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Fig. 1: Illustration of the pipeline for deformable object
simulation using GNN prediction as an alternative to clas-
sical FEM simulation. This approach achieves speedups of
up to 1000× for predicting both deformation and stress
fields while maintaining accuracy comparable to ground truth
measurements.

Abstract— Physical simulation of deformable bodies is crucial
for robotic manipulation, particularly for applications involving
deformable objects and deformable tactile sensors. While Finite
Element Method (FEM) simulations provide high accuracy
for modeling deformable objects and tactile sensors, they
are prohibitively expensive for real-time applications, with
simulation times often exceeding practical limits for robotic
control and learning. This paper presents a novel Graph
Neural Network (GNN) framework that accelerates the sim-
ulation of tactile sensors by factors of 102-104 compared to
FEM, while maintaining high physical accuracy. Our approach
addresses limitations in existing GNN-based physics learning
through inductive biases. The key contributions include: (1)
extending FEM simulation to deformable tactile sensors in
grasping scenarios, (2) incorporating novel inductive biases
through tetrahedral features and global graph features to
improve information propagation and training stability, and
(3) demonstrating the first successful application of GNN sim-
ulation for tactile sensors with generalization to unseen objects.
Additionally, the inductive biases reduce prediction errors by
up to 45% compared to baseline approaches. This work enables
real-time soft tactile sensors of soft object simulation for robotic
applications with stress prediction. All simulation and training
code will be released.

I. INTRODUCTION

Deformable objects and tactile sensors are omnipresent in
human environments, and humans instinctively know how
to grasp and handle them. However, robotic systems often

Fig. 2: Illustration of the ground truth stress and deformation
of the tactile sensor across different grasping poses. The first
row shows the ground truth, while the second row presents
the prediction from the Graph Neural Network.

lack this intuitive capability. Physical simulation plays a
crucial role in the development and evaluation of robotic
manipulation methods. The importance of simulation is even
more pronounced when dealing with deformable objects
or deformable visual tactile sensors in contact-rich scenar-
ios, where real-world data collection is expensive, time-
consuming, and often impractical for large-scale training.
Despite years of research, simulating deformable tactile sen-
sors remains highly challenging—both in terms of accurately
capturing the underlying physical dynamics and meeting
computational requirements for practical applications.

Related work on visual tactile sensor simulation can be
broadly divided into two categories: rigid-body simulations
and soft-body simulations. Rigid-body simulations prioritize
execution speed, making them suitable for scenarios requir-
ing large-scale data generation, such as reinforcement learn-
ing [7], [1]. However, they fundamentally cannot capture the
deformation behavior and shear forces that characterize real
tactile sensors. In contrast, soft-body approaches, particularly
those based on FEM, offer greater realism by accurately
modeling deformation under contact with external objects.
However, they are significantly more computationally ex-
pensive and orders of magnitude slower than rigid-body
simulations [11].

Recent work has attempted to reduce the computational
cost using machine learning approaches. DefGraspNets by
Huang et al. [5] demonstrated that GNNs can learn to predict
deformation and stress fields in grasps on deformable objects,



Fig. 3: Complete pipeline illustrating: (a) dataset creation using FEM simulation across 10 different objects and 100 grasping
poses per object, showing the progressive gripper closure and force application, and (b) detailed construction of the Graph
Neural Network architecture with node features (position, type, motion direction), edge features (geometric relationships,
contact forces), and the inductive bias components.

achieving significant speedups over FEM simulations. Their
approach builds on the GNN architecture from MeshGraph-
Nets [9], representing gripper and object states as graph
features where mesh vertices become nodes and mesh edges
become graph edges. However, during our experimentation
with the DefGraspNets approach, we improve the methods to
address limitations: Physically inconsistent stress predic-
tion: FEM computes stresses at tetrahedron elements, but the
model predicts stress as values at nodes, requiring averaging
that blurs stress peaks and reduces physical accuracy, Lim-
ited information propagation: Due to constrained message
passing rounds, information cannot propagate through the
entire graph, particularly affecting predictions for nodes far
from contact regions.

