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Abstract
Two seemingly contradictory theories attempt to explain how humans move to
intercept an airborne ball. One theory posits that humans predict the ball trajectory
to optimally plan future actions; the other claims that, instead of performing such
complicated computations, humans employ heuristics to reactively choose appro-
priate actions based on immediate visual feedback. In this paper, we show that
interception strategies appearing to be heuristics can be understood as computa-
tional solutions to the optimal control problem faced by a ball-catching agent acting
under uncertainty. Modeling catching as a continuous partially observable Markov
decision process and employing stochastic optimal control theory, we discover
that the four main heuristics described in the literature are optimal solutions if the
catcher has sufficient time to continuously visually track the ball. Specifically, by
varying model parameters such as noise, time to ground contact, and perceptual
latency, we show that different strategies arise under different circumstances. The
catcher’s policy switches between generating reactive and predictive behavior based
on the ratio of system to observation noise and the ratio between reaction time
and task duration. Thus, we provide a rational account of human ball-catching
behavior and a unifying explanation for seemingly contradictory theories of target
interception on the basis of stochastic optimal control.

1 Introduction
Humans exhibit impressive abilities of intercepting moving targets as exemplified in sports such as
baseball [6]. Despite the ubiquity of this visuomotor capability, explaining how humans manage to
catch flying objects is a long-standing problem in cognitive science and human motor control. What
makes this problem computationally difficult for humans are the involved perceptual uncertainties,
high sensory noise, and long action delays compared to artificial control systems and robots. Thus,
understanding action generation in human ball interception from a computational point of view
may yield important insights on human visuomotor control. Surprisingly, there is no generally
accepted model that explains empirical observations of human interception of airborne balls. McIn-
tyre et al. [15] and Hayhoe et al. [13] claim that humans employ an internal model of the physical
world to predict where the ball will hit the ground and how to catch it. Such internal models allow for
planning and potentially optimal action generation, e.g., they enable optimal catching strategies where
humans predict the interception point and move there as fast as mechanically possible to await the ball.
Clearly, there exist situations where latencies of the catching task require such strategies (e.g., when
a catcher moves the arm to receive the pitcher’s ball). By contrast, Gigerenzer & Brighton [11] argue
that the world is far too complex for sufficiently precise modeling (e.g., a catcher or an outfielder
in baseball would have to take air resistance, wind, and spin of the ball into account to predict its
trajectory). Thus, humans supposedly extract few simple but robust features that suffice for successful
execution of tasks such as catching. Here, immediate feedback is employed to guide action generation
instead of detailed modeling. Policies based on these features are called heuristics and the claim
is that humans possess a bag of such tricks, the “adaptive toolbox”. For a baseball outfielder, a
successful heuristic could be “Fix your gaze on the ball, start running, and adjust your running speed
so that the angle of gaze remains constant” [10]. Thus, at the core, finding a unifying computational
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account of the human interception of moving targets also contributes to the long-lasting debate about
the nature of human rationality [20].
In this paper, we propose that these seemingly contradictory views can be unified using a single
computational model based on a continuous partially observable Markov decison process model
(POMDP). In this model, the intercepting agent is assumed to choose optimal actions that take
uncertainty about future movement into account. This model prescribes that both the catcher and the
outfielder act optimally for their respective situation and uncertainty. We show that an outfielder agent
using a highly stochastic internal model for prediction will indeed resort to purely reactive polices
resembling established heuristics from the literature. The intuitive reason for such short-sighted
behavior being optimal is that ball predictions over sufficiently long time horizons with highly
stochastic models effectively become guessing. Similarly, our model will yield optimally planned
actions based on predictions if the uncertainty encountered by the catcher agent is low while the
latency is non-negligible in comparison to the movement duration. Moreover, we identify catching
scenarios where the only strategy to intercept the ball requires to turn away from it and run as fast as
possible. While such strategies cannot be explained by the heuristics proposed so far, the optimal
control approach yields a plausible policy exhibiting both reactive and feedforward behavior. While
other motor tasks (e.g., reaching movements [9, 22], locomotion [1]) have been explained in terms of
stochastic optimal control theory, to the best of our knowledge this paper is the first to explain ball
catching within this computational framework. We show that the four previously described empirical
heuristics are actually optimal control policies. Moreover, our approach allows predictions for settings
that cannot be explained by heuristics and have not been studied before. As catching behavior has
previously been described as a prime example of humans not following complex computations but
using simple heuristics, this study opens an important perspective on the fundamental question of
human rationality.

