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Motivation

¢ | earning for high-dimensional robots is difficult:

e |_imit of Value Functions: fill-up state-space
e | imit of Model Learning: accurate model!

e Starting with expert’s knowledge helps!

* |mproving upon Demonstrations

e Using Task-Appropriate Policies is possible

e Exploring on the real system?

= Parametric Policy Search methods can do all that!
: w
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Sigger Picture

Reinforcement Learning Data
2 = 1(X;, W, X4, 7)}}

X' ~ P4,
XX

r~aRY,
XX

Vi(x)

l Value Function Methods NOW

" (u|x)

3 Optimal Control with
Model Learning
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Basics & Notation

Policy
m(ulz) = p(ulz, )

Reward
rec R

Next state

B Action
€T

uc R™

System
p(' |z, u)
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Basics & Notation

Goal: Find 0 that

Policy maximizes long term
I d
m(ulx) = p(ul 4@ rewar
Reward Next state Act:

re R / o ction

xr R S
System
p(x'|x, u)
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Generic Reinforcement Learning Loop

¢ |_earning requires an iteration through Policy Evaluation and Policy
Improvement.
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Generic Reinforcement Learning Loop

¢ |_earning requires an iteration through Policy Evaluation and Policy
Improvement.

Critic: Policy Evaluation

Qw(w7’u’) — E< nytrt .’,B,’U,}

L t=0

Vi(x) = F < Z*ytrt :13}

. t=0
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Generic Reinforcement Learning Loop

¢ | earning requires an iteration through Policy Evaluation and Policy
Improvement.

Critic: Policy Evaluation Actor: Policy

- Improvement
Q™ (x,u) = F < Z’ytrt :B,u} —

/
T — T

Vi(x) = F < Z’ytn :c}
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Generic Reinforcement Learning Loop

¢ | earning requires an iteration through Policy Evaluation and Policy
Improvement.

Critic: Policy Evaluation Actor: Policy

- Improvement
Q™ (x,u) = F < Z’ytrt :B,u} ~
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T — T
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Generic Reinforcement Learning Loop

¢ | earning requires an iteration through Policy Evaluation and Policy
Improvement.

Critic: Policy Evaluation Actor: Policy
- Improvement
Q" (x,u) = E < Z’ytrt w,u} ~ /
\ t=0 7.‘. : 7_‘_

Vi(x) = FE < Z’ytn :c} .

. t=0

Requires Function Approximation

6
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Greedy vs Incremental

Greedy Updates:
0. = argmaxgE., {Q"(x,u)}
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Greedy vs Incremental

Greedy Updates:
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0. = argmaxgE., {Q"(x,u)} potentially
unstable learning
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Greedy vs Incremental

Greedy Updates:
potentially

0. = argmaxyE, {Q7(x,u)}
unstable learning
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change change change change policy jumps

Policy Gradient Updates:
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stable learning
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Objective Function

e Goal: Optimize the expected return
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Objective Function

¢ Goal: Optimize the expected return

J(0) :/Xd”(w)/wﬂ(u\w)r(w,u)dudw,
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Objective Function

¢ Goal: Optimize the expected return

J(0) :/Xd”(w)/wﬂ(u\w)r(w,u)dudw,
7 A R

State distribution Policy . Reward
(we can choose it)

e's
= F thrt}

L t=0
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Gradient-based Policy Iteration

Actor: Policy Evaluation

Estimate >
Gradient

g, = V.J(0)

9
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Gradient-based Policy Iteration

Actor: Policy Evaluation Critic: Policy Improvement
Estimate > Update
Gradient Parameters

g, = VJ(O) < Oir1=0: + g,

9
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Policy Gradient Methods

Policy Gradient
Methods

Many related approaches exist in the literature, e.g., Mean-Value Differentiation,
10 Model-based approaches, DDP, Frequency-based approaches, etc.
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Policy Gradient Methods

Policy Gradient
Methods

N\

Finite Difference Likelihood Ratio
Methods (FD) Methods

N\

‘Vanilla’ Policy  ‘Natural’ Policy
Gradients (VPG) Gradients (NPG)

Many related approaches exist in the literature, e.g., Mean-Value Differentiation,
10 Model-based approaches, DDP, Frequency-based approaches, etc.

