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ABSTRACT III

Abstract

How do humans run to catch a ball? Two explanations have been proposed in the

literature. One view holds that people predict the trajectory of the ball ahead of time

and plan their future actions accordingly; thus, “at some subconscious level, something

functionally equivalent to the mathematical calculations is going on” [5]. This is the

model-based approach, and it suggests that people use predictive catching strategies.

The competing heuristic approach, on the contrary, prescribes purely reactive strate-

gies; it says that people “ignore all causal variables necessary to compute the trajectory

of the ball – the initial distance, velocity, angle, air resistance, speed and direction of

wind, and spin . . . by paying attention to only one variable” [7].

In this work, we demonstrate in computer simulation that if the model-based view is

correct and humans indeed have an internal (inherently uncertain) model of the world,

and assuming they act optimally (maximizing the probability of catching the ball) un-

der biological constraints (limited maximum velocity, finite field of view), the resultant

interception trajectories obey heuristics. Thus, both theories are shown to be com-

patible with each other; moreover, the model-based view turns out to be more general

because it can explain catches to which heuristics do not apply. Lastly, we show that

both reactive and predictive behaviors naturally emerge from the same computation,

with the switch between them being defined by two task specific parameters: model to

observation noise ratio and reaction time to task duration ratio.



IV MATHEMATICAL NOTATION

Mathematical notation

x, y, z Coordinates

ẋ, ẍ First and second time derivatives

g, π Standard gravity and ratio of a circle’s circumference to its diameter

Fc, F, θ 2D vector of force, its module, and direction w.r.t. the x-axis

d, dxy Gaze direction (3D unit vector) and its projection onto the xy-plane

φ, ψ, ωφ, ωψ Angles that define d and corresponding angular velocities

µ Damping coefficient in the model of the catcher

f(x(t), u(t)) Continuous dynamics

f(xk, uk) Discrete dynamics

T, τ, N Task duration, discretization time step, and number of steps

t, k Continuous time and discrete time

zk, h(xk) Observation at time k and observation function

ε, Q; δ, R System and observation noises with their covariances

N (µ, Σ) Normal distribution with mean µ and covariance Σ

σ2 Observation variance of the ball position

r; Ω Vector between the catcher and the ball; angle between d and r

b Belief or its representation through sufficient statistics

J, w0, w1w2 Cost function and adjustable weights

I Identity matrix
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Chapter 1

Introduction

In the late 1950s, while studying decision-making, Nobel laureate Herbert A. Simon,

who coined the term bounded rationality, pointed out that oftentimes “people seek

solutions or accept choices or judgments that are ’good enough’ for their purposes” [18],

rather than seeking optimal solutions, simply because real-world problems are too

complex to consider all possible outcomes and make truly rational decisions. This idea

was further developed by Amos Tversky and Daniel Kahneman in the 1970s in their

study of heuristics and biases in human decision making [20]. In the late 1990s, Gerd

Gigerenzer went even further to propose that heuristics are superior to optimization

and “less information, computation, and time can in fact improve accuracy” [7]; thus, in

the course of years, heuristics transcended from being a mere consequence of bounded

rationality to being the main cause of human actions. Although this view is not

universally accepted [7], it dominates in certain particular cases, such as catching a

flying ball, for example, where an alternative optimization based explanation has not

been offered.

Several heuristics have been proposed to explain how an outfielder catches a base-

ball [4][12][14]. Despite being different, they all have been experimentally confirmed,

which suggests that there is a common unifying cause. A peculiar property of heuristics

is that they are model-free, meaning that they do not rely on the prediction of the ball

trajectory. There is, however, strong evidence that humans do have a model of grav-
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ity [13] and they do predict future ball positions when catching a tennis ball [8]. How

can that be then that catching a tennis ball, humans use predictive models, and when

catching a baseball, they rely on heuristics? Is there anything special about catching

a baseball?

We show that there is no paradox here: heuristics indeed hold in baseball catching, but

they are a consequence of model-based optimal behavior. Our contribution is in framing

the problem of ball catching as a constrained optimization problem under uncertainty;

the catcher tries to intercept the ball by continuously predicting the ball trajectory

and adjusting his actions accordingly, while for an external observer he may seem to

be following heuristics. Current work continues research started in [10]. This view

explains why there can exist many ball catching heuristics, which are just attributes

of a catch, not the cause; and it shows that there is no fundamental difference between

catching a tennis ball and a baseball, which are instances of the same problem with

slightly different ball models.
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Chapter 2

Computational model

This chapter introduces a mathematical model of the system consisting of a ball and

a catcher which is meant to reflect the human behavior when catching a baseball.

