
Robust Policy Updates for Stochastic Optimal Control

Elmar Rueckert1, Max Mindt1, Jan Peters1,2 and Gerhard Neumann3

Abstract— For controlling high-dimensional robots, most
stochastic optimal control algorithms use approximations of
the system dynamics and of the cost function (e.g., using lin-
earizations and Taylor expansions). These approximations are
typically only locally correct, which might cause instabilities in
the greedy policy updates, lead to oscillations or the algorithms
diverge. To overcome these drawbacks, we add a regularization
term to the cost function that punishes large policy update
steps in the trajectory optimization procedure. We applied
this concept to the Approximate Inference Control method
(AICO), where the resulting algorithm guarantees convergence
for uninformative initial solutions without complex hand-tuning
of learning rates. We evaluated our new algorithm on two
simulated robotic platforms. A robot arm with five joints was
used for reaching multiple targets while keeping the roll angle
constant. On the humanoid robot Nao, we show how complex
skills like reaching and balancing can be inferred from desired
center of gravity or end effector coordinates.

I. INTRODUCTION
Typical whole body motor control tasks of humanoids, like

reaching for objects while walking, avoiding obstacles during
motion, or maintaining balance during movement execution,
can be characterized as optimization problems with multiple
criteria of optimality or objectives. The objectives may be
specified in the robot’s configuration space (e.g., joint angles,
joint velocities and base reference frame), in task space
(where objectives such as desired end effector coordinates or
center of gravity positions are specified), or in combinations
of both. In this paper, we consider control problems in
nonlinear systems with multiple objectives in combinations
of these spaces.

A common strategy to whole body motor control is to
separate the redundant robot’s configuration space into a task
space and an orthogonal null space. Objectives or optimality
criteria of motion are implemented as weights or priorities
[1] to the redundant solutions in the null space. While
these approaches have been successfully applied to a variety
of tasks, including reaching, obstacle avoidance, walking
and maintaining stability [2]–[5], the application of these
methods is typically limited to motor control and can not
be directly used for motor planning. It is also unclear how
these methods can be applied to motor control problems in
nonlinear systems like compliant robots.

Alternatively, in Stochastic Optimal Control (SOC) prob-
lems [6], a movement policy is optimized with respect to a

1Intelligent Autonomous Systems Lab, Technische Universität Darm-
stadt, Hochschulstr. 10, 64289 Darmstadt, Germany {rueckert,
mindt}@ias.tu-darmstadt.de

2Robot Learning Group, Max-Planck Institute for Intelligent Systems,
Tuebingen, Germany mail@jan-peters.net

3Computational Learning for Autonomous Systems, Hochschulstr. 10,
64289 Darmstadt, Germany neumann@ias.tu-darmstadt.de

Fig. 1. A 5-degree-of-freedom robot arm has to reach for a via-point (the
posture on the left in A) and return to its initial pose (the posture on the
right in A). The reaching task is encoded in four task objectives, i.e., three
Cartesian coordinates and the roll angle of the end effector. The inferred
trajectories for the y coordinate and the roll angle, including the objectives,
are shown in (B).

cost function, which combines the different criteria of opti-
mality with different weightings. For nonlinear systems, SOC
methods use approximations of the system dynamics and of
the cost functions, e.g., through linearizations and 2nd order
Taylor expansions. These approximations are only locally
correct and the updates of the policy may become unstable
if the minima is not close to the points of the linearizations,
or may oscillate in the case of multiple solutions.

Many SOC methods address this issue and implement
regularizations on the algorithmic level. E.g., in the iLQG
method [7] a diagonal regularization term is added to the
control cost Hessian1, and in an extension [8], it was sug-
gested to penalize deviations from the state trajectory used
for linearization rather than controls. A drawback of this
approach is that the additive regularization term needs rapid
re-scaling to prevent divergence and accurate fine-tuning of
a learning rate to find good solutions, which is challenging
and increases the computational time of the algorithm.