2 Related work
A number of heuristics have been proposed to explain how humans catch balls, see [27, 8, 16] for an
overview. We focus on three theories well-supported by experiments: Chapman’s theory, the general-
ized optic acceleration cancellation (GOAC) theory, and the linear optical trajectory (LOT) theory.

Figure 1: Well-known heuristics.

Chapman [6] considered a simple kinematic problem (see Fig-
ure 1) where the ball B follows a parabolic trajectory B0:N

while the agent C follows C0:N to intercept it. Only the position
of the agent is relevant—his gaze is always directed towards the
ball. Angle α is the elevation angle; angle γ is the bearing angle
with respect to direction C0B0 (or C2G2 which is parallel). Due
to delayed reaction, the agent starts running when the ball is
already in the air. Chapman proposed two heuristics, i.e., the
optic acceleration cancellation (OAC) that prescribes maintain-
ing d tanα/dt = const, and the constant bearing angle (CBA),
which requires γ = const. However, Chapman did not explain
how these heuristics cope with disturbances and observations.
To incorporate visual observations, McLeod et al. [16] intro-
duced the field of view of the agent into Chapman’s theory and
coupled the agent’s running velocity to the location of the ball
in the visual field. Instead of the CBA heuristic, a tracking
heuristic is employed to form the generalized optic acceleration
cancellation (GOAC) theory. This tracking heuristic allows re-
actions to uncertain observations. In our example in Figure 1,
the agent might have moved from C0 to C2 while maintaining a

constant γ. To keep fulfilling this heuristic, the ball needs to arrive at B2 at the same time. However,
if the ball is already at B′2, the agent will see it falling into the right side of his field of view and he
will speed up. Thus, the agent internally tracks the angle δ between CD and C0B0 and attempts to
adjust δ to γ.
In Chapman’s theory and the GOAC theory, the elevation angle α and the bearing angle γ are
controlled independently. As such, separate control strategies are implausible, therefore McBeath
et al. [14] proposed the linear optical trajectory (LOT) heuristic that controls both angles jointly.
LOT suggests that the catching agent runs such that the projection of the ball trajectory onto the
plane perpendicular to the direction CD remains linear, which implies that ζ = ∠E2B0F2 remains
constant. As tan ζ = tanα2/ tanβ2 can be observed from the pyramid B0F2C2E2 with the right
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angles at F2, there exist a coupling between the elevation angle α and the horizontal optical angle β
(defined as the angle between CB0 and CD), which can be used for directing the agent.
In contrast to the literature on outfielder’s catching in baseball, other strands of research in human
motor control have focused on predictive models [17] and optimality of behavior [9, 22]. Tasks
similar to the catcher’s in baseball have yielded evidence for prediction. Humans were shown to
anticipate where a tennis ball will hit the floor when thrown with a bounce [13], and humans also
appear to use an internal model of gravity to estimate time-to-contact when catching balls [15].
Optimal control theory has been used to explain reaching movements (with cost functions such
as minimum-jerk [9], minimum-torque-change [23] and minimum end-point variance [12]), motor
coordination [22], and locomotion (as minimizing metabolic energy [1])

3 Modeling ball catching under uncertainty as an optimal control problem
To parsimoniously model the catching agent, we rely on an optimal control formulation (Sec. 3.1)
where the agent is described in terms of state-transitions, observations and a cost function (Sec. 3.2).