) ¢
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Black-Box Approaches

|. Perturb the parameters of your policy:

2. Gradient estimation by regression:

gon = (AG®TAO)TABT AL

14 A large class of algorithms includes Kiefer-Wolfowitz procedure, Robbins-
Monroe, Simultaneous Perturbation Stochastic Approximation SPSA, ...
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Whitebox Approaches

Whitebox Approach: Use a explorative, stochastic policy
and make use of the knowledge of your policy.

p— Policy
Y '—
- M or u ~ 7(u|x)
Reward Next state Action
recR x' ¢ R" u € R™
— System
p(x'|x,u) r~

Many related approaches in the RL literature starting from
12 Werbos (1971), Hasdorff (1976), Williams (1988), ...
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Whitebox Approach: Use a explorative, stochastic policy
and make use of the knowledge of your policy.

— Policy
> M or u ~ 7T(11|X)|—
Reward | 'Next state Action
rek ' € R” w e R Actions with
— System o Exploration
p(x'|x, u) -
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Likelihood Ratio Gradient

For a cost function
J(0) = [po(T|m)R(T)dT
we have the gradient
VJ(0) =V [.pe(T|m)R(T)dT = [ Vpe(T|T)R(T)dT
Using the trick
Voo (T|m) = po(T|m)V log pg(T|m)

we obtain Needs
VJ(0) = [ppe(T|m)V1ogpe(T|m)R(T)dT only
= E{Vlogpe(T|m)R(T)} samples!
1 K
13 ~ Ezk:1v10gp9(Tk|7T)R(Tk) *
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Likelihood Ratio Gradient

Why is this cool?

Because: The definition of a path probability

T
p(T) = p(Xl)thlp(XHl x¢, ug ) (0 Xy )
iImplies .
logp(T) = thl log m(u¢|x¢) + const

Hence, we can get the derivative of the distribution without a model of

the system:

V log p(T Zt 1V10g7r(ut\xt)

14
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Likelihood

As a result:

15
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Ratio Gradient

(Z;v log
(ZtT:lV log

fz;v log

\

(wg|x)R(T) ¢

/

T

(welx:) ) r(xe,uy)

()@ (x|

\
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Outline of the Lecture

1. Introduction with Policy Gradients
DZ. Recent Advances in Policy Gradients
3. Probabilistic Policy Search with EM-like Approaches

4. Conclusion
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_ikelihood Ratio Approach:
Policy Gradient Theorem

Originally discovered: Aleksandrov, 1968; Glynn, 1986
17 Examples: episodic REINFORCE, SRV, GPOMDP
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_ikelihood Ratio Approach:
Policy Gradient Theorem

According to the policy gradient theorem, the gradient can be computed as

VeJ(0) = /de(a?)/UVQW(UkU)(QW(ZU,U) —b™(x))dudzx.
7 7 7 R

Gradient of the Derivative State-action Arbitrary baseline
expected return only of the value function function
policy

Problems: High Variance, dependence on the baseline, slow convergence!

Originally discovered: Aleksandrov, 1968; Glynn, 1986
17 Examples: episodic REINFORCE, SRV, GPOMDP
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18 (Sutton et al., 2000; Konda & Tsitsiklis, 2000)
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Compatible Function Approximation

The state-action value function can be replaced by

dlogr (u|z) "

Q" (w,u) = fo(w,u) = ZEE

without biasing the gradient.

18 (Sutton et al., 2000; Konda & Tsitsiklis, 2000)
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Compatible Function Approximation

The state-action value function can be replaced by

dlogr (u|z) "

Q" (w,u) = fo(w,u) = ZEE

Parameters
w

| ' of the
State-action ’ Compatible function | _
value function approximation Log-policy function
derivative approximator

without biasing the gradient.

18 (Sutton et al., 2000; Konda & Tsitsiklis, 2000)

Thursday, May 17, 2012



Compatible Function Approximation

The state-action value function can be replaced by

dlogr (u|z) "

Q™ (@, w) = fi(@,u) = 1

Parameters
% of the
Log-policy function
derivative approximator

State-action ’ Compatible function
value function approximation

without biasing the gradient.

