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Motivation

•Learning for high-dimensional robots is difficult:

•Limit of Value Functions: fill-up state-space

•Limit of Model Learning: accurate model!

•Starting with expert’s knowledge helps!

•Improving upon Demonstrations

•Using Task-Appropriate Policies is possible

•Exploring on the real system?

➡Parametric Policy Search methods can do all that!
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Bigger Picture

3

Robot Learning

Winter Semester 2011/12, Exam
Prof. Dr. J. Peters, M.Eng. O. Kroemer

Reminders

• Write cleanly, we cannot give you points for what we cannot read.

• You must omit exactly five questions (note: Aufgabe 1 counts as six questions). Please write OMIT on the questions

which you do not want to count. In our grading key, OMIT counts as full points for exactly five questions. Note,

if you do not use this „joker card“, we grade your answer but you can only have equal or less points. Using it is a

win-win situation.

• You are allowed two pages of handwritten notes which you submit together with your exam. Please put your name

on them.

Aufgabe 1 The Big Picture! (Equivalent to 6 Questions)

In the robot learning lecture, we covered a series of different topics. Fill in this tree...

Reinforcement Learning Data
� = {(xi ,ui ,xi+1, ri)}}

✟✟✟✟✟✟✟✟✟✙

x� ∼ � u
xx�

r ≈�u
xx�

❄
V ∗(x)

❄
π∗(u|x)

Optimal Control with

Model Learning

❄

V ∗(x)

❄
π∗(u|x)

Value Function Methods

❍❍❍❍❍❍❍❍❍❥

π∗(u|x)

Policy Search

1

Now
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Basics & Notation

Action

u ∈ Rm

Reward

r ∈ R
Next state

x
′
∈ Rn

System
p(x′|x,u)

Stochastic policy
π(u|x) = p(u|x,θ)

Policy
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Basics & Notation

Action

u ∈ Rm

Reward

r ∈ R
Next state

x
′
∈ Rn

System
p(x′|x,u)

Stochastic policy
π(u|x) = p(u|x,θ)

Policy
Goal: Find    that 

maximizes long term 
reward

θ

5
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Generic Reinforcement Learning Loop

•Learning requires an iteration through Policy Evaluation and Policy 
Improvement.
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Generic Reinforcement Learning Loop

•Learning requires an iteration through Policy Evaluation and Policy 
Improvement.

Critic: Policy Evaluation

Qπ(x,u) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x,u

}

V π(x) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x

}

6
Thursday, May 17, 2012



Generic Reinforcement Learning Loop

•Learning requires an iteration through Policy Evaluation and Policy 
Improvement.

Critic: Policy Evaluation

Qπ(x,u) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x,u

}

V π(x) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x

}

6
Thursday, May 17, 2012



Generic Reinforcement Learning Loop

•Learning requires an iteration through Policy Evaluation and Policy 
Improvement.

Actor: Policy 
Improvement

π → π
′

Critic: Policy Evaluation

Qπ(x,u) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x,u

}

V π(x) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x

}

6
Thursday, May 17, 2012



Generic Reinforcement Learning Loop

•Learning requires an iteration through Policy Evaluation and Policy 
Improvement.

Actor: Policy 
Improvement

π → π
′

Critic: Policy Evaluation

Qπ(x,u) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x,u

}

V π(x) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x

}

6
Thursday, May 17, 2012



Generic Reinforcement Learning Loop

•Learning requires an iteration through Policy Evaluation and Policy 
Improvement.

Actor: Policy 
Improvement

π → π
′

Critic: Policy Evaluation

Qπ(x,u) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x,u

}

V π(x) = E

{

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x

}

Requires Function Approximation
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Greedy Updates:

!7
Thursday, May 17, 2012



Greedy vs Incremental

θπ
′ = argmax

θ̃
Eπ

θ̃
{Qπ(x,u)}

Greedy Updates:

θπ
′ = θπ + α

dJ(θ)

dθ

∣

∣

∣

∣

θ=θπ

Policy Gradient Updates:
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Greedy vs Incremental