This work addresses these limitations through a compre-
hensive GNN framework extended to tactile sensor simula-
tion. Our main contributions are:

• Extension of DefGraspSim[6] FEM simulation to
deformable tactile sensors: We develop a complete
pipeline for simulating tactile sensors in grasping sce-
narios using FEM, providing high-quality training data
that captures the complex interactions between rigid
objects and deformable sensors.

• Novel inductive biases for improved GNN perfor-
mance: We introduce two key architectural innovations:
Tetrahedral features that enable direct prediction of
stress at tetrahedron elements, aligning with FEM’s
physical formulation and preserving stress concentration
accuracy. Global graph features that act as information
shortcuts, enabling effective propagation through the
entire graph and addressing the limited receptive field
of standard message passing.

• First comprehensive GNN simulation for tactile
sensors: We demonstrate the successful application
of GNNs to tactile sensor simulation, with extensive
validation showing effective generalization to unseen
grasping poses across multiple objects and a speedup
of 103–104× compared to FEM simulation

The remainder of this paper is organized as follows:
Section II details our dataset generation pipeline using FEM
simulation for tactile sensors. Section III presents our GNN
methodology, including the baseline architecture and our
proposed inductive biases. Section 4 describes our experi-
mental setup and comprehensive results. Section 5 discusses
limitations and future work, and Section 6 concludes.

II. DATASET GENERATION

A. FEM Simulation Framework

For dataset generation (illustrated in Fig. 3a), we employ
a Finite Element Method (FEM) simulation within the Isaac
Gym environment [8], which provides an effective trade-off
between simulation speed and quality [11]. While prior work
has proposed FEM-based simulations [11] for visual tactile
sensors pressed against indenters, these approaches primarily
focus on static object-sensor interactions. In contrast, we
adopt and extend DefGraspSim [6], which enables loading of
predefined grasping poses for various deformable objects and
simulates dynamic parallel rigid gripper grasping scenarios
involving both deformable objects and rigid gripper fingers.
We further modify this simulation to extend it to deformable
visual tactile sensors, specifically the GelSight Mini—one
of the few visual tactile sensors commercially available
and widely used in research, facilitating reproducibility and
practical applications.

The simulation employs a parallel gripper equipped with
two visual tactile sensors. Both the dataset generation
pipeline and subsequent GNN framework are compatible
with arbitrary tactile sensors, provided their meshes are
available and convertible into tetrahedral .tet files, making
the pipeline broadly applicable to various soft tactile sensors.
This simulation framework supports two primary scenarios:
soft objects grasped by rigid grippers (Fig. 1) and soft tactile
sensors interacting with rigid objects (Fig. 3).

B. Simulation Procedure and Parameters

The simulation follows a carefully designed four-phase
procedure. First, during object loading, the object mesh



(either soft or rigid) is loaded into the simulation envi-
ronment at a predefined initial position. Second, in gripper
positioning, the parallel gripper is positioned according to
a specified grasping pose from the object surface. Third,
contact establishment involves gripper closure until contact
is detected between the gripper and object surface using
collision detection algorithms. Finally, during force appli-
cation, the grasping force is gradually increased according
to a controlled profile until reaching a target force threshold
N , with data recording occurring primarily in this phase.

The simulation terminates once the predefined force
threshold N is achieved. During each run, we save 50
simulation frames corresponding to progressively increasing
grasping forces, providing a continuous trajectory of the
grasping process. For each frame, the simulator records mul-
tiple physical quantities: node deformation (3D displacement
of each node in soft components), rigid body pose (6D
position and orientation of gripper or rigid object), stress
distribution (von Mises stress within each tetrahedral element
of soft bodies), and contact forces at each interaction point
between sensor and object.

For FEM parameters, we use pre-calibrated values of Pois-
son’s ratio and Young’s modulus for the GelSight Mini [11],
specifically chosen to minimize sim-to-real gap in deforma-
tion and stress patterns during grasping. The dataset used
for GNN training builds upon and extends the DefGraspNet
data [5], containing a total of 63 diverse objects (examples
shown in Fig. 4), each with 100 unique grasping poses,
resulting in a comprehensive dataset of 6,300 distinct grasp
simulations.

Fig. 4: Visualization of the 10 objects used in our dataset,
selected to represent diverse geometries and mechanical
properties encountered in real-world grasping scenarios.

