Policy Search Methods

Pieter Abbeel UC Berkeley
 Jan Peters
 TU Darmstadt

TECHNISCHE
UNIVERSITAT
DARMSTADT

Motivation

Motivation

-Learning for high-dimensional robots is difficult:
-Limit of Value Functions: fill-up state-space
-Limit of Model Learning: accurate model!

Motivation

-Learning for high-dimensional robots is difficult:
-Limit of Value Functions: fill-up state-space
-Limit of Model Learning: accurate model!

- Starting with expert's knowledge helps!
- Improving upon Demonstrations
- Using Task-Appropriate Policies is possible

Motivation

-Learning for high-dimensional robots is difficult:
-Limit of Value Functions: fill-up state-space
-Limit of Model Learning: accurate model!

- Starting with expert's knowledge helps!
- Improving upon Demonstrations
- Using Task-Appropriate Policies is possible
-Exploring on the real system?

Motivation

-Learning for high-dimensional robots is difficult:
-Limit of Value Functions: fill-up state-space
-Limit of Model Learning: accurate model!

- Starting with expert's knowledge helps!
- Improving upon Demonstrations
- Using Task-Appropriate Policies is possible
-Exploring on the real system?
\Rightarrow Parametric Policy Search methods can do all that!

Bigger Picture

Outline of the Lecture

Outline of the Lecture

1. Introduction with Policy Gradients

Outline of the Lecture

1. Introduction with Policy Gradients
2. Recent Advances in Policy Gradients

Outline of the Lecture

1. Introduction with Policy Gradients
2. Recent Advances in Policy Gradients
3. Probabilistic Policy Search with EM-like Approaches

Outline of the Lecture

1. Introduction with Policy Gradients
2. Recent Advances in Policy Gradients
3. Probabilistic Policy Search with EM-like Approaches
4. Conclusion

Outline of the Lecture

2. Recent Advances in Policy Gradients
3. Probabilistic Policy Search with EM-like Approaches
4. Conclusion

Basics \& Notation

Basics \& Notation

Goal: Find θ that

5

Generic Reinforcement Learning Loop

- Learning requires an iteration through Policy Evaluation and Policy Improvement.

Generic Reinforcement Learning Loop

- Learning requires an iteration through Policy Evaluation and Policy Improvement.

$$
\begin{gathered}
\text { Critic: Policy Evaluation } \\
\begin{aligned}
Q^{\pi}(\boldsymbol{x}, \boldsymbol{u}) & =E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}, \boldsymbol{u}\right\} \\
V^{\pi}(\boldsymbol{x}) & =E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}\right\}
\end{aligned}
\end{gathered}
$$

Generic Reinforcement Learning Loop

- Learning requires an iteration through Policy Evaluation and Policy Improvement.

$$
\begin{gathered}
\text { Critic: Policy Evaluation } \\
\begin{aligned}
Q^{\pi}(\boldsymbol{x}, \boldsymbol{u}) & =E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}, \boldsymbol{u}\right\} \\
V^{\pi}(\boldsymbol{x}) & =E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}\right\}
\end{aligned}
\end{gathered}
$$

Generic Reinforcement Learning Loop

- Learning requires an iteration through Policy Evaluation and Policy Improvement.

$$
\begin{gathered}
\text { Critic: Policy Evaluation } \\
\begin{aligned}
& Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})=E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}, \boldsymbol{u}\right\} \\
& V^{\pi}(\boldsymbol{x})=E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}\right\}
\end{aligned}
\end{gathered}
$$

Generic Reinforcement Learning Loop

-Learning requires an iteration through Policy Evaluation and Policy Improvement.

$$
\begin{gathered}
\text { Critic: Policy Evaluation } \\
\begin{aligned}
Q^{\pi}(\boldsymbol{x}, \boldsymbol{u}) & =E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}, \boldsymbol{u}\right\} \\
V^{\pi}(\boldsymbol{x}) & =E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}\right\}
\end{aligned}
\end{gathered}
$$

Generic Reinforcement Learning Loop

-Learning requires an iteration through Policy Evaluation and Policy Improvement.

$$
\begin{aligned}
\text { Critic: Policy Evaluation } \\
\begin{aligned}
Q^{\pi}(\boldsymbol{x}, \boldsymbol{u}) & =E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}, \boldsymbol{u}\right\} \\
V^{\pi}(\boldsymbol{x}) & =E\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid \boldsymbol{x}\right\}
\end{aligned}
\end{aligned}
$$

Requires Function Approximation

Greedy vs Incremental

Greedy vs Incremental

Greedy Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\operatorname{argmax}_{\tilde{\boldsymbol{\theta}}} E_{\pi_{\tilde{\theta}}}\left\{Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})\right\}
$$

Greedy vs Incremental

Greedy Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\operatorname{argmax}_{\tilde{\boldsymbol{\theta}}} E_{\pi_{\tilde{\theta}}}\left\{Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})\right\}
$$

Policy Gradient Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\boldsymbol{\theta}_{\pi}+\left.\alpha \frac{d J(\boldsymbol{\theta})}{d \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{\pi}}
$$

Greedy vs Incremental

Greedy Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\operatorname{argmax}_{\tilde{\boldsymbol{\theta}}} E_{\pi_{\tilde{\theta}}}\left\{Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})\right\}
$$

Policy Gradient Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\boldsymbol{\theta}_{\pi}+\left.\alpha \frac{d J(\boldsymbol{\theta})}{d \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{\pi}}
$$

Greedy vs Incremental

Greedy Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\operatorname{argmax}_{\tilde{\boldsymbol{\theta}}} E_{\pi_{\tilde{\theta}}}\left\{Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})\right\}
$$

Policy Gradient Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\boldsymbol{\theta}_{\pi}+\left.\alpha \frac{d J(\boldsymbol{\theta})}{d \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{\pi}}
$$