Thus, the gradient becomes

VeJ(0) = /de(w)/wvlgﬂ(u\m b™ (x))dudz.

18 (Sutton et al., 2000; Konda & Tsitsiklis, 2000)
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All-Action Gradient

By integrating over all possible actions in a state, the baseline can be integrated out,
and the gradient becomes

VeoJ(0) :éd”(m)/ﬁjvem(uh:)(fg(az,u)—b(a:))dudaz,

:/d”(a;)/7r(fu,|m)Vglogw(u\:B)Vglogﬂ(uh:)deudw,
X U

= F(0)w.

19
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All-Action Gradient

By integrating over all possible actions in a state, the baseline can be integrated out,
and the gradient becomes

VeoJ(0) zlgd”(m)/EJVQW(u\w)(fg(m,u)—b(az))duda},

= F(0)w.
%

All Action Matrix Parameters

19
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Natural Gradients

A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

VeJ(0) =G 1(0)VeJ(0)
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A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

Natural gradient

)
VeJ(0) =G 1(0)VeJ(0)

Inverse of the Fisher Information Matrix ‘Vanilla® gradient
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Natural Gradients

A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

Natural gradient

)
VoJ(0) =G 1(0)VeJ(6)

Inverse of the Fisher Information Matrix ‘Vanilla™ gradient

where the policy gradient V J(0) is given by the policy gradient theorem.

20
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Natural Gradients

A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

Natural gradient

)
VoJ(0) =G 1(0)VeJ(6)

Inverse of the Fisher Information Matrix ‘Vanilla™ gradient

where the policy gradient V.J(0) is given by the policy gradient theorem.

But how can we obtain the Fisher information matrix G(0)??

20
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While Kakade (2002) suggested that F is an ‘average of point
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F(0) = /d”(w)/ﬂ(um)vey log 7(u|x)V g log 7w(u|x)dud.
X U
relate to the Fisher Information Matrix
G () = / i (z) / T (u|z) Vg log (d7 ()7 (ulz)) Ve log (47 ()7 (u|a)) dudz.
X U

While Kakade (2002) suggested that F is an ‘average of point
Fisher information matrices’, we could prove that

(Peters et al., 2003; 2005; Bagnell et al., 2003)
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Natural Policy Gradients

22 (Kakade, 2002; Peters et al. 2003, 2005; Bagnell & Schneider, 2003)
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Natural Policy Gradients

Thus, the gradient simplifies to

VoJ(0) =G 1(0)VeJ(0) =G O)F(0)w = w,

22 (Kakade, 2002; Peters et al. 2003, 2005; Bagnell & Schneider, 2003)
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Natural Policy Gradients

Thus, the gradient simplifies to

VoJ(0) =G 1(0)VeJ(0) =G O)F(0)w = w,

and the policy parameter update becomes

Ht_|_1 — Ht + O Wy.

Important: The gradient estimation simplifies to determining the parameters of the
compatible function approximation.

22 (Kakade, 2002; Peters et al. 2003, 2005; Bagnell & Schneider, 2003)
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Are they useful”?

Linear
Quadratic
Regulation

Lt4+1 — Aa:t -+ But

up ~ m(ulry) = N(u|kzy, o)
Ty = —T; Qazt — Uy Rut
Two-State
Problem
u=0,r=0
u=0 =1 =1
r=1 1'=0 r=2

Thursday, May 17, 2012
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Can the Compatible FA be learned?

The compatible function approximation is mean-zero! Thus, it can only represent
the Advantage Function:

foo(@,u) = Q" (x,u) = V' (x) = A" (x,u).

24
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Can the Compatible FA be learned?

The compatible function approximation is mean-zero! Thus, it can only represent
the Advantage Function:

f{;(m,u) — QW(ZB,’U,) — Vw(m) — AW(:B,’U,).

The advantage function is very different from the value functions

Value Function Q™ (x, u) Advantage Function A™(x, u)

Action u State @ Action u

State @
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Can the Compatible FA be learned?

The compatible function approximation is mean-zero! Thus, it can only represent
the Advantage Function:

f:;(m,u) — QW(ZB,’U,) — Vw(m) — AW(:B,’U,).