First, we develop a noise-free dynamical model capturing relevant physical properties

of the ball and the catcher, which is then extended with a noise model reflecting

the imperfections of human sensory system and predictive capabilities; second, we

formulate the problem in the belief space to enable planning under uncertainty; and

third, we describe an optimization based control scheme that is meant to mirror the

thought process of the human when running to catch the ball.

2.1 Model specification

2.1.1 Model of the ball

The ball is modeled as a point mass in a uniform gravitational field. Aerodynamic

forces are neglected, as they have only a small percentage effect on a trajectory of a

baseball, according to [4]. State of the ball is completely defined by its coordinate and

velocity:

xb =
[
xb yb zb ẋb ẏb żb

]T
. (2.1)
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Equations of motion read:

ẍb = 0,

ÿb = 0,

z̈b = −g,

(2.2)

where g ≈ 9.81 m/s2 is the standard gravity. Trajectories of the ball are parabolic,

unless the initial velocity is collinear with the z-axis. Figure 2.1 shows an example

trjectory.

Figure 2.1: A simple kinematic ball model.

2.1.2 Model of the catcher

The catcher moves in xy-plane by applying force to himself. In figure 2.2, the force is

denoted by Fc and the projection of the gaze direction d onto xy-plane by dxy.

Figure 2.2: The catcher is a 2D point mass with a 3D gaze vector attached to it.

The catcher controls the module of the force F = |Fc|, direction θ in which it is applied,

and gaze direction d (through two angles φ and ψ schematically shown in figure 2.3).

The state and control vectors are defined as follows:
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Figure 2.3: The gaze direction d is defined by the angles φ and ψ.

xc =
[
xc yc ẋc ẏc φ ψ

]T
, (2.3)

u =
[
F θ ωφ ωψ

]T
. (2.4)

Equations of motion are given by:

ẍc = F cos(φ+ θ)− µẋc,

ÿc = F sin(φ+ θ)− µẏc,

φ̇ = ωφ,

ψ̇ = ωψ.

(2.5)

Why this model?

This particular model with friction µ was chosen because it limits maximum velocity.

To fit the model parameters F and µ, we used data from Usain Bolt’s record sprint

at the 2008 Olympic Games in Beijing [6]; there, during the 100 m dash, he reaches

velocity of 12 m/s in 3 s and maintains it till the end. Only the ratio F/µ is physically

important because we are free to choose the mass of the catcher. In all experiments,

Fmax = 10 N/kg and µ = 10/12 s−1, so that the maximum velocity is limited by 12 m/s.

We chose to control angles defining the gaze direction through the first derivatives

because it simplifies computations and allows modeling of quick turns with relatively

large discretization time steps while also reflecting the physical fact that turning the

head is faster and easier than gaining momentum.
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Box constraints

As already pointed out, in order to stay realistic, one has to bound the maximum

applicable force. Other controls should be limited as well:

−π ≤ θ ≤ π,

−2π ≤ ωφ ≤ 2π,

−2π ≤ ωψ ≤ 2π.

(2.6)

Constraints of this type are called box constraints. The first inequality constrains

the direction of the force θ to lie within an interval covering 2π, which does not really

restrict the solution, but sufficiently simplifies optimization. The latter two inequalities

forbid the catcher to turn too quickly.

Not only controls, but also states need to be restricted. Namely, the catcher is not

allowed to look directly above him to avoid singularity, and looking below the horizon

is excluded as irrelevant for ball catching. So, the gaze vector is required to lie on the

upper hemisphere with a little hole in the middle:

0 ≤ ψ < π/2. (2.7)

In experiments, the upper bound is set a little bit smaller than π/2 to facilitate efficient

optimization.

Running forward is faster than backwards

Humans run forward faster than backwards. We express it in the model by making the

maximum force state-dependent:

0 ≤ F ≤ F1 + F2 cos θ. (2.8)

The right-hand side smoothly interpolates the maximum force between F1 − F2 and

F1 + F2 for any angle θ, so that running sideways is also allowed. Note that any other

suitable function of θ could have been used instead of cos θ. This particular choice

of interpolating function is motivated by the fact that small deviations in the angle θ
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Figure 2.4: Graph of cos θ for |θ| ≤ π.

about 0 and ±π should have small effects on the maximum force, because turning the

head a little bit when running forward does not affect the velocity too much. Since

cos θ is smooth and quadratic in those regions, it serves the purpose well. Figure 2.4

shows the interpolating function. Running forward corresponds to θ = 0, and running

backwards corresponds to |θ| = π.