Small 
change

V
π

Large 
change

Large 
change

Large 
change

V
π

π π

Small 
change

V
π

V
π

Small 
change

Small 
change

Small 
change

π π

potentially 
unstable learning 
process with large 

policy jumps

stable learning 
process with 

smooth policy 
improvement

θπ
′ = argmax

θ̃
Eπ

θ̃
{Qπ(x,u)}

Greedy Updates:

θπ
′ = θπ + α

dJ(θ)

dθ

∣

∣

∣

∣
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Objective Function
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Objective Function

•Goal: Optimize the expected return

= E

{

∞
∑

t=0

γtrt

}

J(θ) =

∫
X

dπ(x)

∫
U

π(u|x)r(x,u)dudx,

State distribution Policy
(we can choose it) Reward
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Gradient-based Policy Iteration

Estimate 
Gradient

gt = ∇J(θ)

Actor: Policy Evaluation
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Gradient-based Policy Iteration

Estimate 
Gradient

gt = ∇J(θ)

Actor: Policy Evaluation

Update 
Parameters

θt+1 = θt + αtgt

Critic: Policy Improvement

!9
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Policy Gradient Methods

Policy Gradient 
Methods

Many related approaches exist in the literature, e.g., Mean-Value Differentiation, 
Model-based approaches, DDP, Frequency-based approaches, etc. !10
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Policy Gradient Methods

Policy Gradient 
Methods

Finite Difference
Methods (FD)

Likelihood Ratio
Methods

‘Vanilla’ Policy
Gradients (VPG)

‘Natural’ Policy
Gradients (NPG)

Many related approaches exist in the literature, e.g., Mean-Value Differentiation, 
Model-based approaches, DDP, Frequency-based approaches, etc. !10
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Black-Box Approaches

A large class of algorithms includes Kiefer-Wolfowitz procedure, Robbins-
Monroe, Simultaneous Perturbation Stochastic Approximation SPSA, ... 
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Black-Box Approaches

θ + δθ Reward

r ∈ R

Next state

x
′
∈ Rn

System
p(x′|x,u)

Action

u ∈ Rm

Policy

u = π(x) or u ∼ π(u|x)

J(θ + δθ) − J(θ)

1. Perturb the parameters of your policy:

A large class of algorithms includes Kiefer-Wolfowitz procedure, Robbins-
Monroe, Simultaneous Perturbation Stochastic Approximation SPSA, ... 
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Black-Box Approaches

θ + δθ Reward

r ∈ R

Next state

x
′
∈ Rn

System
p(x′|x,u)

Action

u ∈ Rm

Policy

u = π(x) or u ∼ π(u|x)

J(θ + δθ) − J(θ)

1. Perturb the parameters of your policy:

2. Gradient estimation by regression:

gFD = (∆ΘT ∆Θ)−1∆ΘT ∆J.

A large class of algorithms includes Kiefer-Wolfowitz procedure, Robbins-
Monroe, Simultaneous Perturbation Stochastic Approximation SPSA, ... 
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Whitebox Approaches

Reward

r ∈ R

Next state

x
′
∈ Rn

System
p(x′|x,u)

Action

u ∈ Rm

Policy

u = π(x) or u ∼ π(u|x)

Whitebox Approach: Use a explorative, stochastic policy 
and make use of the knowledge of your policy.

Many related approaches in the RL literature starting from 
Werbos (1971), Hasdorff (1976), Williams (1988), ...    !12
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Whitebox Approaches

Reward

r ∈ R

Next state

x
′
∈ Rn

System
p(x′|x,u)

Action

u ∈ Rm

Policy

u = π(x) or u ∼ π(u|x)

Actions with 
Exploration

Whitebox Approach: Use a explorative, stochastic policy 
and make use of the knowledge of your policy.

Many related approaches in the RL literature starting from 
Werbos (1971), Hasdorff (1976), Williams (1988), ...    !12
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For a cost function

we have the gradient

Using the trick

we obtain

J(θ) =
�
Tpθ(τ |π)R(τ )dτ

∇J(θ) = ∇
�
Tpθ(τ |π)R(τ )dτ =

�
T∇pθ(τ |π)R(τ )dτ

Likelihood Ratio Gradient

!