C. Data Preprocessing and Graph Construction

The raw FEM simulation data undergoes comprehensive
preprocessing to construct graph representations suitable for
GNN training. This process involves mesh processing to
convert tetrahedral meshes into graph representations where
nodes correspond to mesh vertices and edges represent
mesh connectivity. Feature extraction computes node features
including position, type indicators, and motion direction,
along with edge features such as relative displacements, dis-
tances, and contact forces. All features undergo appropriate
normalization to ensure training stability, followed by graph

augmentation that adds contact edges between nearby object
and gripper nodes to model interaction forces.

The resulting dataset provides a rich foundation for train-
ing GNNs to predict the physical behavior of tactile sensors
during grasping interactions. This preprocessing pipeline
maintains consistent structure regardless of whether the soft
component is the sensor on the gripper or the deformable
object being grasped.

III. GRAPH NEURAL NETWORK WITH INDUCTIVE
BIASES

A. Graph Neural Network Framework

We employ a Graph Neural Network as the central com-
ponent for learning complex interactions in robotic grasping
scenarios. Our framework builds upon the success of GNNs
in physics-based simulation [9], [5]. The core insight is that
GNNs naturally represent meshes as graphs, with message-
passing mechanisms that propagate information analogously
to physical force transmission in FEM simulations, making
this kind of model suitable for physical simulation. In this
part, we introduce innovations to address specific limitations
in GNN predictions.

B. Graph Representation and Architecture

The graph construction forms the foundation of our ap-
proach, representing both deformable and rigid components
in a unified structure. Each node corresponds to a vertex from
either the deformable tactile sensor or rigid object, with two
edge types capturing different physical relationships:

Mesh edges connect neighboring nodes within each struc-
ture to capture local geometric and mechanical dependencies,
preserving mesh topology for material continuity modeling.
Contact edges dynamically connect nearby object-sensor
nodes to model interaction forces and contact physics.

The feature design carefully encodes physical information:
• Node features combine geometric state (3D position,

displacement), node-type indicators, directional cues
(finger motion vectors), and material properties

• Edge features include geometric relationships for mesh
edges and force-related information for contact edges

C. Core Architectural Innovations

The efforts in implementing our methods started with the
reimplementation of DefGraspNets. For the details of its
node and edge feature constrution, we refer to [5], for node
and edge updates in message passing to [9].

1) Tetrahedral Features and Stress Prediction: Our first
proposed architectural extension informs the GNN about
tetrahedrons in the object mesh. Similar to edges in [5], [9],
a tetrahedron set is added to the input feature graph represen-
tation, consisting of four-tuples Ti that give corresponding
node indices for each mesh tetrahedron i. Additionally, for
each tetrahedron, an input feature vector ti is given. First,
the tetrahedral features are encoded into the common 128D
latent space by an MLP f t

enc,

t̃i = f t
enc(ti).



TABLE I: Achieved MAPE score (lower is better) on predicted deformation u, stress σ, and 9D rigid transformation p
fields for each model variant, and each object trained and validated on.

Object 8polygon06 cylinder07 lemon01 potato2 sphere03 strawberry01
MAPE in % u σ p u σ p u σ p u σ p u σ p u σ p

Baseline [5] 3.24 1.52 – 3.00 3.23 – 4.66 1.39 – 3.05 2.46 – 2.37 1.37 – 3.34 1.12 –
A: Tet. Features 3.86 1.91 – 2.93 2.37 – 4.51 1.92 – 3.34 1.75 – 2.71 1.18 – 4.05 4.57 –
B: Tet. + Global Feat. 2.04 0.93 35.4 1.84 1.04 37.4 3.48 0.77 4.43 3.12 0.53 4.70 3.24 1.21 25.9 3.16 3.40 10.8

t̃
g̃

. . .

Fig. 5: The proposed inductive biases function during the
message passing phase, illustrated for a single tetrahedron.
In green: A tetrahedron feature receives messages from each
of the tetrahedrons nodes. In blue: A global feature receives
and sends messages from and to all nodes not only in this
tetrahedron, but the entire graph.

For all tetrahedrons, the input ti is scalar zero, hoping that all
relevant information can be accumulated in message passing.
This means the encoding step could be skipped and the latent
feature initialized with zeros instead, but we keep it in our
implementation to permit for future extensions.