3.1 Optimal control under uncertainty
In optimal control, the interaction of the agent with the environment is described by a stochastic
dynamic model or system (e.g., describing ball flight and odometry). The system’s state

xk+1 = f(xk,uk) + εk+1, k = 0 . . . N − 1, (1)
at the next time step k + 1 is given as a noisy function of the state xk ∈ Rn and the action uk ∈ Rm

at the current time step k. The mean state dynamics f are perturbed by zero-mean stationary white
Gaussian noise εk ∼ N (0,Q) with a constant system noise covariance matrix Q modeling the
uncertainty in the system (e.g., the uncertainty in the agent’s and ball’s positions).

The state of the system is not always fully observed (e.g., the catching agent can only observe a
ball when he looks at it), lower-dimensional than the system’s state (e.g., only ball positions can
directly be observed) and the observations are generally noisy (e.g., visuomotor noise affects ball
position estimates). Thus, at every time step k, sensory input provides a noisy lower-dimensional
measurement zk ∈ Rp of the true underlying system state xk ∈ Rn with p < n described by

zk = h(xk) + δk, k = 1 . . . N, (2)
where h is a deterministic observation function and δk ∼ N (0,Rk) is zero-mean non-stationary
white Gaussian noise with a state-dependent covariance matrix Rk = R(xk). For catching, such
state-dependency is crucial to modeling the effect of the human visual field. When the ball is
at its center, measurements are least uncertain; whereas when the ball is outside the visual field,
observations are maximally uncertain.

The agent obviously can only generate actions based on the observations collected so far, while
affecting his and the environment’s true next state. The history of observations allows forming
probability distributions over the state at different time-steps called beliefs. Taking the uncertainty
in (1) and (2) into account, the agent needs to plan and control in the belief space (i.e., the space of
probability distributions over states) rather than in the state space. We approximate belief bk about
the state of the system at time k by a Gaussian distribution with mean µk and variance Σk. For
brevity, we write bk = (µk,Σk), associating the belief with its sufficient statistics. Belief dynamics
(bk−1,uk−1, zk)→ bk is approximated by the extended Kalman filter [21, Chapter 3.3].

A cost function J can be a parsimonious description of the agent’s objective. The agent will choose
the next action by optimizing such a cost function with respect to all future actions at every time-step.
To make the resulting optimal control computations numerically tractable, future observations need
to be assumed to coincide with their most likely values (see e.g., [19, 5]). Thus, at every time step,
the agent solves a constrained nonlinear optimization problem

min
u0:N−1

J(µ0:N ,Σ0:N ;u0:N−1)

s.t. uk ∈ Ufeasible, k = 0 . . . N − 1,
µk ∈ Xfeasible, k = 0 . . . N,

(3)

which returns an optimal sequence of controls u0:N−1 minimizing the objective function J . The
agent executes the first action, obtains a new observation, and replans again; such an approach is
known as model predictive control. The policy resulting from such computations is sub-optimal
because of open-loop planning and limited time horizon, but with growing time horizon it approaches
the optimal policy. Reaction time τr can be incorporated by delaying the observations. An interesting
property of this model is that the catching agent decides on his own in an optimal way when to gather
information by looking at the ball and when to exploit already acquired knowledge depending on the
level of uncertainty he agrees to tolerate.
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3.2 A computational model of the catching agent for belief-space optimal control

Here we explain the modeling assumptions concerning states, actions, state transitions, and observa-
tions. After that we describe the cost function that the agent has to minimize.

States and actions. The state of the system x consists of the location and velocity of the ball in
3D space, the location and velocity of the catching agent in the ground plane, and the agent’s gaze
direction represented by a unit 3D vector. The agent’s actions u consist of the force applied to the
center of mass and the rate of change of the gaze direction.