∇pθ(τ |π) = pθ(τ |π)∇ log pθ(τ |π)

∇J(θ) =
�
Tpθ(τ |π)∇ log pθ(τ |π)R(τ )dτ

= E{∇ log pθ(τ |π)R(τ )}

≈ 1

K

�K

k=1
∇ log pθ(τ k|π)R(τ k)

Needs
only

samples!

13
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Why is this cool?

Because: The definition of a path probability 

implies

Hence, we can get the derivative of the distribution without a model of 
the system:

p(τ ) = p(x1)
�T

t=1
p(xt+1|xt,ut)π(ut|xt)

log p(τ ) =
�T

t=1
log π(ut|xt) + const

∇ log p(τ ) =
�T

t=1
∇ log π(ut|xt)

Likelihood Ratio Gradient

!14
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Likelihood Ratio Gradient

As a result:

∇J(θ) = E

��T

t=1
∇ log π(ut|xt)R(τ )

�

= E

��T

t=1
∇ log π(ut|xt)

�T

h=t
r(xt,ut)

�

= E

��T

t=1
∇ log π(ut|xt)Q

π(xt,ut)

�

15
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Outline of the Lecture

1. Introduction with Policy Gradients

2. Recent Advances in Policy Gradients

3. Probabilistic Policy Search with EM-like Approaches

4. Conclusion
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Likelihood Ratio Approach: 
Policy Gradient Theorem

Originally discovered: Aleksandrov, 1968; Glynn, 1986
Examples: episodic REINFORCE, SRV, GPOMDP17
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Likelihood Ratio Approach: 
Policy Gradient Theorem

According to the policy gradient theorem, the gradient can be computed as

Problems: High Variance, dependence on the baseline, slow convergence!

∇θJ(θ) =

∫
X

dπ(x)

∫
U

∇θπ(u|x)(Qπ(x,u) − bπ(x))dudx.

State-action 
value function

Arbitrary baseline
function

Gradient of the 
expected return

Derivative 
only of the 

policy

Originally discovered: Aleksandrov, 1968; Glynn, 1986
Examples: episodic REINFORCE, SRV, GPOMDP17
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Compatible Function Approximation

(Sutton et al., 2000; Konda & Tsitsiklis, 2000)18
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The state-action value function can be replaced by

without biasing the gradient.

Compatible Function Approximation

Qπ(x, u) ≡ fπ

w
(x, u) =

dlogπ(u|x)

dθ

T

w

(Sutton et al., 2000; Konda & Tsitsiklis, 2000)18
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The state-action value function can be replaced by

without biasing the gradient.

Compatible Function Approximation

Compatible function
approximation

State-action 
value function

Qπ(x, u) ≡ fπ

w
(x, u) =

dlogπ(u|x)

dθ

T

w

Parameters 
of the

function 
approximator

Log-policy 
derivative

(Sutton et al., 2000; Konda & Tsitsiklis, 2000)18
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The state-action value function can be replaced by

without biasing the gradient.

Thus, the gradient becomes

Compatible Function Approximation

Compatible function
approximation

State-action 
value function

∇θJ(θ) =

∫
X

dπ(x)

∫
U

∇θπ(u|x)(fπ

w(x, u) − bπ(x))dudx.

Qπ(x, u) ≡ fπ

w
(x, u) =

dlogπ(u|x)

dθ

T

w

Parameters 
of the

function 
approximator

Log-policy 
derivative

(Sutton et al., 2000; Konda & Tsitsiklis, 2000)18
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All-Action Gradient

(Peters et al. 2003, 2005)19
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All-Action Gradient

By integrating over all possible actions in a state, the baseline can be integrated out, 
and the gradient becomes

∇θJ(θ) =

∫
X

dπ(x)

∫
U

∇θπ(u|x)(fπ

w(x, u) − b(x))dudx,

=

∫
X

dπ(x)

∫
U

π(u|x)∇θlogπ(u|x)∇θlogπ(u|x)T
wdudx,

= F (θ)w.