In each message passing round, the update for the latent
feature of each tetrahedron is computed as following: An
update MLP f t

upd is given the current latent tetrahedron
feature t̃i, and the latent feature vj of each node j that is
part of the tetrahedron. Then, the updated feature is given
by the MLP output with a residual connection:

t̃′i = f t
upd

(
t̃i, {ṽj}j∈Ti

)
+ t̃i

The information flow to the tetrahedron feature is shown in
Fig. 5. This update rule lets information about the behavior
of nodes flow into each tetrahedron feature. A decoder MLP
f t

dec finally decodes a prediction of the scalar von Mises stress
σ̂i within each tetrahedron,

[σ̂i] = f t
dec(t̃

′
i).

The design choice that node information flows into tetrahe-
drons, but not back, is motivated by how FEM derives the
stress field after computing node deformations.

2) Global Feature and Rigid Transformation: Addressing
the problem of limited propagation through the graph, we
modify the GNN architecture with a global feature [3]. It
can be imagined as a node that is connected to all other
graph nodes, and thus can accumulate and broadcast globally
relevant information to all nodes. An input global feature
vector g is transformed to its latent representation by an

encoder MLP fg
enc:

g̃ = fg
enc(g).

Again, we decide on a zero input vector g = 0. In each
message passing round, the update for the latent global
feature is computed by an update MLP for the global node
fg

upd, given the mean of all node features as input, together
with a residual connection:

g̃′ = fg
upd

(
1

#nodes

#nodes∑
i=1

ṽi

)
+ g̃

To allow for information to flow back from the global to
node features, the node update rule from [9] is modified to
take the global feature as additional input,

ṽ′
i = fv

upd

ṽi,
∑
j

ẽij , g̃

+ ṽi.

The flow of information to and from the global feature is
illustrated in Fig. 5. Finally, enabling prediction of values
relevant to the entire graph, after message passing the latent
global feature is decoded into an output feature

[t̂rigid, r̂rigid] = ĝ = fg
dec(g̃

′).

As demonstration, we use this decoded global output feature
as a prediction for the best-fit rigid body transformation of
the object during the grasp, given by a 3D translation vector
t̂rigid and a 6D rotation representation r̂rigid. We choose this
continuous representation, as proposed by Zhou et al. [12],
for improved training performance. The ground truth best-
fit rigid body transformation is obtained with singular value
decomposition of the covariance matrix between original and
deformed object points [2], [10].

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Our experimental evaluation is structured around three
core components designed to comprehensively validate the
proposed approach:

1) Inductive Bias Ablation: A systematic comparison
against baseline models to quantify the contribution
of our proposed tetrahedral and global features for
deformable object prediction (Sec. IV-B).

2) Tactile Sensor Application: An assessment of the
model’s practical utility by evaluating its performance



and generalization capabilities when applied to vi-
sual tactile sensor simulation across multiple scenarios
(Sec. IV-C).

3) Computational Performance: An analysis of the
inference speed and computational efficiency gains
achieved by our method compared to traditional FEM
simulation techniques(Sec. IV-D).

B. Inductive Biases for Deformable Object Prediction

This section presents a systematic evaluation of the pro-
posed inductive biases for deformable object prediction. We
assess the contribution of tetrahedral features and global
information propagation through controlled comparisons
against established baselines and progressive model variants.

1) Experimental Design: Following the evaluation
methodology and scenario of DefGraspNet [5], we conduct
experiments on diverse deformable objects to isolate the
effects of each architectural component. We compare three
model configurations:

• Baseline: Our reimplementation of DefGraspNets with-
out inductive biases

• Variant A: Baseline enhanced with tetrahedral convo-
lution features for direct stress prediction

• Variant B: Complete model integrating both tetrahedral
features and global attention mechanisms

All models were trained using the Adam optimizer with
learning rate scheduling and evaluated using Mean Absolute
Percentage Error (MAPE) to ensure comparable scaling
across different physical quantities. The evaluation encom-
passes deformation (u), stress (σ), and rigid transformation
(p) predictions across six geometrically diverse objects.