State transitions and observations. Several model components are essential to faithfully describe
catching behavior. First, the state transfer is described by the damped dynamics of the agent’s center
of mass r̈c = F − λṙc, where rc = [x, y] are the agent’s Cartesian coordinates, F is the applied
force resulting from the agent’s actions, and λ is the damping coefficient. Damping ensures that the
catching agent’s velocity does not grow without bound when the maximum force is applied. The
magnitude of the maximal force and the friction coefficient are chosen to fit Usain Bolt’s sprint
data1. Second, the gaze vector’s direction d is controlled through the first derivatives of the two
angles that define it. These are the angle between d and its projection onto the xy-plane and the
angle between d’s projection onto the xy-plane and the x-axis. Such parametrization of the actions
allows for realistically fast changes of gaze direction. Third, the maximal running speed depends
on the gaze direction, e.g., running backwards is slower than running forward or even sideways.
This relationship can be incorporated through dependence of the maximal applicable force Fmax

on the direction d. It can be expressed by limiting the magnitude of the maximal applicable force
|Fmax(θ)| = F1 +F2 cos θ, where θ is the angle between F (i.e., the direction into which the catcher
accelerates) and the projection of the catcher’s gaze direction d onto the xy-plane. The parameters F1

and F2 are chosen to fit human data on forward and backwards running2. The resulting continuous
time dynamics of agent and ball are converted into discrete time state transfers using the classical
Runga-Kutta method. Fourth, the observation uncertainty depends on the state, which reflects the
fact that humans’ visual resolution falls off across the visual field with increasing distance from the
fovea. When the ball falls to the side of the agent’s field of view, the uncertainty about ball’s position
grows according to σ2

o = s(σ2
max(1 − cos Ω) + σ2

min) depending on the distance to the ball s and
the angle Ω between gaze direction d and the vector pointing from the agent towards the ball. The
parameters {σmin, σmax} control the scale of the noise. The ball is modeled as a parabolic flight
perturbed by Gaussian noise with variance σ2

b .

Cost function. The catching agent has to trade-off success (i.e., catching the ball) with effort.
In other words, he aims at maximizing the probability of catching the ball with minimal effort. A
ball is assumed to be caught if it is within reach, i.e., not further away from the catching agent
than εthreshold at the final time. Thus, the probability of catching the ball can be expressed as
Pr(|µb − µc| ≤ εthreshold), where µb and µc are the predicted positions of the ball and the agent at
the final time (i.e., parts of the belief state of the agent). Since such beliefs are modeled as Gaussians,
this probability has a unique global maximum at µb = µc and ΣN → 0+. Therefore, a final cost
Jfinal = w0‖µb − µc‖22 + w1 tr ΣN can approximate the negated log-probability of successfully
catching the ball while rendering the optimal control problem solvable. The weights w0 and w1

are set to optimally approximate this negated log-probability. The desire of the agent to be energy
efficient is encoded as a penalty on the control signals Jenergy = τ

∑N−1
k=0 u

T
kMuk with the fixed

duration τ of the discretized time steps and a diagonal weight matrixM to trade-off controls. Finally,
we add a term that penalizes agent’s uncertainty at every time step Jrunning = τw2

∑N−1
k=0 tr Σk that

encodes the agent preference of certainty over uncertainty. It appears naturally in optimal control
problems when the maximum likelihood observations assumption is relaxed [24] and captures how
final uncertainty distributes over the preceding time steps, but has to be added explicitly within
the model predictive control framework in order to account for replanning at every time step. The
complete cost function is thus given by the sum

J=Jfinal+Jrunning+Jenergy =w0‖µb−µc‖22︸ ︷︷ ︸
final position

+ w1 tr ΣN︸ ︷︷ ︸
final uncertainity

+ τw2

∑
N−1
k=0 tr Σk︸ ︷︷ ︸

running uncertainty

+ τ
∑

N−1
k=0 u

T
kMuk︸ ︷︷ ︸

total energy

that the catching agent has to minimize in order to successfully intercept the ball.
1Usain Bolt’s world record sprint data http://datagenetics.com/blog/july32013/index.html
2World records for backwards running http://www.recordholders.org/en/list/backwards-running.html
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3.3 Implementation details
To solve Problem (3), we use the covariance-free multiple shooting method [18] for trajectory
optimization [7, 3] in the belief space. Derivatives of the cost function are computed using CasADi [2].
Non-linear optimization is carried out by Ipopt [26]. L-BFGS and warm-starts used.