(Peters et al. 2003, 2005)19
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All-Action Gradient

By integrating over all possible actions in a state, the baseline can be integrated out, 
and the gradient becomes

∇θJ(θ) =

∫
X

dπ(x)

∫
U

∇θπ(u|x)(fπ

w(x, u) − b(x))dudx,

=

∫
X

dπ(x)

∫
U

π(u|x)∇θlogπ(u|x)∇θlogπ(u|x)T
wdudx,

= F (θ)w.

All Action Matrix Parameters

(Peters et al. 2003, 2005)19
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Natural Gradients

(Amari, 1998)20
Thursday, May 17, 2012



A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

∇̃θJ(θ) = G
−1(θ)∇θJ(θ)

Natural Gradients

(Amari, 1998)20
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A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

∇̃θJ(θ) = G
−1(θ)∇θJ(θ)

Inverse of the Fisher Information Matrix ‘Vanilla` gradient

Natural gradient
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A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

where the policy gradient             is given by the policy gradient theorem. 

∇̃θJ(θ) = G
−1(θ)∇θJ(θ)

Inverse of the Fisher Information Matrix ‘Vanilla` gradient

Natural gradient

Natural Gradients

∇J(θ)

(Amari, 1998)20
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A more efficient gradient in learning problems is the natural gradient (Amari, 1998)

where the policy gradient             is given by the policy gradient theorem. 

But how can we obtain the Fisher information matrix         ?? 

∇̃θJ(θ) = G
−1(θ)∇θJ(θ)

Inverse of the Fisher Information Matrix ‘Vanilla` gradient

Natural gradient

Natural Gradients

∇J(θ)

G(θ)

(Amari, 1998)20
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Fisher Information

So how does the All-Action Matrix 

(Peters et al., 2003; 2005; Bagnell et al., 2003)21
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Fisher Information

F (θ) =
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X

d
π(x)

∫
U
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Fisher Information

G(θ) =
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d
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U
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Fisher Information

G(θ) =

∫
X

d
π(x)

∫
U

π(u|x)∇θ log (dπ(x)π(u|x))∇θ log (dπ(x)π(u|x)) dudx.

F (θ) =

∫
X

d
π(x)

∫
U

π(u|x)∇θ log π(u|x)∇θ log π(u|x)dudx.

So how does the All-Action Matrix 

relate to the Fisher Information Matrix

While Kakade (2002) suggested that F is an ‘average of point 
Fisher information matrices’, we could prove that  

(Peters et al., 2003; 2005; Bagnell et al., 2003)21
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Fisher Information
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F (θ) =

∫
X

d
π(x)

∫
U

π(u|x)∇θ log π(u|x)∇θ log π(u|x)dudx.

So how does the All-Action Matrix 

relate to the Fisher Information Matrix

While Kakade (2002) suggested that F is an ‘average of point 
Fisher information matrices’, we could prove that  

F  =  G.

(Peters et al., 2003; 2005; Bagnell et al., 2003)21
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(Kakade, 2002; Peters et al. 2003, 2005; Bagnell & Schneider, 2003)

Natural Policy Gradients
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Thus, the gradient simplifies to 

∇̃θJ(θ) = G
−1(θ)∇θJ(θ) = G

−1(θ)F (θ)w = w,

(Kakade, 2002; Peters et al. 2003, 2005; Bagnell & Schneider, 2003)

Natural Policy Gradients
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Thus, the gradient simplifies to 

and the policy parameter update becomes

Important: The gradient estimation simplifies to determining the parameters of the 
compatible function approximation.

∇̃θJ(θ) = G
−1(θ)∇θJ(θ) = G

−1(θ)F (θ)w = w,

θt+1 = θt + αtwt.

(Kakade, 2002; Peters et al. 2003, 2005; Bagnell & Schneider, 2003)

Natural Policy Gradients
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Are they useful?
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Can the Compatible FA be learned?

(Peters et al. 2003, 2005)
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Can the Compatible FA be learned?

The compatible function approximation is mean-zero! Thus, it can only represent 
the Advantage Function:

fπ

w
(x,u) = Qπ(x,u) − V π(x) = Aπ(x,u).

(Peters et al. 2003, 2005)
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Can the Compatible FA be learned?