2) Quantitative Results: Table II presents detailed per-
formance metrics across individual objects, while Table III
summarizes aggregate performance. Several key patterns
emerge from the experimental data:

Global Feature Dominance: Variant B demonstrates con-
sistent superiority, achieving the lowest error rates on 5 of 6
objects for deformation prediction and 4 of 6 objects for
stress prediction. The average improvement over baseline
is 14.3% for deformation and 29.2% for stress prediction
(Table III).

Synergistic Component Interaction: While tetrahedral
features alone (Variant A) show limited benefits—sometimes
even degrading performance—their combination with global
features produces substantial improvements. This suggests
tetrahedral features provide valuable physical constraints but
require global information propagation to fully exploit this
structural knowledge.

Object-Dependent Performance Gains: Complex ge-
ometries with irregular contact patterns (8polygon06,
lemon01) benefit most significantly, showing error reductions
up to 45%. In contrast, simple symmetric shapes (sphere03)
show marginal improvements, indicating the inductive biases
are particularly valuable for challenging deformation scenar-
ios where local information proves insufficient.

Stress Concentration Preservation: The combined ap-
proach in Variant B achieves the most dramatic improve-

ments in stress prediction, demonstrating an ability to pre-
serve localized stress concentrations that are typically blurred
in node-based approaches.

3) Discussion: The experimental results validate our hy-
pothesis that carefully designed inductive biases significantly
enhance deformable object prediction. The limited benefits
of tetrahedral features alone (Variant A) suggest that local
physical constraints, while valuable, are insufficient without
effective global information propagation. The success of
Variant B demonstrates that the combination of physical
priors (tetrahedral features) and global reasoning capabili-
ties creates a synergistic effect that addresses fundamental
limitations in existing approaches.

The object-dependent performance patterns further rein-
force that our inductive biases are most beneficial for com-
plex deformation scenarios where local information proves
inadequate. This finding has important implications for real-
world applications involving diverse object geometries and
complex contact interactions.

C. Tactile Sensor Prediction Results

This section evaluates our model’s performance in pre-
dicting deformation and stress for visual tactile sensors
across three scenarios of increasing complexity. For each
scenario, we investigate two input configurations: one that
provides the sensor’s translation, and a more challenging,
open-loop setting where only force is provided and the
model must predict the resulting translation, deformation,
and stress. These two scenarios represent realistic gripper
control paradigms commonly used in real-world grasping
applications.

1) Experimental Scenarios: We define three evaluation
scenarios to systematically assess model capability:

• Single-Object Specialization: The model is trained and
tested on different grasping poses of a single object to
establish a performance baseline.

• Multi-Object Generalization: The model is trained on
a set of objects and evaluated on unseen poses of those
same objects, testing its ability to learn a generalizable
physical representation.

• Generalization to Novel Objects: The model is evalu-
ated on completely unseen object geometries, represent-
ing the most challenging zero-shot transfer scenario.

2) Single-Object Specialization: We first verify the
model’s core capability to predict deformation and stress
for unseen grasping poses of a known object. Models were
trained on 80% of the grasping poses for individual objects
and evaluated on the remaining 20%.

As shown in Table IV, providing translation input dras-
tically reduces prediction error, improving deformation ac-
curacy by over 300% across all objects. This configuration
not only yields the best performance but also aligns with
real-world robotic systems where translation data is typically
available.

3) Multi-Object Generalization: We next assess the
model’s ability to generalize across diverse objects by train-



TABLE II: MAPE scores (lower is better) for deformation (u), stress (σ), and rigid transformation (p) predictions across
six objects. Best results for each object are bolded.

8polygon06 cylinder07 lemon01 potato2 sphere03 strawberry01
MAPE (%) u σ p u σ p u σ p u σ p u σ p u σ p

Baseline 3.24 1.52 – 3.00 3.23 – 4.66 1.39 – 3.05 2.46 – 2.37 1.37 – 3.34 1.12 –
Variant A 3.86 1.91 – 2.93 2.37 – 4.51 1.92 – 3.34 1.75 – 2.71 1.18 – 4.05 4.57 –
Variant B 2.04 0.93 35.4 1.84 1.04 37.4 3.48 0.77 4.43 3.12 0.53 4.70 3.24 1.21 25.9 3.16 3.40 10.8

TABLE III: Average MAPE across all objects. Variant B
achieves consistent improvements in both deformation and
stress prediction.