Greedy vs Incremental

Greedy Updates:

Policy Gradient Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\boldsymbol{\theta}_{\pi}+\left.\alpha \frac{d J(\boldsymbol{\theta})}{d \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{\pi}}
$$

Greedy vs Incremental

Greedy Updates:

Policy Gradient Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\boldsymbol{\theta}_{\pi}+\left.\alpha \frac{d J(\boldsymbol{\theta})}{d \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{\pi}}
$$

Greedy vs Incremental

Greedy Updates:

Policy Gradient Updates:

$$
\boldsymbol{\theta}_{\pi^{\prime}}=\boldsymbol{\theta}_{\pi}+\left.\alpha \frac{d J(\boldsymbol{\theta})}{d \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{\pi}}
$$

Greedy vs Incremental

Greedy Updates:

Policy Gradient Updates:

stable learning process with smooth policy improvement

Objective Function

\author{

- Goal: Optimize the expected return
}

Objective Function

- Goal: Optimize the expected return

$$
J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) r(\boldsymbol{x}, \boldsymbol{u}) d \boldsymbol{u} d \boldsymbol{x}
$$

Objective Function

- Goal: Optimize the expected return

$$
J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) r(\boldsymbol{x}, \boldsymbol{u}) d \boldsymbol{u} d \boldsymbol{x}
$$

State distribution

Objective Function

- Goal: Optimize the expected return

$$
\begin{aligned}
& J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) r(\boldsymbol{x}, \boldsymbol{u}) d \boldsymbol{u} d \boldsymbol{x}, \\
& \text { State distribution } \\
& \boldsymbol{\nabla} \\
& \text { (we can choose it) }
\end{aligned}
$$

Objective Function

- Goal: Optimize the expected return

$$
J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) r(\boldsymbol{x}, \boldsymbol{u}) d \boldsymbol{u} d \boldsymbol{x},
$$

Objective Function

- Goal: Optimize the expected return

$$
\begin{aligned}
& J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) r(\boldsymbol{x}, \boldsymbol{u}) d \boldsymbol{u} d \boldsymbol{x}, \\
& \text { State distribution } \\
&=E\left\{\sum_{\text {(we can choose it) }}^{\boldsymbol{R}} \sum_{t=0}^{\infty} \gamma^{t} r_{t}\right\}
\end{aligned}
$$

Gradient-based Policy Iteration

Actor: Policy Evaluation
Estimate
Gradient

$$
\mathbf{g}_{t}=\nabla J(\boldsymbol{\theta})
$$

Gradient-based Policy Iteration

Actor: Policy Evaluation

Estimate
Gradient
$\mathbf{g}_{t}=\nabla J(\boldsymbol{\theta})$

Critic: Policy Improvement

Policy Gradient Methods

Policy Gradient Methods

Many related approaches exist in the literature, e.g., Mean-Value Differentiation, Model-based approaches, DDP, Frequency-based approaches, etc.

Policy Gradient Methods

Policy Gradient Methods

Finite Difference
Methods (FD)

Many related approaches exist in the literature, e.g., Mean-Value Differentiation,

Black-Box Approaches

Black-Box Approaches

I. Perturb the parameters of your policy:

$$
\theta+\delta \theta
$$

A large class of algorithms includes Kiefer-Wolfowitz procedure, RobbinsMonroe, Simultaneous Perturbation Stochastic Approximation SPSA, ...

Black-Box Approaches

I. Perturb the parameters of your policy:

A large class of algorithms includes Kiefer-Wolfowitz procedure, RobbinsMonroe, Simultaneous Perturbation Stochastic Approximation SPSA, ...

Black-Box Approaches

I. Perturb the parameters of your policy:

2. Gradient estimation by regression:

$$
\mathbf{g}_{\mathrm{FD}}=\left(\boldsymbol{\Delta} \boldsymbol{\Theta}^{T} \boldsymbol{\Delta} \boldsymbol{\Theta}\right)^{-1} \boldsymbol{\Delta} \boldsymbol{\Theta}^{T} \boldsymbol{\Delta} J .
$$

A large class of algorithms includes Kiefer-Wolfowitz procedure, RobbinsMonroe, Simultaneous Perturbation Stochastic Approximation SPSA, ...

Whitebox Approaches

Whitebox Approach: Use a explorative, stochastic policy and make use of the knowledge of your policy.

Many related approaches in the RL literature starting from

Whitebox Approaches

Whitebox Approach: Use a explorative, stochastic policy and make use of the knowledge of your policy.

Many related approaches in the RL literature starting from

Likelihood Ratio Gradient

For a cost function

$$
J(\theta)=\int_{\mathbb{T}} p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi) R(\boldsymbol{\tau}) d \boldsymbol{\tau}
$$

we have the gradient

$$
\nabla J(\theta)=\nabla \int_{\mathbb{T}} p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi) R(\boldsymbol{\tau}) d \boldsymbol{\tau}=\int_{\mathbb{T}} \nabla p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi) R(\boldsymbol{\tau}) d \boldsymbol{\tau}
$$

Using the trick

$$
\nabla p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi)=p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi) \nabla \log p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi)
$$

we obtain

$$
\begin{aligned}
\nabla J(\theta) & =\int_{\mathbb{T}} p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi) \nabla \log p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi) R(\boldsymbol{\tau}) d \boldsymbol{\tau} \\
& =E\left\{\nabla \log p_{\boldsymbol{\theta}}(\boldsymbol{\tau} \mid \pi) R(\boldsymbol{\tau})\right\}
\end{aligned}
$$

$$
\approx \frac{1}{K} \sum_{k=1}^{K} \nabla \log p_{\boldsymbol{\theta}}\left(\boldsymbol{\tau}_{k} \mid \pi\right) R\left(\boldsymbol{\tau}_{k}\right)
$$

Needs

Likelihood Ratio Gradient

Why is this cool?