The advantage function is very different from the value functions

Value Function Q™ (x, u) Advantage Function A™(x, u)

Action u State @ Action u

State @

Traditional value function learning methods such as Temporal Difference
24 learning cannot be applied.
(Peters et al. 2003, 2005)
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iInto the Bellman equation
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The Compatible FA can be learned!

We cannot apply traditional methods directly on
fr(x,u) =Q"(x,u) — V™" (x) = A" (x,u).
But when we add further function approximation
V™ (x) = ¢p(x)" v
iInto the Bellman equation

V™ (x:) + Vo logm(u|xe) w = r(xe, us) + YV (Xrp1) + €

we get a linear regression problem which can be solved with appropriate
regression techniques, e.g., Boyan’s (1996) LSTD(A) algorithm.

25
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The Compatible FA can be learned!

We cannot apply traditional methods directly on

fo(@,u) = Q" (x,u) = V' (x) = A" (z, u).

But when we add further function approximation

V™ (z) = ¢(x)" v

iInto the Bellman equation

T
VT(xy) + Veologm(us|xs) w =1r(xe, u) + YV (xi01) + €
we get a linear regression problem which can be solved with appropriate
regression techniques, e.g., Boyan’s (1996) LSTD(A) algorithm.

= Allows the derivation of many well-known old reinforcement learning

algorithms, e.g., Sutton et al. (1983) Actor-Critic and Bradtke & Barto’s (1993)
25LQR-Q-Learning.
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What about this additional FA?

20

(Peters et al. 2003, 2005)
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What about this additional FA?

...but in many cases, we don’t have a good additional function approximations!

For one rollout, if we sum up the Bellman Equations

VT (xo) + Viog m(uo|xo) = r(T0, u0) + YV (1)

VT(x1) + Viogm(uy|x1) = r(x1,ur) + YV (xg)

VT (xr) + Viognw(ur|er) = r(xr,ur) + YV (2741)

and eliminate the values of the intermediary states, we obtain

T I T
V™ (x0) + [ Y Vologm(ulx:) | w=> ~'r(xe,u) +7" V7 (x741)
J" t=0 t=0 O"

©i R

2Q)NE offset parameter suffices as additional function approximation!
(Peters et al. 2003, 2005)
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—pisodic Natural Actor-Critic

Critic: Episodic Evaluation

- AT
_ Y1, ¥2, ...y $N
Sufficient 1, L ..., 1
Statistics
R=[R,R},...,RY]"
Linea.r { w _ (<I>T<I>)_1 TR
Regression J
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Critic: Episodic Evaluation

Y1, P2, ..., ELN
Sufficient L, 1, ..., 1
Statistics - - /-

R=[R,RY,... ,RL]"

: ey —1
Llnea.r { w| _ ((I)T(I)) TR
Regression J
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—pisodic Natural Actor-Critic

Critic: Episodic Evaluation

H — V1, Y2, .., ©N Acotor: Natlfral
Sufficient 11 1 1 Policy Gradient
Isti - ’ - - Improvement
Statistics / p

R=[R,RY,... ,RL]"

Ht_|_1 — Ht + QW4

: lers)] ~1
Llnea.r { w| _ ((I)T(I)) TR
Regression J
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—pisodic Natural Actor-Critic

Critic: Episodic Evaluation

H — V1, Y2, .., ©N Acotor: Natlfral
Sufficient 11 1 1 Policy Gradient
- ’ - - Improvement
Statistics / p
T
R = [Ri,R;,...,Ry]
A Ht—l—l — Ht + O Wy.
r

: lers)] ~1
Llnea.r { w| _ ((I)T(I)) TR
Regression J
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Benchmarking
on Cart-Pole Regulation

e standard benchmark

* maximize time inside the target area:

x=x 1/ / {0 if|¢| < 0.05rad,|z] < 0.05m
2y i/ r(x,u) = { —1 otherwise.