Probabilistic planning methods that translate the SOC
problem into an inference problem, typically implement
learning rates in their belief updates [9] or in the feed-
back controller [10]. However, in nonlinear systems, both
strategies are suboptimal in the sense that even with a small
learning rate on the beliefs the corresponding control updates
might be large (and vice-versa, respectively).

We propose to regularize the policy updated on the cost
function level for probabilistic planning. We also penalize
large distances between two successive trajectories in the it-
erative trajectory optimization procedure. In [8], the regular-
ization term is only used for the control gains and not for the
updates of the value function. However, the deviation from
the linearization point can still be high if small regularization

1The update step in the trajectory optimizer corresponds to a Gauss-
Newton Hessian approximation [8].

terms are used. In our approach, we always want to stay
close to the linearization point as the used approximations
are only locally correct. Hence, using too large update steps
by greedily exploiting the inaccurate models might again
be dangerous, leading the instabilities or oscillations. The
scaling parameter of our punishment term serves as step size
of the policy update. Due to the use of probabilistic planning,
the need of an additional learning rate and complex update
strategies of this learning rate can be avoided. Moreover,
we will demonstrate that this type of regularization results
in more robust policy updates in comparison to [8]. We
choose the Approximate Inference Control (AICO) algorithm
as probabilistic planning method [9] to discuss and analyze
the proposed regularization, however, the same “trick” can
be applied to large variety of SOC methods.

In the rest of this paper, we introduce the probabilistic
planning method AICO, analyze its convergence properties
in a reaching task in a light-weight robot arm and introduce
the proposed regularization on the cost function level. The
resulting algorithm is evaluated on the humanoid robot Nao,
where in first results, arm reaching and balancing skill
are inferred from desired center of gravity or end effector
coordinates. We conclude in Section IV.

II. METHODS

We consider finite horizon Markov decision problems2.
Let qt ∈ Q denote the current robot’s state in configuration
space (e.g., a concatenation of joint angles, joint velocities
and reference coordinates in floating base systems) and let
vector xt ∈ X denote task space features like end effector
positions or the center of gravity of a humanoid (these
features will be used to specify a cost function later). At
time t, the robot executes the action ut ∈ U according to
the movement policy π(ut|qt).

The chosen action at the current state is evaluated by
the cost function Ct(qt,ut) ∈ R1 and results in a state
transition characterized by the probability P (qt+1|qt,ut).
In Stochastic Optimal Control (SOC), the goal is to find a
stochastic policy π∗ that minimizes the expected cost

π∗ = argmin
π
〈CT (qT) +

T−1∑
t=0

Ct(qt,ut) 〉qπ , (1)

where the expectation, denoted by the symbols 〈·〉, is taken
with respect to the trajectory distribution

qπ(q0:T ,u0:T−1) = P (q0)

T−1∏
t=0

π(ut|qt)P (qt+1|qt,ut) ,

where P (q0) is the initial state distribution.

A. Bayesian inference for control

An interesting class of algorithms to SOC problems have
been derived by reformulating the original Bellman formu-
lation in (1) as an Bayesian inference problem [14]–[17].

2Note that the same principle of regulating the update steps in trajectory
optimization can also be applied to planning algorithms in infinite horizon
problems such as [11], [12]

Fig. 2. Comparison of the convergence properties of iLQG, AICO and
our robust variant, where the rate of convergence is controlled via the
parameter α. In the top row (A-B), the model of the forward dynamics
was approximated by a pseudo dynamics model [13]. In the bottom row,
an analytic forward dynamics model of a 5-degree-of-freedom robot arm
was used. The panels in the first column denote the costs of the planning
algorithms applied to a simple task, where the robot arm has to reach for
an end effector target and return to the initial state. In the second column
(B,D), the robot has to keep additionally the roll angle constant (at π/2).
Shown are the mean and the standard deviations for 10 initial states ‘q0
sampled from a Gaussian with zero mean and a standard deviation of 0.05.