Because: The definition of a path probability

$$
p(\boldsymbol{\tau})=p\left(\mathbf{x}_{1}\right) \prod_{t=1}^{T} p\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) \pi\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)
$$

implies

$$
\log p(\boldsymbol{\tau})=\sum_{t=1}^{T} \log \pi\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)+\text { const }
$$

Hence, we can get the derivative of the distribution without a model of the system:

$$
\nabla \log p(\boldsymbol{\tau})=\sum_{t=1}^{T} \nabla \log \pi\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)
$$

Likelihood Ratio Gradient

As a result:

$$
\begin{aligned}
\nabla J(\theta) & =E\left\{\sum_{t=1}^{T} \nabla \log \pi\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right) R(\boldsymbol{\tau})\right\} \\
& =E\left\{\sum_{t=1}^{T} \nabla \log \pi\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right) \sum_{h=t}^{T} r\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right\} \\
& =E\left\{\sum_{t=1}^{T} \nabla \log \pi\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right) Q^{\pi}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right\}
\end{aligned}
$$

15

Outline of the Lecture

1. Introduction with Policy Gradients
2. Probabilistic Policy Search with EM-like Approaches
3. Conclusion

Likelihood Ratio Approach: Policy Gradient Theorem

Likelihood Ratio Approach: Policy Gradient Theorem

According to the policy gradient theorem, the gradient can be computed as

$$
\boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \pi(\boldsymbol{u} \mid \boldsymbol{x})\left(Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-b^{\pi}(\boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x}
$$

Likelihood Ratio Approach: Policy Gradient Theorem

According to the policy gradient theorem, the gradient can be computed as

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \nabla_{\boldsymbol{\theta}} \pi(\boldsymbol{u} \mid \boldsymbol{x})\left(Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-b^{\pi}(\boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x} .
$$

Likelihood Ratio Approach: Policy Gradient Theorem

According to the policy gradient theorem, the gradient can be computed as

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \nabla_{\boldsymbol{\theta}} \pi(\boldsymbol{u} \mid \boldsymbol{x})\left(Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-b^{\pi}(\boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x} \text {. }
$$

Problems: High Variance, dependence on the baseline, slow convergence!

Compatible Function Approximation

Compatible Function Approximation

The state-action value function can be replaced by

$$
Q^{\pi}(\boldsymbol{x}, \boldsymbol{u}) \equiv f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=\frac{d \log \pi(\boldsymbol{u} \mid \boldsymbol{x})^{T}}{d \boldsymbol{\theta}} \boldsymbol{w}
$$

without biasing the gradient.

Compatible Function Approximation

The state-action value function can be replaced by

without biasing the gradient.

Compatible Function Approximation

The state-action value function can be replaced by
State-action
value function

\[\)| Compatible function |
| :---: |
| approximation |

\]

$Q^{\pi}(\boldsymbol{x}, \boldsymbol{u}) \equiv f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=\frac{d \log \pi(\boldsymbol{u} \mid \boldsymbol{x})^{T}}{d \boldsymbol{\theta}} \boldsymbol{w}$

Log-policy
derivative

without biasing the gradient.

Thus, the gradient becomes

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \pi(\boldsymbol{u} \mid \boldsymbol{x})\left(f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})-b^{\pi}(\boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x}
$$

All-Action Gradient

All-Action Gradient

By integrating over all possible actions in a state, the baseline can be integrated out, and the gradient becomes

$$
\begin{aligned}
\boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) & =\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \pi(\boldsymbol{u} \mid \boldsymbol{x})\left(f_{w}^{\pi}(\boldsymbol{x}, \boldsymbol{u})-b(\boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x} \\
& =\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) \nabla_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x})^{T} \boldsymbol{w} d \boldsymbol{u} d \boldsymbol{x} \\
& =\boldsymbol{F}(\boldsymbol{\theta}) \boldsymbol{w}
\end{aligned}
$$

All-Action Gradient

By integrating over all possible actions in a state, the baseline can be integrated out, and the gradient becomes

$$
\begin{aligned}
\boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) & =\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \pi(\boldsymbol{u} \mid \boldsymbol{x})\left(f_{w}^{\pi}(\boldsymbol{x}, \boldsymbol{u})-b(\boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x} \\
& =\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\boldsymbol{\theta}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x})^{T} \boldsymbol{w} d \boldsymbol{u} d \boldsymbol{x} \\
& =\boldsymbol{F}(\boldsymbol{\theta}) \boldsymbol{w}
\end{aligned}
$$

All-Action Gradient

By integrating over all possible actions in a state, the baseline can be integrated out, and the gradient becomes

$$
\begin{aligned}
& \boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \pi(\boldsymbol{u} \mid \boldsymbol{x})\left(f_{w}^{\pi}(\boldsymbol{x}, \boldsymbol{u})-b(\boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x} \\
&=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\boldsymbol{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x})^{T} \boldsymbol{w} d \boldsymbol{u} d \boldsymbol{x} \\
&=\boldsymbol{F}(\boldsymbol{\theta}) \boldsymbol{w} . \\
& \text { All Action Matrix } \mathbb{Z} \\
& \text { Parameters }
\end{aligned}
$$

Natural Gradients

Natural Gradients

A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

$$
\tilde{\boldsymbol{\nabla}}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=G^{-1}(\boldsymbol{\theta}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

Natural Gradients

A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

Natural gradient

$$
\begin{aligned}
& \tilde{\boldsymbol{\nabla}}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=G^{-1}(\boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
& \text { ner Information Matrix } \quad \boldsymbol{\hbar}_{\text {'Vanilla` gradient }}
\end{aligned}
$$

Natural Gradients

A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

Natural gradient

$$
\begin{aligned}
& \tilde{\boldsymbol{\nabla}}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=G^{-1}(\boldsymbol{\theta}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
& \text { ner Information Matrix } \quad \boldsymbol{ß}_{\text {'Vanilla` gradient }}
\end{aligned}
$$

where the policy gradient $\boldsymbol{\nabla} J(\boldsymbol{\theta})$ is given by the policy gradient theorem.