The compatible function approximation is mean-zero! Thus, it can only represent 
the Advantage Function:

The advantage function is very different from the value functions

Traditional value function learning methods such as Temporal Difference 
learning cannot be applied.

State x

Action u

Advantage Function Aπ(x,u)

State x
Action u

Value Function Qπ(x,u)

fπ

w
(x,u) = Qπ(x,u) − V π(x) = Aπ(x,u).

(Peters et al. 2003, 2005)
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into the Bellman equation

fπ

w
(x,u) = Qπ(x,u) − V π(x) = Aπ(x,u).

V
π(x) = φ(x)T v

The Compatible FA can be learned!

25
Thursday, May 17, 2012



We cannot apply traditional methods directly on

But when we add further function approximation

into the Bellman equation

we get a linear regression problem which can be solved with appropriate 
regression techniques, e.g., Boyan’s (1996) LSTD(λ) algorithm.

fπ

w
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We cannot apply traditional methods directly on

But when we add further function approximation

into the Bellman equation

we get a linear regression problem which can be solved with appropriate 
regression techniques, e.g., Boyan’s (1996) LSTD(λ) algorithm.

➡ Allows the derivation of many well-known old reinforcement learning 
algorithms, e.g., Sutton et al. (1983) Actor-Critic and Bradtke & Barto’s (1993) 
LQR-Q-Learning. 

fπ

w
(x,u) = Qπ(x,u) − V π(x) = Aπ(x,u).

V π(xt) + ∇θ log π(ut|xt)
T
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What about this additional FA?

(Peters et al. 2003, 2005)
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What about this additional FA?

...but in many cases, we don’t have a good additional function approximations!

For one rollout, if we sum up the Bellman Equations

and eliminate the values of the intermediary states, we obtain

ONE offset parameter suffices as additional function approximation!

V π(x0)
︸ ︷︷ ︸

J

+

(
T

∑

t=0

∇θ log π(ut|xt)

)

︸ ︷︷ ︸

ϕi

T

w =
T

∑

t=0

γtr(xt,ut)

︸ ︷︷ ︸

Ri

+ γT+1V π(xT+1)
︸ ︷︷ ︸

0

V π(x0) + ∇ log π(u0|x0) = r(x0,u0) + γV π(x1)

V π(x1) + ∇ log π(u1|x1) = r(x1,u1) + γV π(x0)
.

.

.

.

.

.

V π(xT ) + ∇ log π(uT |xT ) = r(xT ,uT ) + γV π(xT+1)

(Peters et al. 2003, 2005)
26

Thursday, May 17, 2012



Episodic Natural Actor-Critic

27
Thursday, May 17, 2012



Episodic Natural Actor-Critic

Critic: Episodic Evaluation

R =

[

R1, R
T
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=
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Φ
T
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Episodic Natural Actor-Critic

Actor: Natural 
Policy Gradient 
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Benchmarking 
on Cart-Pole Regulation

•standard benchmark

•maximize time inside the target area:

•episodic restarts

r(x,u) =

{

0 if |φ| < 0.05rad,|x| < 0.05m
−1 otherwise.

29
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Finite Difference Gradients

Algorithm
Fair performance 

(>-120) after 
Good performance

(>-80) after best performance

Finite Difference 
Gradients with 

Standard Descent
12,300 Not reached -84

Finite Difference 
Gradients with 
RPROP Rule

7,450 45,650 -76

30
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Vanilla Policy Gradients

Algorithm
Fair performance 

(>-120) after 
Good performance

(>-80) after best performance

Vanilla PG without 
Baseline 22,200 Not reached -102

Vanilla PG with 
Optimal Baseline 1,200 26,450 -76

Vanilla PG with 
Optimal Baseline 

and RPROP
450 3,000 -64
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(>-80) after best performance

Vanilla PG without 
Baseline 22,200 Not reached -102
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Optimal Baseline 1,200 26,450 -76

Vanilla PG with 
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and RPROP
450 3,000 -64

Fastest Initial Improvement
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Vanilla Policy Gradients