4 Simulated experiments and results
In this section, we present the results of two simulated scenarios and a comparative evaluation. First,
using the optimal control approach, we show that continuous tracking (where the ball always remains
in the field of view of the outfielder) naturally leads to the heuristics from literature [6, 16, 14] if
the catching agent is sufficiently fast in comparison to the ball independent of whether he is running
forward, backwards, or sideways. Subsequently, we show that more complex behavior arises when
the ball is too fast to be caught while running only sideways or backwards (e.g., as in soccer or long
passes in American football). Here, tracking is interrupted as the agent needs to turn away from the
ball to run forward. While the heuristics break, our optimal control formulation exhibits plausible
strategies similar to those employed by human catchers. Finally, we systematically study the effects
of noise and time delay onto the agent’s policy. The optimal control policies arising from our model
switch between reactive and predictive behaviors depending on uncertainty and latency.

4.1 Continuous tracking of an outfielder—heuristics hold
To directly compare our model against empirical catching data that has been described as
resulting from a heuristic, we reproduce the settings from [16] where a ball flew 15 m in
3 s and a human subject starting about 6 m away from the impact point had to intercept it.
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Figure 2: A typical simulated trajectory of a successful catch in the contin-
uous tracking scenario as encountered by the outfielder. The uncertainty in
the belief state is kept low by the agent by fixating the ball. Such empirically
observed scenarios [6, 16, 14] have led to the proposition of the heuristics
which arise naturally from our optimal control formulation.

The optimal control
policy can deal with
such situations and
yields the behavior
observed by McLeod
et al. [16]. In
fact, even when dou-
bling all distances
the reactive control
policy exhibits all
four major heuristics
(OAC, GOAC, CBA
and LOT) with ap-
proximately the same
precision as in the
original human exper-
iments. Figure 2

shows a typical simulated catch viewed from above. The ball and the agent’s true trajectories
are depicted in green (note that the ball is frequently hidden behind the belief state trajectory). The
agent’s observations and the mean belief trajectory of the ball are represented by magenta crosses and
a magenta line, respectively. The belief uncertainty is indicated by the cyan ellipsoids that capture
95% of the probability mass. The gaze vectors of the agent are shown as red arrows. The catching
agent starts sufficiently close to the interception point to continuously visually track the ball, therefore
he is able to efficiently reduce his uncertainty on the ball’s position and successfully intercept it
while keeping it in sight. Note that the agent does not follow a straight trajectory but a curved one in
agreement with human experiments [16].

Figure 3 shows plots of the relevant angles over time to compare the behavior exhibited by human
catchers to the optimal catching policy. The tangent of the elevation angle tanα grows linearly
with time, as predicted by the optic acceleration cancellation heuristic (OAC). The bearing angle
γ remains constant (within a 5 deg margin) as predicted by the constant bearing angle heuristic
(CBA). The rotation angle δ oscillates around γ as predicted by the generalized optic acceleration
cancellation theory (GOAC). The tangent of the horizontal optical angle tanβ is proportional to
tanα, as predicted by the linear optical trajectory theory (LOT). The small oscillations in the rotation
angle and in the horizontal optical angle are due to reaction delay and uncertainty; they are also
predicted by GOAC and LOT. Thus, in this well-studied case, the model produces an optimal policy
that exhibits behavior which is fully in accordance with the heuristics.
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Figure 3: During simulations of successful catches for the continuous tracking scenario encountered
by the outfielder (shown in Figure 2), the policies resulting from our optimal control formulation
always fulfill the heuristics (OAC, GOAC, CBA, and LOT) from literature with approximately the
same precision as in the original human experiments.