Natural Gradients

A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

Natural gradient

$$
\begin{aligned}
& \tilde{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=G^{-1}(\boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
& \text { ner Information Matrix } \\
& \text {, Vanilla` gradient }
\end{aligned}
$$

where the policy gradient $\boldsymbol{\nabla} J(\boldsymbol{\theta})$ is given by the policy gradient theorem.
But how can we obtain the Fisher information matrix $G(\theta)$??

Fisher Information

So how does the All-Action Matrix

Fisher Information

So how does the All-Action Matrix

$$
\boldsymbol{F}(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) d \boldsymbol{u} d \boldsymbol{x}
$$

Fisher Information

So how does the All-Action Matrix

$$
\boldsymbol{F}(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) d \boldsymbol{u} d \boldsymbol{x}
$$

relate to the Fisher Information Matrix

Fisher Information

So how does the All-Action Matrix

$$
\boldsymbol{F}(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) d \boldsymbol{u} d \boldsymbol{x}
$$

relate to the Fisher Information Matrix

$$
\boldsymbol{G}(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \left(d^{\pi}(\boldsymbol{x}) \pi(\boldsymbol{u} \mid \boldsymbol{x})\right) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \left(d^{\pi}(\boldsymbol{x}) \pi(\boldsymbol{u} \mid \boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x} .
$$

Fisher Information

So how does the All-Action Matrix

$$
\boldsymbol{F}(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \nabla_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) \nabla_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) d \boldsymbol{u} d \boldsymbol{x} .
$$

relate to the Fisher Information Matrix

$$
\boldsymbol{G}(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \left(d^{\pi}(\boldsymbol{x}) \pi(\boldsymbol{u} \mid \boldsymbol{x})\right) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \left(d^{\pi}(\boldsymbol{x}) \pi(\boldsymbol{u} \mid \boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x}
$$

While Kakade (2002) suggested that \mathbf{F} is an 'average of point Fisher information matrices', we could prove that

Fisher Information

So how does the All-Action Matrix

$$
\boldsymbol{F}(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \nabla_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi(\boldsymbol{u} \mid \boldsymbol{x}) d \boldsymbol{u} d \boldsymbol{x} .
$$

relate to the Fisher Information Matrix

$$
\boldsymbol{G}(\boldsymbol{\theta})=\int_{\mathbb{X}} d^{\pi}(\boldsymbol{x}) \int_{\mathbb{U}} \pi(\boldsymbol{u} \mid \boldsymbol{x}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \left(d^{\pi}(\boldsymbol{x}) \pi(\boldsymbol{u} \mid \boldsymbol{x})\right) \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \left(d^{\pi}(\boldsymbol{x}) \pi(\boldsymbol{u} \mid \boldsymbol{x})\right) d \boldsymbol{u} d \boldsymbol{x} .
$$

While Kakade (2002) suggested that F is an 'average of point Fisher information matrices', we could prove that

$$
\mathbf{F}=\mathbf{G} .
$$

(Peters et al., 2003; 2005; Bagnell et al., 2003)

Natural Policy Gradients

(Kakade, 2002; Peters et al. 2003, 2005; Bagnell \& Schneider, 2003)

Natural Policy Gradients

Thus, the gradient simplifies to

$$
\tilde{\boldsymbol{\nabla}}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\boldsymbol{G}^{-1}(\boldsymbol{\theta}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\boldsymbol{G}^{-1}(\boldsymbol{\theta}) \boldsymbol{F}(\boldsymbol{\theta}) \boldsymbol{w}=\boldsymbol{w}
$$

Natural Policy Gradients

Thus, the gradient simplifies to

$$
\tilde{\boldsymbol{\nabla}}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\boldsymbol{G}^{-1}(\boldsymbol{\theta}) \boldsymbol{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\boldsymbol{G}^{-1}(\boldsymbol{\theta}) \boldsymbol{F}(\boldsymbol{\theta}) \boldsymbol{w}=\boldsymbol{w}
$$

and the policy parameter update becomes

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\alpha_{t} \boldsymbol{w}_{t}
$$

Important: The gradient estimation simplifies to determining the parameters of the compatible function approximation.

Are they useful?

Are they useful?

Linear
Quadratic
Regulation
$=A x_{t}+B u_{t}$
$\pi\left(u \mid x_{t}\right)=\mathcal{N}\left(u \mid k x_{t}, \sigma\right)$
$-x_{t}^{T} Q x_{t}-u_{t}^{T} R u_{t}$

(c) Two state policy gradient

(b) LQR natural gradient

(d) Two state natural gradient

Can the Compatible FA be learned?

Can the Compatible FA be learned?

The compatible function approximation is mean-zero! Thus, it can only represent the Advantage Function:

$$
f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-V^{\pi}(\boldsymbol{x})=A^{\pi}(\boldsymbol{x}, \boldsymbol{u})
$$

Can the Compatible FA be learned?

The compatible function approximation is mean-zero! Thus, it can only represent the Advantage Function:

$$
f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-V^{\pi}(\boldsymbol{x})=A^{\pi}(\boldsymbol{x}, \boldsymbol{u})
$$

The advantage function is very different from the value functions

Value Function $Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})$

Action u

Advantage Function $A^{\pi}(\boldsymbol{x}, \boldsymbol{u})$

Action \boldsymbol{u}

Can the Compatible FA be learned?