Algorithm
Fair performance 

(>-120) after 
Good performance

(>-80) after best performance

Vanilla PG without 
Baseline 22,200 Not reached -102

Vanilla PG with 
Optimal Baseline 1,200 26,450 -76

Vanilla PG with 
Optimal Baseline 

and RPROP
450 3,000 -64

Not optimal

Fastest Initial Improvement
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Episodic Natural 
Actor-Critic

Algorithm
Fair performance 

(>-120) after 
Good performance

(>-80) after best performance

Episodic Natural 
Actor-Critic 750 5,050 -55

Episodic Natural 
Actor-Critic with 

RPROP
Not reached Not reached -130
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Best Final 
Performance
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Episodic Natural 
Actor-Critic

Algorithm
Fair performance 

(>-120) after 
Good performance

(>-80) after best performance

Episodic Natural 
Actor-Critic 750 5,050 -55

Episodic Natural 
Actor-Critic with 

RPROP
Not reached Not reached -130

Best Final 
Performance

RPROP Updates do not seem to be compatible 
with the Episodic Natural Actor-Critic32
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Comparison 
of the Results

0

22.5

45.0

67.5

90.0

Lowest cost (Best performance)

FD FD with RPROP
VPG VPG with RPROP
eNAC

0

12,500

25,000

37,500

50,000

Good performance (>-80 ) after
0

3,750

7,500

11,250

15,000

Fair performance (>-120 ) after
33

Thursday, May 17, 2012



Natural Actor-Critic

Given: A parameterized stochastic policy (e.g., 
Gaussian)
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Natural Actor-Critic

1. Perform trajectories and collect data.

2. Estimate the (natural) gradient using the 
compatible function approximation.

3. Update the policy with gradient descent.

Given: A parameterized stochastic policy (e.g., 
Gaussian)
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Natural Actor-Critic

1. Perform trajectories and collect data.

2. Estimate the (natural) gradient using the 
compatible function approximation.

3. Update the policy with gradient descent.

4. Return to 1.

Given: A parameterized stochastic policy (e.g., 
Gaussian)
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Improving MPs
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Minimum Motor Command
Two Goals Policies

35
Thursday, May 17, 2012



Learning T-Ball
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Learning T-Ball

1) Teach motor primitives by imitation
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Learning T-Ball

1) Teach motor primitives by imitation
2) Improve movement by Episodic Natural-Actor Critic
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Learning T-Ball

Good 
performance 
often after 
150-300 

trials.

1) Teach motor primitives by imitation
2) Improve movement by Episodic Natural-Actor Critic

36
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Outline of the Lecture

1. Introduction with Policy Gradients

2. Recent Advances in Policy Gradients

3. Probabilistic Policy Search with EM-like Approaches

4. Conclusion
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Objective & Assumptions

Objective: maximize expected return

Assumptions: Markovian & accumulated reward

path distribution

return

J(θ) =
�

T p(τ )R(τ )dτ

!

p(τ ) = p(x1)
�T

t=1
p(xt+1|xt,ut)π(ut|xt)

R(τ ) =
1

T

�T

t=1
r(xt,ut)
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Success Matching Principle

“When learning from a set of their own trials in iterated decision problems, 
humans attempt to match not the best taken action but the reward-weighted 
frequency of their actions and outcomes” (Arrow, 1958).
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Success Matching Principle

Thus, why don’t we create policies such that            matches                      ? 
(Dayan & Hinton, 1998)

π
′(u|x) π(u|x)r(x,u)

“When learning from a set of their own trials in iterated decision problems, 
humans attempt to match not the best taken action but the reward-weighted 
frequency of their actions and outcomes” (Arrow, 1958).
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Selecting Footholds

40
Match successful footholds!
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D(r(x,u)π(u||x)||π�(u||x)) → min

D(p(τ |π)R(τ )||p(τ |π�)) → min

From Success Matching to 
Reward-Weighted Regression

Matching successful actions corresponds to minimizing the Kullback-Leibler 
‘distance’  

or 

➡This minimization can be shown to correspond to optimizing a lower bound on 
the expected return!
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•reward is an improper probability distribution

•log-likelihood → log(expected return)
(Dayan & Hinton, Neural Computation 1997; Peters & Schaal, ICML 2007)
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Basic Intuition