Model Variant u σ p

Baseline 3.28 1.85 –
Variant A 3.57 2.28 –
Variant B 2.81 1.31 19.77

TABLE IV: Single-object specialization results. Providing
translation input (✓) significantly improves accuracy, espe-
cially for deformation prediction.

Object Trans. Def. MAE Stress MAE
Potato ✓ 6.57e-05 372.7

– 2.92e-04 382.8
Apple ✓ 7.20e-05 370.5

– 2.97e-04 427.9
Lemon ✓ 5.40e-05 212.1

– 2.38e-04 265.6

ing on 80% of grasping poses from multiple objects and
testing on unseen poses from the same set.

TABLE V: Multi-object new grasping generalization per-
formance on known objects. Models with translation input
maintain high accuracy even as the object set scales.

Object Set Trans. Def. MAE Stress MAE
Known-10 ✓ 6.30e-05 360.3

– 2.69e-04 420.2
Known-63 ✓ 7.90e-05 352.0

– 2.54e-04 365.0

Table V demonstrates that our approach maintains strong
performance in multi-object settings. The model with transla-
tion input achieves 29.3% lower deformation error and 15.4%
lower stress error compared to the configuration without
translation. This confirms the model’s capacity to learn gen-
eralizable physical representations rather than memorizing
object-specific patterns.

4) Generalization to Novel Objects: The final and most
significant evaluation assesses the GNN model’s performance
on completely unseen objects and grasping poses. For train-
ing, we used 80% of the grasping poses from 49 objects
(comprising 14 polygons, 7 annuli, 6 cuboids, 3 cups, 8
cylinders, 1 eggplant, 3 potatoes, and 6 spheres). The model
was evaluated on a separate set of 14 novel objects: 2
tomatoes, 1 hollow lemon, 4 ellipsoids, 3 different cups, 1
cucumber, and 3 apples.

As shown in Table VI, this scenario presents a greater
challenge, with a noticeable performance drop compared

TABLE VI: Generalization performance on novel objects
with (✓) and without (–) translation input. Unknown-12
excludes two outlier ellipsoid objects.

Object Set Trans. Def. MAE Stress MAE
Unknown-14 ✓ 1.97e-04 1.51e3

– 3.25e-02 7.78e4
Unknown-12 ✓ 8.54e-05 6.19e2

– 2.81e-04 6.43e2

TABLE VII: Computational performance comparison,
demonstrating the massive inference speedup achieved by
our GNN approach while maintaining high predictive accu-
racy.

Method Inference Time Speedup vs. FEM Hardware
FEM Simulation 100–200 s 1× GPU
GNN (Ours) 5–50 ms 103–104× GPU

to previous evaluations on known objects. For instance,
the deformation and stress error increases by an order of
magnitude. However, further analysis revealed that this drop
is primarily attributable to two outlier ellipsoid objects.
We hypothesize that their exceptionally high node density
compared to other objects in the training set caused this
performance degradation. After removing these two outliers,
the performance metrics (Unknown-12) align more closely
with those from previous scenarios, albeit with slightly
higher error rates.

The results powerfully demonstrate the promising gener-
alization capacity of our GNN framework, as shown in the
qualitative results in Figure 6. Its ability to accurately predict
physical behavior for the vast majority of novel objects
confirms the strength of our approach. The performance
variance appears to be a data coverage issue rather than a
fundamental architectural limitation. We are confident that
scaling the dataset to encompass a broader spectrum of
shapes and node densities will further enhance the model’s
zero-shot generalization capabilities.

D. Computational Performance and Real-Time Capability

A critical advantage of our GNN-based approach is its
computational efficiency, which enables real-time applica-
tions. Table VII summarizes the performance comparison
against a conventional FEM solver.

Our method achieves a speedup of three to four orders
of magnitude (103–104×) over the FEM baseline, reducing
inference times from minutes to milliseconds. This perfor-
mance enables real-time execution at 20–200 Hz, making
our framework particularly suitable for applications requiring



Fig. 6: GNN deformation and stress prediction on three un-
seen objects. Left: global GT scene overview. Right: zoomed-
in view comparing (top to bottom) FEM ground truth, GNN
prediction from translation input, and GNN prediction from
force input.

rapid, iterative simulation, such as reinforcement learning,
real-time grasp planning, and closed-loop robotic control.