The compatible function approximation is mean-zero! Thus, it can only represent the Advantage Function:

$$
f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-V^{\pi}(\boldsymbol{x})=A^{\pi}(\boldsymbol{x}, \boldsymbol{u})
$$

The advantage function is very different from the value functions

Value Function $Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})$

Action \boldsymbol{u}

Advantage Function $A^{\pi}(\boldsymbol{x}, \boldsymbol{u})$

Traditional value function learning methods such as Temporal Difference learning cannot be applied.

The Compatible FA can be learned!

The Compatible FA can be learned!

We cannot apply traditional methods directly on

The Compatible FA can be learned!

We cannot apply traditional methods directly on

$$
f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-V^{\pi}(\boldsymbol{x})=A^{\pi}(\boldsymbol{x}, \boldsymbol{u})
$$

But when we add further function approximation

The Compatible FA can be learned!

We cannot apply traditional methods directly on

$$
f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-V^{\pi}(\boldsymbol{x})=A^{\pi}(\boldsymbol{x}, \boldsymbol{u})
$$

But when we add further function approximation

$$
V^{\pi}(\boldsymbol{x})=\boldsymbol{\phi}(\boldsymbol{x})^{T} \boldsymbol{v}
$$

into the Bellman equation

25

The Compatible FA can be learned!

We cannot apply traditional methods directly on

$$
f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-V^{\pi}(\boldsymbol{x})=A^{\pi}(\boldsymbol{x}, \boldsymbol{u})
$$

But when we add further function approximation

$$
V^{\pi}(\boldsymbol{x})=\boldsymbol{\phi}(\boldsymbol{x})^{T} \boldsymbol{v}
$$

into the Bellman equation

$$
V^{\pi}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi\left(\boldsymbol{u}_{t} \mid \boldsymbol{x}_{t}\right)^{T} \boldsymbol{w}=r\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)+\gamma V^{\pi}\left(\boldsymbol{x}_{t+1}\right)+\epsilon_{t}
$$

we get a linear regression problem which can be solved with appropriate regression techniques, e.g., Boyan's (1996) LSTD(λ) algorithm.

25

The Compatible FA can be learned!

We cannot apply traditional methods directly on

$$
f_{\boldsymbol{w}}^{\pi}(\boldsymbol{x}, \boldsymbol{u})=Q^{\pi}(\boldsymbol{x}, \boldsymbol{u})-V^{\pi}(\boldsymbol{x})=A^{\pi}(\boldsymbol{x}, \boldsymbol{u})
$$

But when we add further function approximation
into the Bellman equation

$$
\begin{aligned}
& \qquad V^{\pi}(\boldsymbol{x})=\boldsymbol{\phi}(\boldsymbol{x})^{T} \boldsymbol{v} \\
& \text { Bellman equation } \\
& V^{\pi}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \pi\left(\boldsymbol{u}_{t} \mid \boldsymbol{x}_{t}\right)^{T} \boldsymbol{w}=r\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)+\underset{\gamma V^{\pi}}{ }\left(\boldsymbol{x}_{t+1}\right)+\epsilon_{t}
\end{aligned}
$$

we get a linear regression problem which can be solved with appropriate regression techniques, e.g., Boyan's (1996) LSTD(λ) algorithm.

[^0]
What about this additional FA?

What about this additional FA?

...but in many cases, we don't have a good additional function approximations!

What about this additional FA?

...but in many cases, we don't have a good additional function approximations!
For one rollout, if we sum up the Bellman Equations

What about this additional FA?

...but in many cases, we don't have a good additional function approximations!

For one rollout, if we sum up the Bellman Equations
and eliminate the values of the intermediary states, we obtain

What about this additional FA?

...but in many cases, we don't have a good additional function approximations!
For one rollout, if we sum up the Bellman Equations

$$
\begin{array}{cc}
V^{\pi}\left(\boldsymbol{x}_{0}\right)+\nabla \log \pi\left(\boldsymbol{u}_{0} \mid \boldsymbol{x}_{0}\right)=r\left(\boldsymbol{x}_{0}, \boldsymbol{u}_{0}\right)+\gamma V^{\pi}\left(\boldsymbol{x}_{1}\right) \\
V^{\pi}\left(\boldsymbol{x}_{1}\right)+\nabla \log \pi\left(\boldsymbol{u}_{1} \mid \boldsymbol{x}_{1}\right)=r\left(\boldsymbol{x}_{1}, \boldsymbol{u}_{1}\right)+\gamma V^{\pi}\left(\boldsymbol{x}_{0}\right) \\
\vdots & \vdots \\
V^{\pi}\left(\boldsymbol{x}_{T}\right)+\nabla \log \pi\left(\boldsymbol{u}_{T} \mid \boldsymbol{x}_{T}\right)=r\left(\boldsymbol{x}_{T}, \boldsymbol{u}_{T}\right)+\gamma V^{\pi}\left(\boldsymbol{x}_{T+1}\right)
\end{array}
$$

and eliminate the values of the intermediary states, we obtain

$$
\underbrace{V^{\pi}\left(\mathbf{x}_{0}\right)}_{J}+\underbrace{\left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)\right)}_{\varphi_{i}} \mathbf{w}=\underbrace{\sum_{t=0}^{T} \gamma^{t} r\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)}_{R_{i}}+\gamma^{T+1} \underbrace{V^{\pi}\left(\mathbf{x}_{T+1}\right)}_{0}
$$

26NE offset parameter suffices as additional function approximation!