Instead of minimizing costs, the idea is to maximize the
probability of receiving a reward event (rt = 1) at every
time step

p(rt = 1|qt,ut) ∝ exp{−Ct(qt,ut)} . (2)

Note that the idea of turning the cost function in Eq. (1) into
a reward signal was also used in operational space control
approaches [18], [19].

In the probabilistic framework, we want to compute the
posterior over state and control sequences, conditioning on
observing a reward at every time step,

pπ(q0:T ,u0:T−1|r0:T = 1) = exp{−CT (qT)}

qπ(q0:T ,u0:T−1)

T−1∏
t=1

p(rt = 1|qt,ut) .

For efficient implementations of this inference problem, a
number of algorithms have been proposed that apply iterative
policy updates assuming that all probability distributions can
be modeled by an instance of the family of exponential
distributions [9], [20], [21]. We will restrict our discussion on
the Approximate Inference Control (AICO) algorithm with
Gaussians [9].

B. Approximate inference control with Gaussians (AICO)

We consider system dynamics of the form
qt+1 = f(qt,ut) + ε with ε denoting zero mean Gaussian
noise. In AICO (with Gaussians), the system dynamics
are linearized through 1st order Taylor expansions, i.e.,

P (qt+1|qt,ut) = N (qt+1|Atqt + at + Btut, Qt), where
the state transition matrix At, the linear drift term at and
the control matrix Bt are often computed with derivatives
simulated through finite differences methods. The numerical
stability of AICO also depends on the accuracy of the
linearized model, we will therefore additionally compare to
an approximation of the system dynamics, where controls
ut correspond directly to joint accelerations3. We will refer
to this approximation as pseudo-dynamic model.

We propose to add a regularization term to the cost func-
tion. Before explaining the regularization term in more detail,
we briefly discuss how different objectives are implemented
in AICO. In the simplest case, the task-likelihood function
in (2) can be split into separate state and a control dependent
terms, i.e.,

p(rt = 1|qt,ut) = N [qt|rt, Rt]N [ut|ht, Ht] , (3)

where, for analytical reasons, the Gaus-
sians are given in canonical form, i.e.,
N [ut|ht, Ht] ∝ exp(−1/2uTt Htut + uTt ht). Note that the
vector rt in (3) denotes the linear term for the Gaussian
distribution and must not be confused with the auxiliary
variable rt = 1 in (2) denoting a reward event. By inserting
(3) in (2) we obtain the quadratic costs,

Ct(qt,ut) = qTt Rtqt − 2rTt qt + uTt Hut − 2hTt ut . (4)

The state dependent costs, encoded by N [qt|rt, Rt], can be
defined in configuration space4, in task space5, or even in
combinations of both spaces [16].

On the algorithmic level, AICO combines forward mes-
sages and backward messages to compute the belief over
trajectories. We represent these Gaussian forward message
by N [qt|st, St], the backward message by N [qt|vt, Vt], and
the belief by N [qt|bt, Bt]. The recursive update equations
are given in [9] and in [10] where an implementation which
additionally implements control constraints (otherwise ht =
0) is given.

We can also compute the most likely action given the task
constraints. By doing so, in the case of AICO with Gaussians,
we obtain a time varying linear feedback controller

u
[n]
t = ot +Otqt , (5)

where ot is an open loop gain and Ot denotes the feedback
gain matrix (n denotes the iteration).

3For a single joint with q = [q, q̇]T , the matrix A =
(
1 τ
0 1

)
, a =

(
0
0

)
,

and B =
(
τ2

τ

)
, where τ denotes the time step.

4Reaching a goal state g∗ ∈ Q in configuration space can be encoded
by rt = Rtg∗ where the precision matrix Rt scales the importance of
different dimensions.

5Let x∗ ∈ X denote a desired end effector position and let x = f(q) be
the forward kinematics mapping and J(qt) = ∂f/∂q|q = qt its Jacobian.
We can now obtain a Gaussian task likelihood by approximating the forward
kinematics by its linearization through the Jacobian, i.e., x ≈ f(q0)+J(q−
q0). The parameters of the Gaussian are then given by rt = JTC

(
f(q0)−

x∗) and Rt = JTCJ , where the diagonal elements of the matrix C specify
the desired precision in task space.