One question still remains open; namely, “How to choose F1 and F2?” We set the

maximum force F1 + F2 to match the maximum attainable forward running velocity,

as before. The lower bound F1 − F2 is set, in its turn, to match the maximum at-

tainable backward running velocity, which we get from the book of backward running

records [17]. This choice yields numerical values F1 = 7.5 N/kg and F2 = 2.5 N/kg.

2.1.3 Discrete dynamics

What we have developed so far is a dynamical model of a ball and a catcher, which

can be represented by the first order differential equation:

ẋ(t) = f(x(t), u(t)), (2.9)

where vector x = [xb; xc] holds the state of the ball and the catcher, and the nonlinear

function f represents the right-hand side of the dynamical equations (2.2) and (2.5).

As the next step, we discretize the continuous dynamics (2.9):
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1. Discrete time. Let the task duration T be fixed, and let the discretization time

step be τ = T/N , where N is the number of time intervals. Discretization enables

us to work with vectors xk, k = 0, 1, . . . , N , instead of functions x(t), t ∈ [0, T ].

2. Discrete controls. We approximate u(t) by a piecewise constant function that

equals uk on the k-th time interval, as is commonly done within the multiple

shooting framework.

3. Discrete states. Under above stated assumptions, a discrete equivalent of the

continuous dynamics (2.9) can be written as:

xk+1 = f(xk, uk), k = 0, 1, . . . , N − 1, (2.10)

with f being an integrator function (we use different styles to discern continuous

dynamics f from discrete dynamics f , which should not lead to confusion, since

only discrete dynamics is used in the following). We use the 4-th order explicit

Runge-Kutta method with 10 intermediate points to integrate (2.9) on each time

interval. Simpler integration schemes diverge for big time steps (simulations run

with τ = 0.1 s), while more complicated integrators, such as CVODES, require a

lot of computation without much gain in accuracy on the relatively simple inte-

gration problem at hand. Therefore, the intermediate solution has been favored.

2.1.4 Observation model

This section introduces an observation model that glues the models of the ball and

catcher together by allowing the catcher to “look” at the ball.

An observation zk at time k ∈ {0, 1, . . . , N} is a function of state zk = h(xk). We

assume that the catcher gets to observe the position of the ball, his own position and

the gaze direction:

z =
[
xb yb zb xc yc φ ψ

]
(2.11)

As can be easily seen, this observation model allows the catcher to “see” the ball even
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if it is behind him, which is, of course, unacceptable. This problem is fixed in the next

session, where the field of view is implicitly modeled through state-dependent noise.

2.1.5 Noise model

The notion of uncertainty is crucial for describing human ball catching behavior. The

catcher has a model of the world which lets him predict future ball positions given

his current knowledge. But neither the model nor the observations are perfect, which

means predictions get worse, the further into the future the catcher tries to predict.

To model these effects, we introduce uncertainty in both dynamics and observations:

xk = f(xk−1, uk−1) + εk, εk ∼ N (0, Q), (2.12)

zk = h(xk) + δk, δk ∼ N (0,R(xk)). (2.13)

The essential point here is that the observation noise is state-dependent (marked in

bold). By shaping the matrix-valued function R(xk), we can model the field of view:

if the ball is in the center of the catcher’s field of view, which coincides with the gaze

direction, he gets very good observations; on the other hand, if the ball is outside of the

field of view, he gets no observations at all, or very noisy observations. We also assume

that the noise is distance-dependent: the closer the ball, the better the observations.