_ ~ | u=F eepisodic restarts

29
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Finite Difference Gradients

Algorithm

Fair performance

Good performance

best performance

(>-120) after (>-80) after
Finite Difference
Gradients with 12,300 Not reached -84
Standard Descent
Finite Difference
Gradients with 7,450 45,650 -76
RPROP Rule
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Vanilla Policy Gradients

Algorithm

Fair performance

Good performance

best performance

(>-120) after (>-80) after
vanilla PG .W'thOUt 22,200 Not reached -102
Baseline

vanila PG with 1,200 26,450 76
Optimal Baseline

Vanilla PG with
Optimal Baseline 450 3,000 -64

and RPROP
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Vanilla

31

Policy

Gradients

Algorithm

Fair performance
(>-120) after

Good performance
(>-80) after

best performance

Vanilla PG without

. 22,200 Not reached -102
Baseline
vanila PG with 1,200 26,450 76
Optimal Baseline
Vanilla PG with
Optimal Baseline 450 3,000 -64
and RPROP
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Vanilla Policy Gradients
. Fair performance | Good performance
Algorithm (>-120) after (>-80) after best performance
vanilla PG .W'thOUt 22,200 Not reached -102
Baseline
vanila PG with 1,200 26,450 76
Optimal Baseline
Vanilla PG with Not optimal
Optimal Baseline 450 3,000 L 64 3
and RPROP
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Actor-Ciritic

—pisodic Natural

Algorithm

Fair performance
(>-120) after

Good performance
(>-80) after

best performance

Episodic Natural

RPROP

Actor-Critic 750 5,050 "9
Episodic Natural
Actor-Critic with Not reached Not reached -130
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—pisodic Natural

Actor-Critic
. Fair performance | Good performance
Algorithm (>-120) after (>-80) after best performance
Sest Final

et erformance
pisodic Natura

Actor-Critic 730 2,050
Episodic Natural
Actor-Critic with Not reached Not reached -130

RPROP
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—pisodic Natural

Actor-Critic
. Fair performance | Good performance
Algorithm (>-120) after (>-80) after best performance
Sest Final
- erformance
Episodic Natural 250 5.050

Actor-Critic

Episodic Natural
Actor-Critic with Not reached Not reached -130

RPROP \]*M/ /

RPROP Updates do not seem to be compatible
32 with the Episodic Natural Actor-Critic
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Comparison

of the Results
90.0
67.5 B D B FD with RPROP
B VPG B VPG with RPROP
45.0 B eNAC
22.5
0
Lowest cost (Best performance)
15,000 50,000
11,250 37,500
7,500 25,000
3,750 12,500
330 0
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Given: A parameterized stochastic policy (e.g.,
Gaussian)
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Natural Actor-Ciritic

Given: A parameterized stochastic policy (e.g.,
Gaussian)

1. Perform trajectories and collect data.

2. Estimate the (natural) gradient using the
compatible function approximation.

3. Update the policy with gradient descent.

4. Return to 1.

34
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Improving MPs

L Two Goals Policies
Minimum Motor Command
_—

35
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Learning T-Ball

1) Teach motor primitives by imitation
2) Improve movement by Episodic Natural-Actor Critic
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Learning T-Ball

1) Teach motor primitives by imitation
2) Improve movement by Episodic Natural-Actor Critic

Good
performance
often after
150-300
trials.
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Outline of the Lecture

1. Introduction with Policy Gradients
2. Recent Advances in Policy Gradients

DS. Probabilistic Policy Search with EM-like Approaches

4. Conclusion
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Objective & Assumptions

Objective: maximize expected return

J(0) = [.p(T)R(T)dT

Assumptions: Markovian & accumulated reward

path distribution

p(T) = p(Xl)Hthlp(XtH x¢, ug ) (U [xy)

return

38
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Success Matching Principle

é )

“When learning from a set of their own trials in iterated decision problems,
humans attempt to match not the best taken action but the reward-weighted
frequency of their actions and outcomes” (Arrow, 1958).
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Thus, why don’t we create policies such that 7' (u|x) matches = (u|x)r(x,u)?
(Dayan & Hinton, 1998)
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Success Matching Principle

é )

“When learning from a set of their own trials in iterated decision problems,
humans attempt to match not the best taken action but the reward-weighted
frequency of their actions and outcomes” (Arrow, 1958).