4.2 Interrupted tracking during long passes—heuristics break but prediction is required
The competing theory to the heuristics claims that a predictive internal model allows humans to
intercept the ball [15, 13]. Brancazio [4] points out that "the best outfielders can even turn their
backs to the ball, run to the landing point, and then turn and wait for the ball to arrive". Similar
behavior is observed in football and american football during long passes. To see whether predictions
become necessary, we reproduced situations where the agent cannot catch the ball when acting purely
reactively. For example, if the running time to interception point when running backwards (i.e.,
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Figure 4: An interception plan that leads to successful catch despite
violating heuristics. Here, the agent would not be able to reach the
interception point in time while running backwards and, thus, has
to turn forward to run faster. The resulting optimal control policy
relies on beliefs on the future generated by an internal model.

the ratio between the distance to
the interception point divided by
the maximal backwards running
velocity) is substantially higher
than the flight time of the ball,
no backwards running strategy
will be successful. Thus, by
varying the initial conditions for
the catching agent and the ball,
new scenarios can be generated
using our optimal control model.
The agent’s control policy can
be tested on reliance on predic-
tions as it is available in form
of a computational model, i.e.,
if the computed policy makes
use of the belief states on future
time steps, the agent clearly em-
ploys an internal model to pre-

dict the interception point. By choosing appropriate initial conditions for the ball and the agent,
we can pursue such scenarios. For example, if the ball flies over the agent’s head, he has to turn
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Figure 5: For initial conditions (positions of the ball and the agent) which do not allow the agent
to reach the interception point by running backwards or sideways, the optimal policy will include
running forward with maximal velocity (as shown in Figure 4). In this case, the agent cannot
continuously visually track the ball and, expectedly, the heuristics do not hold.

away from it for a moment in order to gain speed by running forward, instead of running backwards
or sideways and looking at the ball all the time. Figure 4 shows such an interception plan where
the agent decides to initially speed up and, when sufficiently close, turn around and track the ball
while running sideways. Notice that the future belief uncertainty (i.e., the posterior uncertainty Σ
returned by the extended Kalman filter), represented by red ellipses, grows when the catcher is not
looking at the ball and shrinks otherwise. The prior uncertainty (obtained by integrating out future
observations), shown in yellow, on the other hand, grows towards the end of the trajectory because
future observations are not available at planning time. Similar to [5, 25], we can show for our model
predictive control law that the sum of prior and posterior uncertainties (shown as green circles)
equals the total system uncertainty obtained by propagating the belief state into the future without
incorporating future observations. Figure 5 shows that the heuristics fail to explain this catch—even
in the final time steps where the catching agent is tracking the ball to intercept it. OAC deviates from
linearity, CBA is not constant, the tracking heuristic wildly deviates from the prediction, and LOT
is highly non-linear. GOAC and LOT are affected more dramatically because they directly depend
on the catcher’s gaze, in contrast to OAC and CBA. Since the heuristics were not meant to describe
such situations, they predictably do not hold. Only an internal model can explain the reliance of the
optimal policy on the future belief states.

4.3 Switching behaviors when uncertainty and reaction time are varied
The previous experiment has pointed us towards policies that switch between predictive subpolicies
based on internal models and reactive policies based on current observations. To systematically
study what behaviors arise, we use the scenario from Section 4.2 and vary two essential model
parameters: system to observation noise ratio η1 = log σ2

b/σ
2
o and reaction time to task duration

ratio η2 = τr/T , where T is the duration of the ball flight. The system to observation noise
ratio effectively determines whether predictions based on the internal model of the dynamics are
sufficiently trustworthy for (partially) open-loop behavior or whether reactive control based on
the observations of the current state of the system should be preferred. The reaction time to task
duration ratio sets the time scale of the problem. For example, an outfielder in baseball may have
about 3 s to catch a ball and his reaction delay of about 200 ms is negligible, whereas a catcher in
baseball often has to act within a fraction of a second, and, thus, the reaction latency becomes crucial.
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Figure 6: Switches between reactive and feedforward
policies are determined by uncertainties and latency.