•Lower Bound on Expected Return

•reward is an improper probability distribution

•log-likelihood → log(expected return)
(Dayan & Hinton, Neural Computation 1997; Peters & Schaal, ICML 2007)

log J(θ�) ≥
�

T pθ (τ ) R (τ ) log pθ� (τ )
pθ(τ ) dτ + const = Lθ(θ�)

Second Policy

Third Policy

Policy Parameters

E
xp

ec
te

d 
R

et
ur

n

Initial Policy

Expected Return

1st Lower Bound 

2nd Lower Bound 

!42
Thursday, May 17, 2012



Resulting Algorithms

43
Thursday, May 17, 2012



Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

43
Thursday, May 17, 2012



Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

43
Thursday, May 17, 2012



Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

43
Thursday, May 17, 2012



Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

EM-like Methods: maximize lower bound by expectation-maximization

43
Thursday, May 17, 2012



Resulting Algorithms

Policy Gradients: maximize lower bound by following the gradient

EM-like Methods: maximize lower bound by expectation-maximization

limθ�→θ ∂θ�Lθ(θ�) = ∂θJ(θ)

θ� ≈ θ + α∂θJ(θ)
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ε ∼ N (0,σ2)� = εTφ(x)

Stochastic Policies

Use the Policy:
 

with Gaussian exploration

                                      → episodic Reward Weighted Regression

with State-dependent exploration

                           with                                   → PoWER

44

u = f(x) + � = θTφ(x) + �

� ∼ N (0,σ2)
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Underactuated Swing-Up

(Schaal, NIPS 1997; Atkeson, ICML 1997)
45
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Underactuated Swing-Up

•swing heavy pendulum up

(Schaal, NIPS 1997; Atkeson, ICML 1997)
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Underactuated Swing-Up

•swing heavy pendulum up

•motor torques limited

(Schaal, NIPS 1997; Atkeson, ICML 1997)
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Underactuated Swing-Up

•swing heavy pendulum up

•motor torques limited

•reward function

(Schaal, NIPS 1997; Atkeson, ICML 1997)

|u| ≤ umax

ϕ, ϕ̇

lu

mg

r = exp
�
−α

�ϕ
π

�2 − β
�

2
π

�2 log cos
�

π
2

u
umax

��

ml2ϕ̈ = −µϕ̇ + mgl sin ϕ + u
ϕ ∈ [−π, π]
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Underactuated Swing-Up

(Peters & Schaal, IROS 2006; Peters & Schaal, ICML 2007)
47

Thursday, May 17, 2012



Ball-in-a-Cup
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Ball-in-a-Cup
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Ball-in-a-Cup

•reward function

rt =

�
exp

�
−α

�
(xc − xb)

2 + (yc − yb)
2
��

if t = tc

0 if t �= tc
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The Reward-Weighted Regression required known basis functions. 
Using the Kernel-Trick

we can turn this in a cost-regularized Gaussian Process approach.
The predictive variance acts as a policy

with  

ūi = φ(x)Tw=φ(x)T
�
ΦTRΦ + λI

�−1
ΦTRUi

= φ(x)TΦT
�
ΦΦT + λR−1

�−1
Ui

uj ∼ πj(u|xj) = N (u|γ(xj),σ2(xj)I)

γi(x
j)=k(xj)T (K + λC)−1 Ui

σ2(xj) = k(xj ,xj)− k(xj)T (K + λC)−1 k(xj)

Cost-regularized Gaussian Processes

50 (Kober, Oztop & Peters, R:SS 2010)
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Dart-Throwing with Sledge
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Dart-Throwing with Fingers
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Learning for Table Tennis
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Throwing and Catching
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Outline of the Lecture

1. Introduction with Policy Gradients

2. Recent Advances in Policy Gradients

3. Probabilistic Policy Search with EM-like Approaches

4. Conclusion
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Conclusion

• Policy Search is a powerful and practical alternative to value function 
and model-based methods.

• Policy gradients have dominated this area for a long time and solidly 
working methods exist.

• Newer methods focus on probabilistic policy search approaches.
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