

Thursday, May 17, 2012

Vi'(z) = max, {r(x,u) + V7, (f(x,u))}

. (Ax + Bu’)

—x' Qx — (0;x)' R(0:x)

—(Ax +B6O,.1x)' Py + (Ax + BO;x)
—x7Q — 6/ RO,

—(A+B6,)' P, + (A +B6,)x

—x'P,x




Optimal Solution

Yalue Function

i = HtX

Controls u

g = | | | d
30 32 34 36 30 40 42

Temperature or State x
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Outline of the Lecture

1.Introduction to Optimal Control

2.S0lving Linear-Quadratic Optimal Control Problems
DS.Optimal Control with Learned Models

4.Hot story: Marc Deisenroth’s PILCO Approach

5.Final Remarks
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—xample: Swing-Up

System

goal position

—pp(t) + mglsin(p(t)) + u(?)

sps
p(t) -
i : ARl
X = [S?k—l—lJ — | Pk +At80k +Tt<pk
Pk+1 Lk -+ At@k I
Reward
r(x,u) = —x{ diag(1,0.1)xx 0.2}

19
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If you know
places where
we start...

... We can just
look ahead!

Atkeson & Schaal, 1995
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| ocal Solutions

e Every smooth function can be modeled with a Taylor expansion

T Ay’ T -y

f(x)=r(a) ix|. x|
e Hence, we can also approximatcei} df
N 2o <) 4 1
X f(Xa 11) | dx (X X) | du ‘g (11 11)

Atkeson & Schaal, 1995

21
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Bellman’ Recipe: Steps 1-4

1.At the last step, we have the value function

w

Vr(x) =0

2.For t=T-1, compute optimal policy such that
mt (ulr) = argmax, {r(x, u) + Vi, (f(x,u))}

gives U = WL

3.0btain next value function V;" (x) = max, {T(Xa u) + t11(f(X, U))}

Vi(x) = =7 — (X — %) Qupg (X — %)

4.As not converged, go back to Step 2.

22
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Bellman’ Recipe: Step 2-4 again!

2.For t<]-1, compute optimal policy such that
7t (ulr) = argmax, {r(x,u) + V3, (f(x,u))}

determined by

11>I< — ﬁt — (Rt —+ BfPtBt)_lB?Pt+1(aQ -+ At(X — }A(t)) — 9% (X — }A(t) -+ 0?

3.0btain the recursions

9% — ﬁt — (Rt —+ BfPt+1Bt)_1BZPt+1At(X — }A(t)
H? — ﬁt — (Rt —+ BfPt+1Bt)_1BfPt+1ag
Pt — _Qt — H?Rtgi —|— (A —I— BtH%)Pt_|_1(A —I— BtH%

23
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How do we get the Optimal Policy

1.Forward Propagation: Run Simulator to Obtain Linearizations
2.Backward Solution: Compute Optimal Control Law

3.If not converged, go to 1.

24
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Model Learning with
subsequent Policy Optimization

Atkeson & Schaal, 1996; Schaal, 1997



Model Learning with
subsequent Policy Optimization

Trial 1

26 Atkeson & Schaal, 1996; Schaal, 1997
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Outline of the Lecture

1.Introduction to Optimal Control
2.S0lving Linear-Quadratic Optimal Control Problems
3.0ptimal Control with Learned Models

D4.Hot story: Marc Deisenroth’s PILCO Approach

5.Final Remarks
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Marc
Probabllistic Forward Models Deisenroth

e Many forward models explain measured data.
e Choosing a bad model destroys will cause an optimization bias.
e Can we average ensure robustness towards bad approximations?

= Yes! Even in a Bayesian way with Gaussian Process Regression!

2t \ o 2. v ~
— O "\' ," I\\ ‘/’ \\ jiet + "
) : 3 2% et : o 1 |
% K y s
" 2 ¥ o
=Ddi=g2-110 L2 9 ¢, BEGLTIS0 10 5 49040 x23 45678910
LR X U )
2 8 Deisenroth, Fox, Rasmussen, R:SS 2011
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| Marc
SBasic |ldea Deisenroth

e With a GP, you can compute the distributions over all future states
based on all forward models weighted by their likelihood.

p(xl)a i ,p(XT)

® The propagation is still approximate and done by moment matching

e From the distribution:

» Expected Return: J7(0) = /\/\/ . P

» Gradient: dJW(O)/dO -1 -0.5 0 \oﬁs 1 0 05 p[ix’) 1.5
1 / .
-3 - o
= \We can do policy updates! ] 05 W&y 0 1
29 Deisenroth, Fox, Rasmussen, R:SS 2011
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Applications

KK: Kimura & Kobayashi
D: Doya 2000

C: Coulom 2002

WP: Wawrzynski & Pacut 2004

A

RT: Raiko & Tomio 2009

o,

—t
O
-

required interaction time in s

l . —
D C WP /1 DR

30

DR: Deisenroth & Rasmussen 20

Marc
Deisenroth

Marc Peter Deisenroth, Carl Edward Rasmussen, Dieter Fox

Learning to Control a Low-Cost Robotic Manipulator
using Data-Efficient Reinforcement Learning

R:SS 2011

Deisenroth, Fox, Rasmussen, R:SS 2011
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Outline of the Lecture

1.Introduction to Optimal Control
2.S0lving Linear-Quadratic Optimal Control Problems
3.0ptimal Control with Learned Models

4.Hot story: Marc Deisenroth’s PILCO Approach

D&Final Remarks
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Conclusions

* You have learned about optimal control today!

e Only two cased are solvable: linear & discrete!
¢ | inear scales but does not generalize.
¢ Discrete generalizes but does not scale.

¢ Using Learned Models, you can compute at least optimal “policy tubes”.
¢ |f you have many many tubes, in good regions, you have a policy.

¢ \We will continue with Value Function and Policy Search Methods.

32
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~urther Reading

¢(C. G. Atkeson (1994), Using Local Trajectory Optimizers to Speed Up
Global Optimization in Dynamic Programming, Proceedings, Neural
Information Processing Systems, Denver, Colorado, December, 1993, In:
Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro, and
J. Alspector, eds. Morgan Kaufmann, 1994.

e Schaal, S. (1997). “Learning from demonstration”. In: M.C. Mozer, M.
Jordan, & T. Petsche (eds.), Advances in Neural Information Processing
Systems 9, pp.1040-1046. Cambridge, MA: MIT Press

e Marc P. Deisenroth, Carl E. Rasmussen, Dieter Fox (2011). Learning to
Control a Low-Cost Robotic Manipulator Using Data-Efficient
Reinforcement Learning, Robotics: Science & Systems (RSS 2011)
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