Episodic Natural Actor-Critic

Episodic Natural Actor-Critic

Critic: Episodic Evaluation

$$
\begin{gathered}
\boldsymbol{\Phi =}\left[\begin{array}{cccc}
\varphi_{1}, & \varphi_{2}, & \ldots, & \varphi_{N} \\
1, & 1, & \ldots, & 1
\end{array}\right]^{T} \\
\mathbf{R}=\left[R_{1}, R_{2}^{T}, \ldots, R_{N}^{T}\right]^{T} \\
{\left[\begin{array}{c}
\boldsymbol{w} \\
J
\end{array}\right]=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \boldsymbol{R}}
\end{gathered}
$$

Episodic Natural Actor-Critic

Critic: Episodic Evaluation

$$
\left[\begin{array}{c}
\boldsymbol{w} \\
J
\end{array}\right]=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \boldsymbol{R}
$$

Episodic Natural Actor-Critic

Critic: Episodic Evaluation

Episodic Natural Actor-Critic

Critic: Episodic Evaluation

Episodic Natural Actor-Critic

Critic: Episodic Evaluation

Actor: Natural Policy Gradient Improvement

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\alpha_{t} \boldsymbol{w}_{t} .
$$

Episodic Natural Actor-Critic

Critic: Episodic Evaluation

Important Points

28

Important Points

Points worth highlighting:

28

Important Points

Points worth highlighting:

\star Natural policy gradients are independent of the chosen policy parameterization!

Important Points

Points worth highlighting:

\star Natural policy gradients are independent of the chosen policy parameterization!
\star They correspond to steepest descent in policy space and not in the parameter space.

Important Points

Points worth highlighting:

\star Natural policy gradients are independent of the chosen policy parameterization!
\star They correspond to steepest descent in policy space and not in the parameter space.
\star Convergence to a local minimum is guaranteed!

Important Points

Points worth highlighting:

\star Natural policy gradients are independent of the chosen policy parameterization!
\star They correspond to steepest descent in policy space and not in the parameter space.
\star Convergence to a local minimum is guaranteed!
?...but we still need to estimate the natural gradient!

Important Points

Points worth highlighting:

\star Natural policy gradients are independent of the chosen policy parameterization!
\star They correspond to steepest descent in policy space and not in the parameter space.
\star Convergence to a local minimum is guaranteed!
?...but we still need to estimate the natural gradient!

Benchmarking on Cart-Pole Regulation

- standard benchmark

Finite Difference Gradients

Algorithm	Fair performance (>-120) after	Good performance (>-80) after	best performance
Finite Difference Gradients with Standard Descent	12,300	Not reached	-84
Finite Difference Gradients with RPROP Rule	7,450	45,650	-76

Vanilla Policy Gradients

Algorithm	Fair performance (>-120) after	Good performance (>-80) after	best performance
Vanilla PG without Baseline	22,200	Not reached	-102
Vanilla PG with Optimal Baseline	1,200	26,450	-76
Vanilla PG with Optimal Baseline and RPROP	450	3,000	-64

31

Vanilla Policy Gradients

Algorithm	Fair performance (>-120) after	Good performance (>-80) after	best performance
Vanilla PG without Baseline	22,200	Not reached	-102
Vanilla PG with Optimal Baseline	1,200	26,450	-76
Vanilla PG with Optimal Baseline and RPROP	450	3,000	-64

Fastest Initial Improvement

31

Vanilla Policy Gradients

Algorithm	Fair performance (>-120) after	Good performance (>-80) after	best performance
Vanilla PG without Baseline	22,200	Not reached	-102
Vanilla PG with Optimal Baseline	1,200	26,450	-76
Vanilla PG with Optimal Baseline and RPROP	450	3,000	Not OPtimal -64

Fastest Initial Improvement

31

Episodic Natural Actor-Critic

Algorithm	Fair performance (>-120) after	Good performance (>-80) after	best performance
Episodic Natural Actor-Critic	750	5,050	-55
Episodic Natural Actor-Critic with RPROP	Not reached	Not reached	-130

32

Episodic Natural Actor-Critic

Algorithm	Fair performance (>-120) after	Good performance (>-80) after	best performance Best Final
Episodic Natural Actor-Critic	750	5,050	erformance -55
Episodic Natural Actor-Critic with RPROP	Not reached	Not reached	-130

32

Episodic Natural Actor-Critic

Algorithm	Fair performance (>-120) after	Good performance (>-80) after	best performance Best Final
Episodic Natural Actor-Critic	750	5,050	Berformance Episodic Natural Actor-Critic with RPROP
Not reached	Not reached	-130	

RPROP Updates do not seem to be compatible

Comparison of the Results

Natural Actor-Critic

Given: A parameterized stochastic policy (e.g., Gaussian)

Natural Actor-Critic

Given: A parameterized stochastic policy (e.g., Gaussian)

1. Perform trajectories and collect data.

Natural Actor-Critic

Given: A parameterized stochastic policy (e.g., Gaussian)

1. Perform trajectories and collect data.
2. Estimate the (natural) gradient using the compatible function approximation.

Natural Actor-Critic

Given: A parameterized stochastic policy (e.g.,
Gaussian)

1. Perform trajectories and collect data.
2. Estimate the (natural) gradient using the compatible function approximation.
3. Update the policy with gradient descent.

Natural Actor-Critic

Given: A parameterized stochastic policy (e.g.,
Gaussian)

1. Perform trajectories and collect data.
2. Estimate the (natural) gradient using the compatible function approximation.
3. Update the policy with gradient descent.
4. Return to 1.

Improving MPs

Minimum Motor Command

Learning T-Ball

Learning T-Ball

1) Teach motor primitives by imitation

Learning T-Ball

1) Teach motor primitives by imitation
2) Improve movement by Episodic Natural-Actor Critic

Learning T-Ball

1) Teach motor primitives by imitation
2) Improve movement by Episodic Natural-Actor Critic

Good
performance
often after
150-300 trials.