Thus, why don’t we create policies such that 7' (u|x) matches = (u|x)r(x,u)?
(Dayan & Hinton, 1998)

Policy 7(u|x)

+*
.
.
o*
*

9
"’
. .*
“““
. P

»
. .
.
”’ o*
. -

. an®
““““““““
::::::

States
4)

+ Succes (high reward) - Failure (low reward)
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Success Matching Principle

4 )

“When learning from a set of their own trials in iterated decision problems,
humans attempt to match not the best taken action but the reward-weighted
frequency of their actions and outcomes” (Arrow, 1958).

Thus, why don’t we create policies such that 7' (u|x) matches = (u|x)r(x,u)?
(Dayan & Hinton, 1998)

Policy 7(u|x) A New Policy 7' (u|x)

o | Match & _ .

_s Successes 2 -

0 ¢ -

<
Reward?‘?{{{;_;_:_:5E’:':‘:-_'_""': Wi States = States
r(x,u)” —
39

+ Succes (high reward) - Failure (low reward)
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Selecting Footholds

Match successful footholds!

40
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-rom Success Matching to
Reward-Weighted Regression

Matching successful actions corresponds to minimizing the Kullback-Leibler
‘distance’

D(r(x,u)m(ul||x)||7' (u||x)) — min

D(p(7|m)R(7)||p(|7")) — min

= This minimization can be shown to correspond to optimizing a lower bound on

the expected return!

41
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Basic Intultion

¢ | ower Bound on Expected Return

ereward is an improper probability distribution
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Basic Intultion

¢ | ower Bound on Expected Return
ereward is an improper probability distribution

¢ |og-likelihood — log(expected return)
(Dayan & Hinton, Neural Computation 1997; Peters & Schaal, ICML 2007)

log J(0") > [.pe (T) R(T)log Po'(T) 1+ 4 const = Lg(6')

pe(T)

A Third Policy —— Expected Return

Second Policy

----------- 1st Lower Bound

---- 2nd Lower Bound

0
PCide
R
.
.

o

Expected Return

Is

42 \
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C
5
E /\
©
Q
D log J(0")
()
21/0, Lo ()
()}
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Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient
lim9/_>9 89/[/9(3/) — agJ(H)

expected return

0’ ~ 0 + ady.J(0)

policy parameters

EM-like Methods: maximize lower bound by expectation-maximization

0’ = argmax Lg (9')

expected return

4 3 policy parameters
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Stochastic Policies

Use the Policy:
u=f(x)+e=0" ¢(x)+e

with Gaussian exploration
2 . . .
€ ~ N(O, o ) — episodic Reward Weighted Regression
with State-dependent exploration

e=¢ ¢(x) with €~N(0,0°) - PoWER

44
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Underactuated Swing-Up

eswing heavy pendulum up

ml?p = —pup + mglsin o + u
VRS [_7‘-77—‘-]

e motor torques limited

ul < Umaz
ereward function

" r = exp (—oz (%)2 — (%)2 log cos (%usm))

(Schaal, NIPS 1997; Atkeson, ICML 1997)
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Underactuated Swing-Up

47

average return

—— RWR

—— PoWER

eNAC

50

100
number of rollouts

(Peters & Schaal, IROS 2006; Peters & Schaal, ICML 2007)
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Ball-in-a-Cup
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Cost-regularized Gaussian Processes

The Reward-Weighted Regression required known basis functions.
Using the Kernel-Trick

q; — qb(x)Tw:qb(x)T(chRcb+AI)_1<I>TRU,,;

= o(x)T®"' (<1><I>T + )\R_1>_1U,L-

we can turn this in a cost-reqularized Gaussian Process approach.
The predictive variance acts as a policy

u’ ~ 7;(ulx?) = N(uly(x’), o (x))I)

with . T 9
v:(x7) =k(x))" (K+AC) " U;

o?(x7) = k(x?,x7) — k(x))T (K + A\C) ™" k(x/)

50 (Kober, Oztop & Peters, R:SS 2010)
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Dart-

hrowing with

-Ingers
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Learning for Table Tennis
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Outline of the Lecture

1. Introduction with Policy Gradients
2. Recent Advances in Policy Gradients

3. Probabilistic Policy Search with EM-like Approaches

4. Conclusion
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Conclusion

e Policy Search is a powerful and practical alternative to value function
and model-based methods.

e Policy gradients have dominated this area for a long time and solidly
working methods exist.

e Newer methods focus on probabilistic policy search approaches.
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