Algorithm 1: Approximate Inference Control with Reg-
ularized Update Steps

1 Input: initial state q0, parameter α[0], threshold θ
2 Output: feedback control law o0:T−1 and O0:T−1

3 initialize q
[0]
1:T = q0, S0 = 1e10 · I, s0 = S0q0, n = 1

4 while not converged do

5 q
[n−1]
0:T = q

[n]
0:T

6 for t← 1 to T do
7 linearize model: At,at, Bt
8 compute: Ht,ht, Rt, rt
9 update: st, St, vt, Vt, bt, and Bt

10 if ‖bt − q
[n]
t ‖ > θ then

11 repeat this time step
12 t← t− 1

13 q
[n]
t = B−1

t bt

14 for t← T − 1 to 0 do
15 ..same updates as above...

16 for t← 0 to T − 1 do
17 compute feedback controller: ot, Ot
18 u

[n]
t = ot +Otqt

19 q
[n]
t+1 = Atq

[n]
t + at +Btu

[n]
t

20 n = n+ 1
21 α[n] = α[n−1]γ

22 return o0:T−1 and O0:T−1

C. Evaluation of the convergence properties of AICO

To investigate the convergence properties of AICO, we
use a simulated light-weight robot arm [22] with five joints.
The robot has to reach a desired end effector position in
Cartesian space and subsequently has to return to its initial
pose. To increase the complexity, we define a second task,
where the robot should additionally keep the roll angle of the
end effector constant. For this task, we used the cost function

Ct(qt,ut) =

{
104(xi − xt)

T (xi − xt) if t = T i

10−2uTu else
, (6)

where xi denotes the desired robot postures in task space
at times T 1 = 500 and T 2 = 103 (the planning
horizon is 2 seconds with a time step of 2ms) with
x1 = [1,−0.4, 0, 0, π/2, 0]T and x2 = [1, 0, 0, 0, π/2, 0]T .
Note that we do not assume any initial solution to initialize
the planner, solely the initial posture of the robot in con-
figuration space is used as initial ‘trajectory’. An example
movement is shown in Figure 1.

Using the pseudo-dynamics approximation of the system
dynamics, the convergence rate of the costs per iteration
of both tasks are shown in Figure 2A,B. For the simple
task in Figure 2A the inferred cost values converge fast for
all algorithms, with the standard AICO algorithm showing

Fig. 3. Reaching task with the humanoid robot Nao. The robot has to reach a desired end effector position with the right arm while maintaining balance.
Eight snapshots of the inferred movement are shown in (A). In (B), the convergence of the costs of the optimization procedure is shown, where we compare
iLQG, the standard implementation of AICO and the regularized variant. The mean and the standard deviations for 10 initial states ‘q0 are sampled from
a Gaussian with zero mean and a standard deviation of 0.05. The movement objectives for the right arm are shown in the left panel in (C). To counter
balance, the robot moves its left hand and the head.

the best performance. However, the fast convergence also
comes with the costs of a reduced robustness of the policy
update as can be seen from the results in the second
scenario illustrated in Figure 2B, where AICO is unstable
and cannot infer solutions with low costs. When we used the
analytic forward dynamic model (where the linearizations are
computed through finite differences) instead of the pseudo
dynamics model, computing the messages in AICO became
numerically unstable and no solutions could be inferred.
Therefore, the panels in Figure 2C,D do not include results
of AICO. We also evaluated the iLQG method [7] that
implements an adaptive regularization schedule and line
search to prevent divergence [8]. While the iLQG algorithm
performed well for the pseudo dynamics model, the learning
rate was automatically decreased to almost zero for the
analytical dynamics model. Our regularization method for
AICO, that we will present in the next section, considerably
outperformed both competing methods.