Variance in observations of the ball position is then given by:

σ2 = |r|(σ2
max(1− cos Ω) + σ2

min), (2.14)

Figure 2.5: The catcher is looking in the direction d, while the ball is |r|m away
from him. The amount of uncertainty in observations depends on the angle Ω and the
distance |r| to the ball.
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where r is the vector from the catcher to the ball, Ω is the angle between the gaze

direction and vector r, and {σmin, σmax} are two adjustable parameters. If the catcher

is looking at the ball (cos Ω = 1), the noise is minimal. If the ball is exactly behind

the catcher (cos Ω = −1), the noise is maximal. In our experiments σ2
min = 0.01 and

σ2
max = 10. The observation covariance matrix is R = diag {σ2, σ2, σ2, 0, 0, 0, 0}. The

system noise covariance matrix is defined as a block-diagonal matrix with isotropic

blocks for the ball and the catcher Q = diag {σ2
b16, σ

2
c16} (1n is a vector of n ones),

σ2
b = 1× 10−3 and σ2

c = 1× 10−5.

Model vs observations

As we shall see, behavior of the catcher greatly depends on the system to observation

noise ratio σ2
b/σ

2. This ratio defines what the catcher believes more: his model of

the world or observations. When the ratio is small, the catcher trusts his model and

reluctantly follows the observations. When the ratio is big, the catcher abandons the

model and relies on the observations.

2.2 Belief space formulation

Now, after introducing uncertainty into the model, we have to revise our definition of

state. It is, indeed, no longer enough to only specify the position of the ball, but one

has to additionally specify the uncertainty about the ball position.

2.2.1 Belief dynamics

Belief is a distribution over states. We consider Gaussian beliefs, which can be rep-

resented by a mean vector and a covariance matrix, bk = (µk,Σk). Thus, the mean is

associated with the most likely state of the system, and the covariance matrix gives

the uncertainty about that state.

Due to nonlinearity of the dynamics and observation function, propagation of the
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belief is intractable and does not preserve Gaussianity; therefore, we are forced to

resort to approximate filtering techniques. We chose to use the extended Kalman filter

because it gives the belief propagation step in closed form which can be automatically

differentiated with respect to the covariance matrix; the update rule of the Kalman

filter (µk−1,Σk−1, uk−1, zk)→ (µk,Σk) is given by [19]:

[prediction]

µ̄k = f(µk−1, uk−1),

Σ̄k = Ak−1Σk−1A
T
k−1 +Qk,

Kk = Σ̄kC
T
k (CkΣ̄kC

T
k +Rk)

−1,

[correction]
µk = µ̄k +Kk(zk − h(µ̄k)),

Σk = (I −KkCk)Σ̄k,

(2.15)

where Ak−1 = ∂f
∂x

∣∣∣
µk−1

, Ck = ∂h
∂x

∣∣∣
µ̄k

, and I is the identity matrix. System noise is

small and fixed Qk ≡ Q, while the observation noise is state-dependent Rk = R(µ̄k);

notice that R(µ̄k) 6= R(xk), which means we can only use predicted observation noise

for planning because xk is not directly accessible. Equations (2.15) define the belief

dynamics, which is stochastic µk = µ̄k+ξk due to the dependence on the observation zk

(marked in bold); the innovation term is Gaussian distributed ξk ∼ N (0, KkCkΣ̄k).

2.2.2 Three types of uncertainty

Once we have the belief dynamics, we can predict future states of the system by forward

simulating the dynamics. When reasoning about a future belief state of the system,

three types of uncertainty should be discerned [3]:

1. System uncertainty is the uncertainty about the state, when observations are not

available in principle.

2. A posteriori uncertainty is the uncertainty after observations will be incorporated;

it is what the Kalman filter outputs.

3. A priori uncertainty is the uncertainty before the observations are incorporated;

it is different from the system uncertainty: in order to predict a future belief,
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it integrates out the observations which have not yet been acquired instead of

ignoring them, as was the case with the system uncertainty.

A more detailed analysis of uncertainties is presented in Appendix (A.1), where, among

other things, it is shown that system uncertainty = a priori + a posteriori.

2.2.3 Cost function

The goal of the catcher is to catch the ball; more precisely, to maximize the probability

of catching it, because not every attempt is guaranteed to be successful. We assume

the catch is successful if the ball is less than 0.5 m away from the catcher at the final

time; we do not model the last phase of the catch during which the catcher relies on

hand-eye coordination.