Outline of the Lecture

1. Introduction with Policy Gradients
2. Recent Advances in Policy Gradients
3. Probabilistic Policy Search with EM-like Approaches
4. Conclusion

Objective \& Assumptions

Objective: maximize expected return

$$
J(\boldsymbol{\theta})=\int_{\mathbb{T}} p(\boldsymbol{\tau}) R(\boldsymbol{\tau}) d \boldsymbol{\tau}
$$

Assumptions: Markovian \& accumulated reward
path distribution

$$
p(\boldsymbol{\tau})=p\left(\mathbf{x}_{1}\right) \prod_{t=1}^{T} p\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) \pi\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)
$$

return

$$
R(\boldsymbol{\tau})=\frac{1}{T} \sum_{t=1}^{T} r\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)
$$

Success Matching Principle

"When learning from a set of their own trials in iterated decision problems, humans attempt to match not the best taken action but the reward-weighted frequency of their actions and outcomes" (Arrow, 1958).

Success Matching Principle

"When learning from a set of their own trials in iterated decision problems, humans attempt to match not the best taken action but the reward-weighted frequency of their actions and outcomes" (Arrow, 1958).

Thus, why don't we create policies such that $\pi^{\prime}(\mathbf{u} \mid \mathbf{x})$ matches $\pi(\mathbf{u} \mid \mathbf{x}) r(\mathbf{x}, \mathbf{u})$?
(Dayan \& Hinton, 1998)

39

Success Matching Principle

"When learning from a set of their own trials in iterated decision problems, humans attempt to match not the best taken action but the reward-weighted frequency of their actions and outcomes" (Arrow, 1958).

Thus, why don't we create policies such that $\pi^{\prime}(\mathbf{u} \mid \mathbf{x})$ matches $\pi(\mathbf{u} \mid \mathbf{x}) r(\mathbf{x}, \mathbf{u})$? (Dayan \& Hinton, 1998)

Success Matching Principle

"When learning from a set of their own trials in iterated decision problems, humans attempt to match not the best taken action but the reward-weighted frequency of their actions and outcomes" (Arrow, 1958).

Thus, why don't we create policies such that $\pi^{\prime}(\mathbf{u} \mid \mathbf{x})$ matches $\pi(\mathbf{u} \mid \mathbf{x}) r(\mathbf{x}, \mathbf{u})$? (Dayan \& Hinton, 1998)

Selecting Footholds

Match successful footholds!

From Success Matching to
 Reward-Weighted Regression

Matching successful actions corresponds to minimizing the Kullback-Leibler 'distance'

$$
D\left(r(\mathbf{x}, \mathbf{u}) \pi(\mathbf{u} \| \mathbf{x}) \| \pi^{\prime}(\mathbf{u} \| \mathbf{x})\right) \rightarrow \min
$$

or

$$
D\left(p(\boldsymbol{\tau} \mid \pi) R(\boldsymbol{\tau}) \| p\left(\boldsymbol{\tau} \mid \pi^{\prime}\right)\right) \rightarrow \min
$$

4 This minimization can be shown to correspond to optimizing a lower bound on the expected return!

Basic Intuition

Basic Intuition

- Lower Bound on Expected Return

Basic Intuition

- Lower Bound on Expected Return
- reward is an improper probability distribution

Basic Intuition

- Lower Bound on Expected Return
- reward is an improper probability distribution
- log-likelihood \rightarrow log(expected return)
(Dayan \& Hinton, Neural Computation 1997; Peters \& Schaal, ICML 2007)

Basic Intuition

- Lower Bound on Expected Return

- reward is an improper probability distribution
- log-likelihood \rightarrow log(expected return)
(Dayan \& Hinton, Neural Computation 1997; Peters \& Schaal, ICML 2007)

$$
\log J\left(\boldsymbol{\theta}^{\prime}\right) \geq \int_{\mathbb{T}} p_{\boldsymbol{\theta}}(\boldsymbol{\tau}) R(\boldsymbol{\tau}) \log \frac{p_{\boldsymbol{\theta}^{\prime}}(\boldsymbol{\tau})}{p_{\boldsymbol{\theta}}(\boldsymbol{\tau})} d \boldsymbol{\tau}+\mathrm{const}=L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)
$$

Resulting Algorithms

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

EM-like Methods: maximize lower bound by expectation-maximization

43

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

$$
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

EM-like Methods: maximize lower bound by expectation-maximization

43

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

EM-like Methods: maximize lower bound by expectation-maximization

43

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

EM-like Methods: maximize lower bound by expectation-maximization

43

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

EM-like Methods: maximize lower bound by expectation-maximization

43

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

EM-like Methods: maximize lower bound by expectation-maximization

43

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

policy parameters

EM-like Methods: maximize lower bound by expectation-maximization

43

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

policy parameters

EM-like Methods: maximize lower bound by expectation-maximization

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

policy parameters

EM-like Methods: maximize lower bound by expectation-maximization

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

policy parameters

EM-like Methods: maximize lower bound by expectation-maximization

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

policy parameters

EM-like Methods: maximize lower bound by expectation-maximization

Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

$$
\begin{gathered}
\lim _{\boldsymbol{\theta}^{\prime} \rightarrow \boldsymbol{\theta}} \partial_{\boldsymbol{\theta}^{\prime}} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)=\partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
\boldsymbol{\theta}^{\prime} \approx \boldsymbol{\theta}+\alpha \partial_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{gathered}
$$

policy parameters

EM-like Methods: maximize lower bound by expectation-maximization

$$
\boldsymbol{\theta}^{\prime}=\operatorname{argmax} L_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\prime}\right)
$$