D. Regulating the policy updates in AICO

To regularize the policy update steps in (1), we add an
additional cost term to the task-likelihood function, i.e.,

p(rt = 1|q[n]
t ,u

[n]
t) ∝ exp{−Ct(q[n]

t ,u
[n]
t)

− α[n](q
[n]
t − q

[n−1]
t)T (q

[n]
t − q

[n−1]
t)} ,

which punishes the distance of the state trajectories of
two successive iterations of the algorithm (n denotes the
iteration). The parameter α controls the size of the update
step. For large α, the trajectory update will be conservative
as the algorithm will stay close to the previous trajectory
that has been used for linearization. For small α values, the
new trajectory will directly jump to the LQG solution given
the linearized dynamics and the approximated costs. Hence,

α is inverse proportional to the step size. The value of α
is updated after each iteration according to α[n] = α[n−1]γ.
For α[0] ≥ 1 and γ > 1, convergence is guaranteed as the
regularization term will dominate with an increasing number
of iterations.

The algorithms is listed in Algorithm 1. An interesting
feature of this algorithm is that no learning rate is needed as
α is used directly to implement a step size. In the original
formulation of AICO the learning rate is either applied to
the state update (in Line 13 in Algorithm 1) [9] or to
the feedback controller (in Line 18 in Algorithm 1) [10].
However, neither implementation can guarantee convergence
in nonlinear systems or in tasks with costs inducing a
nonlinear mapping from Q to X.

We evaluate the resulting algorithm on the same robot arm
reaching tasks. For both tasks, the Cartesian planning task
in Figure 2A,C and the extension with the additional roll
angle objective in Figure 2B,D, we evaluated AICO with the
regularization parameter α ∈ {1, 10} (we did not increase
α and γ = 1). For both models of the system dynamics,
the pseudo-dynamics approximation (shown in Figure 2A,B)
and the analytic model (illustrated in Figure 2C,D), AICO
benefits from the regularization term and the costs decay
exponentially fast. Interestingly, without “good” initial solu-
tions, the differential dynamic programming method iLQG
[8] that implements a sophisticated regularization scheme
cannot generate movement policies with low costs when
using the analytic model. This is shown in Figure 2C,D.

III. RESULTS

We evaluated the proposed planning method in simula-
tion with the humanoid robot Nao. The Nao robot has 25
degrees-of-freedom. In first experiments, we investigated the
performance of the planner with a pseudo-dynamics model

Fig. 4. Balancing task in the humanoid robot Nao. The robot should swing its hips, which is encoded by adding an offset scalar to the x-coordinate of
the center of gravity vector. In (A) 10 snapshots of the resulting movement for an increasing planning horizon are shown for α = 1. The convergence
properties of iLQG, the standard AICO and its regularized variants are shown in (B). The mean and the standard deviations for 10 initial states ‘q0 are
sampled from a Gaussian with zero mean and a standard deviation of 0.05. In (C) the x-coordinate of the center of gravity of the Nao is illustrated. The
large dots denote the objectives.

of the robot.
The humanoid had to reach for an end effector target

using the right arm while maintaining balance. In a second
experiment, Nao had to shift the x-coordinate of the center
of gravity while maintaining balance.

A. Arm reaching with a humanoid robot

The humanoid has to reach for the end effector target
x∗ = [0, 0.2, 0.06]T , where only the y- and the z- Carte-
sian coordinates are relevant. Additionally, the robot has to
maintain balance, which is implemented as deviation of the
center of gravity vectors from its initial values xCoG(t = 0),
i.e., we specify the desired center of gravity as x∗

CoG =
xCoG(t = 0). The same cost function as in the experiments
for the light weight robot arm in (6) is used. For this task,
however, only a single via-point is defined that is used for
the desired end effector target and the center of gravity, i.e.,
x1 = [x∗T ,x∗

CoG
T]T .

Only by specifying two scalars in x∗ (the scaling pa-
rameters in (6) are constants that take the values 104 or
10−2), the planning algorithm infers 50-dimensional state
trajectories (the state qt at time t encodes the joint angles
and the joint velocities, ignoring the base frame). This is
shown in Figure 3A for the proposed planning algorithm
with the regularization parameter α = 1. As in the robot
arm experiments, the Approximate Inference Control (AICO)
algorithm benefits from the regularization. As can be seen in
Figure 3B, AICO cannot infer movement solutions with low
costs without regularization.