We run the experiment at different noise lev-
els and time delays and average the results
over 10 trials. In all cases, the agent starts at
the point (20, 5) looking towards the origin,
while the ball flies from the origin towards the
point (30, 15) in 3 s. All parameters are kept
fixed apart from the reaction time and system
noise; in particular, task duration and observa-
tion noise are kept fixed. Figure 6 shows how
the agent’s policy depends on the parameters.
Boundaries correspond to contour lines of the
function that equals number of times the agent
turns towards the ball. We count turns by an-
alyzing trajectories for gaze direction changes
and reduction of uncertainty (e.g., in Figure 4
the agent turns once towards the ball). When
reaction delays are long and predictions are

reliable, the agent turns towards the interception points and runs as fast as he can (purely predictive
strategies; lower right corner in Figure 6). When predictions are not sufficiently trustworthy, the
agent has to switch multiple times between a reactive policy to gather information and a predictive
feedforward strategy to successfully fulfill the task (upper left corner). When reaction time and
system noise become sufficiently large, the agent fails to intercept the ball (upper right grayed out
area). Thus, seemingly substantially different behaviors can be explained by means of a single model.
Note that in this figure a purely reactive strategy (as required for only using the heuristics) is not
possible. However, if different initial conditions enabling the purely reactive strategy are used, the
upper left corner is dominated by the purely reactive strategy.

5 Discussion and conclusion
We have presented a computational model of human interception of a moving target, such as an
airborne ball, in form of a continuous state-action partially observable Markov decision problem.
Depending on initial conditions, the optimal control solver either generates continuously tracking
behavior or dictates the catching agent to turn away from the ball in order to speed up. Interception
trajectories in the first case turn out to demonstrate all properties that were previously taken as
evidence that humans avoid complex computations by employing simple heuristics. In the second
case, we have shown that different regimes of switches between reactive and predictive behavior
arise depending on relative uncertainty and latency. When the agent has sufficient time to gather
observations (bottom-left in Figure 6), he turns towards the ball as soon as possible and continuously
tracks it till the end (e.g., outfielder in baseball acts in this regime). If he is confident in the interception
point prediction but the task duration is so short relative to the latency that he does not have sufficient
time to gather observations (bottom-right), he will rely entirely on the internal model (e.g., catcher
in baseball may act in this regime). If the agent’s interception point prediction is rather uncertain
(e.g., due to system noise), the agent will gather observations more often regardless of time delays.
Conclusions regarding the trade-off between reactive and predictive behaviors may well generalize
beyond ball catching to various motor skills. Assuming an agent has an internal model of a task and
gets noisy delayed partial observations, he has to tolerate a certain level of uncertainty; if moreover
the agent has a limited time to perform the task, he is compelled to act based on prediction instead
of observations. As our optimal control policy can explain both reactive heuristics and predictive
feedforward strategies, as well as switches between these two kinds of subpolicies, it can be viewed
as a unifying explanation for the two seemingly contradictory theories of target interception.

In this paper, we have provided a computational level explanation for a range of observed human
behaviors in ball catching. Importantly, while previous interpretations of whether human catching
behavior is the result of complex computations or the result of simple heuristics have been inconclu-
sive, here we have demonstrated that what looks like simple rules of thumb from a bag of tricks is
actually the optimal solution to a continuous partially observable Markov decision problem. This
result therefore fundamentally contributes to our understanding of human rationality.
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