Stochastic Policies

Use the Policy:

$$
\mathbf{u}=f(\mathbf{x})+\boldsymbol{\epsilon}=\boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x})+\boldsymbol{\epsilon}
$$

with Gaussian exploration

$$
\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad \rightarrow \text { episodic Reward Weighted Regression }
$$

with State-dependent exploration

$$
\epsilon=\varepsilon^{T} \phi(\mathrm{x}) \text { with } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad \rightarrow \text { PoWER }
$$

44

Underactuated Swing-Up

(Schaal, NIPS 1997; Atkeson, ICML 1997)

Underactuated Swing-Up

- swing heavy pendulum up

45

(Schaal, NIPS 1997; Atkeson, ICML 1997)

Underactuated Swing-Up

- swing heavy pendulum up

45

(Schaal, NIPS 1997; Atkeson, ICML 1997)

Underactuated Swing-Up

- swing heavy pendulum up

- motor torques limited

$$
|u| \leq u_{\max }
$$

(Schaal, NIPS 1997; Atkeson, ICML 1997)

Underactuated Swing-Up

- swing heavy pendulum up

- motor torques limited

$$
|u| \leq u_{\max }
$$

(Schaal, NIPS 1997; Atkeson, ICML 1997)

Underactuated Swing-Up

- swing heavy pendulum up

- motor torques limited

$$
|u| \leq u_{\max }
$$

(Schaal, NIPS 1997; Atkeson, ICML 1997)

Underactuated Swing-Up

- swing heavy pendulum up

- motor torques limited

$$
|u| \leq u_{\max }
$$

(Schaal, NIPS 1997; Atkeson, ICML 1997)

Underactuated Swing-Up

- swing heavy pendulum up

$$
\begin{aligned}
& m l^{2} \ddot{\varphi}=-\mu \dot{\varphi}+m g l \sin \varphi+u \\
& \varphi \in[-\pi, \pi]
\end{aligned}
$$

- motor torques limited

$$
|u| \leq u_{\max }
$$

- reward function

$$
r=\exp \left(-\alpha\left(\frac{\varphi}{\pi}\right)^{2}-\beta\left(\frac{2}{\pi}\right)^{2} \log \cos \left(\frac{\pi}{2} \frac{u}{u_{\max }}\right)\right)
$$

Underactuated Swing-Up

Ball-in-a-Cup

Ball-in-a-Cup

Ball-in-a-Cup

- reward function

$$
r_{t}= \begin{cases}\exp \left(-\alpha\left(\left(x_{c}-x_{b}\right)^{2}+\left(y_{c}-y_{b}\right)^{2}\right)\right) & \text { if } t=t_{c} \\ 0 & \text { if } t \neq t_{c}\end{cases}
$$

Ball-in-a-Cup

- reward function

$$
r_{t}= \begin{cases}\exp \left(-\alpha\left(\left(x_{c}-x_{b}\right)^{2}+\left(y_{c}-y_{b}\right)^{2}\right)\right) & \text { if } t=t_{c} \\ 0 & \text { if } t \neq t_{c}\end{cases}
$$

Cost-regularized Gaussian Processes

The Reward-Weighted Regression required known basis functions. Using the Kernel-Trick

$$
\begin{aligned}
\overline{\mathbf{u}}_{i} & =\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{w}=\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Phi}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{R} \mathbf{U}_{i} \\
& =\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\Phi}^{\mathrm{T}}\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}+\lambda \mathbf{R}^{-1}\right)^{-1} \mathbf{U}_{i}
\end{aligned}
$$

we can turn this in a cost-regularized Gaussian Process approach. The predictive variance acts as a policy

$$
\mathbf{u}^{j} \sim \pi_{j}\left(\mathbf{u} \mid \mathbf{x}^{j}\right)=\mathcal{N}\left(\mathbf{u} \mid \gamma\left(\mathbf{x}^{j}\right), \sigma^{2}\left(\mathbf{x}^{j}\right) \mathbf{I}\right)
$$

with

$$
\begin{gathered}
\gamma_{i}\left(\mathbf{x}^{j}\right)=\mathbf{k}\left(\mathbf{x}^{j}\right)^{\mathrm{T}}(\mathbf{K}+\lambda \mathbf{C})^{-1} \mathbf{U}_{i} \\
\sigma^{2}\left(\mathbf{x}^{j}\right)=k\left(\mathbf{x}^{j}, \mathbf{x}^{j}\right)-\mathbf{k}\left(\mathbf{x}^{j}\right)^{\mathrm{T}}(\mathbf{K}+\lambda \mathbf{C})^{-1} \mathbf{k}\left(\mathbf{x}^{j}\right)
\end{gathered}
$$

Dart-Throwing with Sledge

Dart-Throwing with Fingers

Learning for Table Tennis

Throwing and Catching

Outline of the Lecture

1. Introduction with Policy Gradients
2. Recent Advances in Policy Gradients
3. Probabilistic Policy Search with EM-like Approaches
4. Conclusion

Outline of the Lecture

1. Introduction with Policy Gradients
2. Recent Advances in Policy Gradients
3. Probabilistic Policy Search with EM-like Approaches

55

Conclusion

- Policy Search is a powerful and practical alternative to value function and model-based methods.
- Policy gradients have dominated this area for a long time and solidly working methods exist.
- Newer methods focus on probabilistic policy search approaches.

56

Further Reading

-Peters, J.;Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients, Neural Networks, 21, 4, pp.682-97

- Kober, J.; Peters, J. (2011). Policy Search for Motor Primitives in Robotics, Machine Learning, 84, 1-2, pp.171-203
-Peters, J.; Muelling, K.; Altun, Y. (2010). Relative Entropy Policy Search, Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence (AAAI), Physically Grounded AI Track

[^0]: \Rightarrow Allows the derivation of many well-known old reinforcement learning algorithms, e.g., Sutton et al. (1983) Actor-Critic and Bradtke \& Barto's (1993) $25^{\text {LQR-Q-Learning. }}$