Interestingly, to maintain balance, the humanoid utilizes its
head and its left arm for which no objectives were explicitly
specified. This effect is a feature of model-based planning
methods that consider the coupled dynamics and is best

illustrated in Figure 3C, where the end effector trajectories
of both arms and the desired target values are shown.

B. Balancing with a humanoid

In this task the humanoid has to balance on one foot by
moving its center of gravity. In this experiment, we specify
three desired via-points for the center of gravity, i.e., xi =
xiCoG with i = 1, ..., 3. The last via-point is set to the initial
center of gravity xCoG(t = 0). The first via-point has an
offset of 0.1m in the x-coordinate of xCoG(t = 0) to force
the robot to move its center of gravity to the right. The second
via point has the same negative offset in the x-direction to
exhibit a movement to the left. The planning horizon was
three seconds (T 1 = 100,T 2 = 200 and T 3 = 300 with
τ = 10ms) and the distance matrix C in (6) was scaled
with the importance weights [106, 10, 10]T for the x,y, and
z coordinate of xiCoG.

For α = 1, the resulting movement is illustrated in Figure
4A. Illustrated are 10 snapshots. Nao first moves its hip to
the right (with respect to the robot frame) and thereafter to
the left. This movement is the result of an inference problem
encoded in mainly two scalars, i.e., the offsets.

The standard implementation of AICO was not able to
infer successful balancing solutions, which is illustrated
in Figure 4B. In contrast, the regularized variant using
α ∈ {1, 10} converged after 25 iterations of the trajectory
optimization procedure. For α = 1, the x-coordinate of the
center of gravity and the implemented objectives are shown
in 4C.

C. Computational time

The computational time of the proposed planning algo-
rithm is the same as for the standard implementation of

AICO. If the algorithm is implemented in C-code it achieves
real time performance in humanoid planning problems [9].
However, for our experiments we used a Matlab implemen-
tation on a standard computer (2.4GHz, 8GB RAM), where,
e.g., the computation of the balancing movements in Figure
4 took less then 50 seconds (which includes all 25 iterations
of the optimization process). The movement duration of the
executed trajectory was three seconds.

IV. CONCLUSIONS

Stochastic Optimal Control (SOC) methods are powerful
planning methods to infer high-dimensional state and con-
trol sequences [7]–[9], [20]. For real time applications in
humanoids, efficient model predictive control variants have
been proposed [8]. However, the quality of the generated
solutions heavily depends on the initial movement policy
and on the accuracy of the approximations of the system
dynamics. Most methods use regularization to prevent nu-
merical instabilities, but typically greedily exploit the ap-
proximated system dynamics model. The resulting trajectory
update might be far from the previous trajectory used for
linearization.

As the linearizations are only locally valid, we explicitly
avoid large jumps in the trajectories by punishing large
deviations from the previous trajectory. We demonstrated in
this paper that SOC methods can greatly benefit from such
a regularization term. We used such regularization term for
the Approximate Inference Control (AICO) algorithm [9].
Due to the regularization term, which implicitly specifies the
step size of the trajectory update, no learning rate as in the
standard formulation of AICO is needed. Our experiment
shows that the used regularization term considerably outper-
forms existing SOC methods that are based on linearization,
in particular if highly non-linear system dynamics are used.

An interesting open question is if the proposed regulariza-
tion parameter facilitates a combination of SOC and model
learning approaches. Typically, inaccurate model predictions
have catastrophic effects on the numerical stability of SOC
methods. In particular, if the model predictions are poor,
the SOC method should not further explore but collect
more data around the current trajectory. Such idea could be
implemented by modeling the regularization parameter as a
function of the model uncertainty.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreements No.
270327 (CompLACS) and No. 600716 (CoDyCo). The au-
thors would like to acknowledge Guilherme Maeda, Tucker
Hermans and Serena Ivaldi for their assistance during the
preparation of this manuscript.

