
ICRA 2012 Tutorial on Reinforcement Learning
4. Value Function Methods

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:
AAAAAAAAAAA

Pieter Abbeel
UC Berkeley

Jan Peters
TU Darmstadt

A Reinforcement Learning Ontology

Prior Knowledge Data { (xt, ut, xt+1, rt) }

T, R

V*

¼*

Optimal Control
(with Model Learning)

V*

¼*

Model-Free
Value Function

Methods

¼*

Model-Free
Policy Search

Methods

Outline
n  Challenge: Most real-world problems have large,

often infinite and continuous, state spaces

Value Function Methods:

n  Model-free learning
n  Monte Carlo, TD-learning and Q-learning (tabular)

n  Function approximation
n  Q-learning with feature-based representations
n  Fitted Q-learning

n  Often good approach, even when model is available

3

Model-Based Learning

n  Step 1: Learn the model:
n  Supervised learning to find T(x,u,x’) and R(x,u) from

experiences (x,u,x’)

n  Step 2: Solve for optimal policy:
n  Can be done with optimal control methods, such as

value iteration

4

Model-free: 1. Monte Carlo / Direct Evaluation

n  Repeatedly execute the policy

n  Estimate the value of the state s as the average over all
times the state s was visited of the sum of discounted
rewards accumulated from state s onwards

5

π

Exercise: Direct Evaluation

n  (a) According to Direct Evaluation: What is V(3,3)?

n  (b) According to Direct Evaluation: What is V(2,3)?

n  (c) Just based on these samples, what could be a better estimate for
V(2,3) ?

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
x

y
γ = 1, R = -1

+100

-100

6

Limitations of Direct Evaluation

n  Assume random initial state

n  Assume the value of state (1,2) is
known perfectly based on past runs

n  Now for the first time encounter (1,1) ---
can we do better than estimating V(1,1)
as the rewards outcome of that run?

9

Model-free: 2. TD Learning

n  Who needs T and R? Approximate the
expectation with samples of s’ (drawn from T!)

10

Almost! But we can’t
rewind time to get sample
after sample from state s.

Exponential Moving Average
n  Exponential moving average

n  Makes recent samples more important

n  Forgets about the past (distant past values were wrong anyway)

n  Easy to compute from the running average

n  Decreasing learning rate can give converging averages
11

Problems with TD Value Learning

n  TD value leaning is a model-free way
to do policy evaluation

n  However, if we want to turn values into
a (new) policy, we’re sunk:

n  Idea: learn Q-values directly

n  Makes action selection model-free too!
12

Detour: Q-Value Iteration

n  Value iteration: find successive approx optimal values
n  Start with V0

*(x) = 0, which we know is right (why?)
n  Given Vi

*, calculate the values for all states for depth i+1:

n  But Q-values are more useful!
n  Start with Q0

*(x,u) = 0, which we know is right (why?)
n  Given Qi

*, calculate the q-values for all q-states for depth i+1:

13

Q-Learning

n  Q-Learning: sample-based Q-value iteration

n  Learn Q* values
n  Receive a sample (x,u,x’,r)

n  Consider your old estimate:

n  Consider your new sample estimate:

n  Incorporate the new estimate into a running average:

14

Q-Learning Properties

n  Amazing result: Q-learning converges to optimal policy
n  If you explore enough

n  If you make the learning rate small enough

n  … but not decrease it too quickly!

n  Basically doesn’t matter how you select actions (!)

n  Neat property: off-policy learning
n  learn optimal policy without following it

15

Q-Learning
n  In realistic situations, we cannot possibly learn

about every single state!
n  Too many states to visit them all in training
n  Too many states to hold the q-tables in memory

n  Instead, we want to generalize:
n  Learn about some small number of training states

from experience
n  Generalize that experience to new, similar states
n  This is a fundamental idea in machine learning, and

we’ll see it over and over again

16

Example: Pacman

n  Let’s say we discover
through experience
that this state is bad:

n  In naïve q learning, we
know nothing about
this state or its q
states:

n  Or even this one! 17

Feature-Based Representations

n  Solution: describe a state using
a vector of features
n  Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

n  Example features:
n  Distance to closest ghost
n  Distance to closest dot
n  Number of ghosts
n  1 / (dist to dot)2

n  Is Pacman in a tunnel? (0/1)
n  …… etc.

n  Can also describe a q-state (s, a)
with features (e.g. action moves
closer to food)

18

Linear Feature Functions

n  Using a feature representation, we can write a
q function (or value function) for any state
using a few weights:

n  Advantage: our experience is summed up in a
few powerful numbers

n  Disadvantage: states may share features but
be very different in value!

19

Tabular Q-function Linear Q-function

20

Q table

Sample:

Difference:

Update:

Linear Q-function

n  Intuitive interpretation:
n  Adjust weights of active features
n  E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

n  Formal justification: online least squares on

21

Sample:

Difference:

Update:

Example: Q-Pacman

22

Ordinary Least Squares (OLS)

0 20 0

Error or “residual”

Prediction

Observation

23

Minimizing Error

Value update explained:

24

n  Update we covered

n  = gradient descent on one sample

n  à How about batch version?

n  = called fitted Q-iteration

Function approximation

n  Assume Q-function of the form Q(x, u; w)

n  E.g.: Q(x, u; w) = ∑i wi fi(x,u)

n  Iterate for k = 1, 2, … (improve w in each iter)

Obtain samples (x(j), u(j), x’ (j), r(j)), j=1,2,…,J (from
model or from experience, and can keep set fixed or grow over time)

Supervised learning on:
w(k+1) = argminw ∑j loss(Q(x(j), u(j); w), sample(j))

where sample(j) = r(j)+° maxu’ Q(x(j)’, u’; w(k))

Fitted Q-Iteration

Outline
n  Challenge: Most real-world problems have large,

often infinite and continuous, state spaces

Value Function Methods:

n  Model-free learning
n  Monte Carlo, TD-learning and Q-learning (tabular)

n  Function approximation
n  Q-learning with feature-based representations
n  Fitted Q-learning

n  Often good approach, even when model is available

27

n  Martin Riedmiller and collaborators

Fitted Q-iteration – demo

n  Martin Riedmiller and collaborators

n  Neural fitted Q-iteration, learning from scratch, without a
model; growing batch: typically, improving the Q function and
collecting the transitions is done in alternating fashion.

n  Dribbling with soccer robots: difficult to solve analytically,
due to physical interactions of robot and ball. First some
random playing with the ball and then learn to dribble by
rewarding the robot if it turns to the desired target direction
without loosing the ball and punish it otherwise.

n  Also: slot-car racing, cart and double pole, active suspension
of a convertible car, steering of an autonomous car, magnetic
levitation, ...

n  We have some interest also in benchmarking, see e.g.

n  Hafner, Roland and M. Riedmiller. Reinforcement learning in
feedback control. Machine Learning, 27(1):55–74. available
online at http://dx.doi.org/10.1007/s10994-011-5235-x or
upon request at riedmiller@informatik.uni-freiburg.de,
Springer Netherlands, 2011

n  I hope this gives you enough information - I am just about to
leave home and will not have email-access in the next 10
hours.

Fitted Q-iteration – demo

n  Consolidate your understanding!

n  Implement and experiment with

n  Value iteration

n  Q-learning

n  Q-learning with function approximation

n  Time-frame: now and lunch break

Mini Project! (Optional)