V. RESULTING RESEARCH DIRECTIONS

While our method demonstrates promising results, several
limitations present opportunities for future work.

Generalization and Data Diversity. Although our model
generalizes reasonably to novel objects, its performance
is bounded by the diversity of the training dataset. A
key direction for improvement is to incorporate large-scale
grasping datasets, such as the Acronym Dataset [4], which
provides over 8,000 object models and corresponding grasp
annotations. This would significantly enhance the model’s
ability to reason about a wider variety of object shapes and
grasping strategies.

Quasi-Static and Dynamic Modeling. Our current frame-
work operates under a quasi-static assumption, neglecting
dynamic effects and gravitational influences. Extending the

model to account for object inertia, swing motions, and
impact forces is a critical next step for handling real-world
dynamic manipulation tasks, such as catching or snatching
objects.

Differentiable Grasp Pose Refinement. The differen-
tiable nature of our Graph Neural Network (GNN) model
opens a direct pathway for closed-loop grasp optimization.
Future work will focus on leveraging this to backpropagate
tactile-derived signals—such as predicted slip or undesirable
stress concentrations—directly to the gripper’s control pa-
rameters. By formulating a loss function that penalizes high
stress or instability, the system can iteratively refine its pose
and force to achieve stable grasps while simultaneously min-
imizing internal sensor strain, thereby enhancing hardware
longevity.

Generalization to Diverse and Novel Tactile Sensors.
A significant advantage of our physics-based GNN approach
is its capacity for sensor-agnostic generalization. The model
learns an implicit representation of continuum mechanics,
which is not tied to a specific sensor morphology. Conse-
quently, the framework can be extended to grippers with
multiple, heterogeneous tactile sensors, or adapted to entirely
new sensor designs, without the need for retraining from
scratch. This would be achieved by simply instantiating
new nodes within the graph that represent the additional or
novel sensors, using their respective geometric and material
properties as features. This capability would dramatically
increase the practical applicability and scalability of the
method.

Bridging the Sim-to-Real Gap. Although we use phys-
ically calibrated parameters, experimental validation with
physical tactile sensors is essential to fully assess and bridge
the transfer from simulation to physical systems. The next
critical step involves a rigorous quantification of the sim-
to-real gap through comparative analysis against data from
physical sensors, such as the BioTac or DIGIT, under identi-
cal contact conditions. The insights from this real-world data
will be instrumental in refining the simulation’s material and
contact models. Furthermore, integrating our deformation
output with tactile image rendering pipelines will enable
complete simulation-to-visualization workflows, combining
physical deformation prediction with photorealistic tactile
sensor output generation for end-to-end tactile simulation.

VI. CONCLUSION

This work presents a novel Graph Neural Network frame-
work that enables real-time, high-fidelity simulation of de-
formable tactile sensors and objects in robotic grasping.
By integrating critical inductive biases—tetrahedral fea-
tures for physically consistent stress prediction and global
graph features for effective long-range information propaga-
tion—we overcome fundamental limitations of prior GNN-
based physics simulators. Our method achieves a transforma-
tive speedup of 103–104× compared to conventional FEM
simulation while maintaining high accuracy, as validated
through extensive experiments on diverse object geometries
and grasping poses.



The key outcomes of this research are threefold. First,
we establish the first comprehensive pipeline for simulating
deformable visual tactile sensors within dynamic grasping
scenarios, bridging a significant gap in robotic simulation
capabilities. Second, we demonstrate that our inductive bi-
ases not only enhance predictive accuracy by up to 45%
but also enable successful generalization to novel objects
and sensor configurations. Finally, the real-time performance
of our framework unlocks new possibilities for applications
previously hindered by computational bottlenecks, including
real-time grasp planning, closed-loop tactile control, and
large-scale data generation for reinforcement learning.

By providing a fast, accurate, and generalizable simulation
tool, this work lays a foundation for the next generation
of tactile-aware robotic manipulation systems. The released
code and models will facilitate further research in sim-to-real
transfer and data-driven manipulation, accelerating progress
toward robots that can reliably interact with complex de-
formable environments.
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