REFERENCES

[1] Paolo Baerlocher and Ronan Boulic. Task-priority formulations for
the kinematic control of highly redundant articulated structures. In
IROS, pages 13–17, 1998.

[2] Su Il Choi and Byung Kook Kim. Obstacle avoidance control for
redundant manipulators using collidability measure. Robotica, pages
143–151, 2000.

[3] Tomomichi Sugihara and Yoshihiko Nakamura. Whole-body coopera-
tive balancing of humanoid robot using cog jacobian. In IROS, pages
2575–2580, 2002.

[4] Michael Gienger, Herbert Janssen, and Christian Goerick. Task-
oriented whole body motion for humanoid robots. In IEEE-RAS, pages
238–244, 2005.

[5] Koichi Nishiwaki, Mamoru Kuga, Satoshi Kagami, Masayuki Inaba,
and Hirochika Inoue. Whole-body cooperative balanced motion
generation for reaching. IJHR, pages 437–457, 2005.

[6] Robert F Stengel. Stochastic optimal control: theory and application.
John Wiley & Sons, Inc., 1986.

[7] Emanuel Todorov and Weiwei Li. A generalized iterative lqg method
for locally-optimal feedback control of constrained nonlinear stochas-
tic systems. In ACC, pages 300–306, 2005.

[8] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabi-
lization of complex behaviors through online trajectory optimization.
In IROS, pages 4906–4913, 2012.

[9] Marc Toussaint. Robot trajectory optimization using approximate
inference. In ICML, pages 1049–1056, 2009.

[10] Elmar Rueckert and Gerhard Neumann. Stochastic optimal control
methods for investigating the power of morphological computation.
Artificial Life, pages 115–131, 2013.

[11] Marc Toussaint and Amos Storkey. Probabilistic inference for solving
discrete and continuous state markov decision processes. In ICML,
pages 945–952, 2006.

[12] Matthew D Hoffman, Nando D Freitas, Arnaud Doucet, and Jan R
Peters. An expectation maximization algorithm for continuous markov
decision processes with arbitrary reward. In AISTATS, pages 232–239,
2009.

[13] Marc Toussaint, Nils Plath, Tobias Lang, and Nikolay Jetchev. Inte-
grated motor control, planning, grasping and high-level reasoning in a
blocks world using probabilistic inference. In ICRA, pages 385–391,
2010.

[14] Marc Toussaint and Christian Goerick. Probabilistic inference for
structured planning in robotics. In Int. Conf. on Intelligent Robots
and Systems (IROS 2007), pages 3068–3073, 2007.

[15] Thomas Furmston and David Barber. Variational methods for rein-
forcement learning. In AISTATS, pages 241–248, 2010.

[16] Marc Toussaint and Christian Goerick. A bayesian view on motor
control and planning. In From Motor Learning to Interaction Learning
in Robots, pages 227–252. Springer, 2010.

[17] Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control
as a graphical model inference problem. JMLR, pages 159–182, 2012.

[18] J. Peters and S. Schaal. Learning operational space control. In
Proceedings of Robotics: Science and Systems, Philadelphia, USA,
August 2006.

[19] Jan Peters and Stefan Schaal. Reinforcement learning by reward-
weighted regression for operational space control. In ICML, pages
745–750, 2007.

[20] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. An approx-
imate inference approach to temporal optimization in optimal control.
In NIPS, pages 2011–2019, 2010.

[21] Jur Van Den Berg, Sachin Patil, and Ron Alterovitz. Motion planning
under uncertainty using iterative local optimization in belief space.
IJRR, pages 1263–1278, 2012.

[22] Thomas Lens, Jürgen Kunz, Oskar von Stryk, Christian Trommer, and
Andreas Karguth. Biorob-arm: A quickly deployable and intrinsically
safe, light-weight robot arm for service robotics applications. In
ISR/ROBOTIK, pages 1–6, 2010.