In Appendix (A.2), we show that maximization of the probability of catching the ball

can be encoded by the following cost function, which is to be minimized:

J = w0‖µbN − µcN‖2
2 [final position] (2.16a)

+ w1 tr ΣN [final uncertainty] (2.16b)

+ τ

N−1∑
k=0

uTkRuk [total energy] (2.16c)

+ τw2

N−1∑
k=0

tr Σk [running uncertainty] (2.16d)

Here, w0, w1, w2 and R are adjustable weights; µbN and µcN are the belief positions of

the ball and the catcher at the final time; τ is the discretization time step. Numerical

values are τ = 0.1, w0 = w1 = 1000, w2 = 100, R = diag {10, 1, 1, 0.1}. In words, this

cost functions says, “Be at the interception point with minimal uncertainty about the

system and spend as little energy as possible.”
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2.3 Belief space planning

In this section, we finally describe how the catcher chooses his actions. At every time

step he predicts the future based on his current knowledge and decides what course

of actions to take in order to intercept the ball; then he executes the first action, gets

a new observation, and repeats the cycle. The key problem here is planning, and we

solve by trajectory optimization [15].

2.3.1 Model predictive control

In order to perform planning under stochastic dynamics (2.15), we assume that future

observations are maximum likelihood observations, i.e. zk = h(µ̄k). This assumption

makes dynamics deterministic [16]:

µk = f(µk−1, uk−1),

Σk = (I −KkCk)Σ̄k,
(2.17)

enabling the use of standard deterministic planning and control tools.

Dynamics (2.17), cost function (2.16), and constraints (2.6-2.8) fully specify an opti-

mization problem, solution of which yields an open-loop sequence of controls u0:N−1.

The catcher executes the first action from that sequence, incorporates the new obser-

vation and repeats the cycle. This strategy – planning for N time steps, executing the

first action, and replanning again – is known as model predictive control [11].

Reaction time

Amount of time it takes a sensory stimulus to trigger a behavioral response is called

reaction time. For college-age individuals, it takes on average 200 ms to react to a visual

stimulus [9]. We incorporate this reaction time into our model by delaying incoming

observations. The catcher has to compensate the delay by forward simulating his

internal dynamical model.
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2.3.2 Covariance-free trajectory optimization

When solving the above specified optimization problem, standard methods have to be

modified due to inclusion of covariance matrices into the state of the system. Three

formulations of the optimization problem are possible:

1. Shooting (optimize over controls only). Every future state depends on the initial

state and applied sequence of controls. Thus, everything depends on the controls

only. This formulation contains the least number of optimization variables, but,

unfortunately, suffers from sensitivity problems.

2. Partial collocation (optimize over controls and mean states). This is the method

used in this work. It treats mean states as optimization variables, while imposing

dynamics as a constraint. Covariance matrices enter the problem only through

the cost function.

3. Full collocation (optimize over controls, mean states, and covariances). This

is a straightforward extension of the standard collocation method to the case

when state includes a covariance matrix. This method has several drawbacks.

First, dimensionality of the optimization problem dramatically increases because

of additional O(n2) optimization variables, where n is the dimensionality of the

mean state µ. Second, special care must be taken to preserve positive semi-

definiteness of covariance matrices in the course of optimization. Third, nonlinear

matrix dynamics (2.17), involving, among other things, matrix inversion, has to

be imposed as a constraint.

The first two approaches are called covariance-free trajectory optimization methods,

because they treat covariance matrices as dependent variables and not as free parame-

ters, thus keeping the computational burden low. The partial collocation method has

been recently shown to be the fastest among the three and to deliver state-of-the-art

performance [15], therefore it was chosen to be used in this work.
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2.3.3 Tools for covariance-free trajectory optimization

We rely on two key advances in numerical optimal control – (i) automatic differentiation

to accurately compute gradients of the nonlinear objective, and (ii) state-of-the-art

interior point optimizers to efficiently solve large-scale optimization problems.

Automatic differentiation

For the partial collocation method, the objective J = J(µ0:N ,Σ0, u0:N−1) is a function of

the initial uncertainty Σ0, sequence of mean states µ0:N and sequence of controls u0:N−1.

The explicit representation (2.16), however, also depends on the future uncertainties

Σ1:N , which greatly complicates the computation of the gradient, because these uncer-

tainties are recursive functions of the initial uncertainty. The gradient, nevertheless,

can be computed by automatic differentiation, a technique for evaluating derivatives of

computer represented functions that can deliver directional derivatives up to machine

precision. Note that automatic differentiation is different from symbolic differentia-

tion, which directly operates on functions represented in a special-purpose symbolic

language. Several computational tools have been developed to facilitate automatic dif-

ferentiation; we use CasADi [1] because it supports matrix-valued atomic operations

and tightly integrates state-of-the-art nonlinear optimizers.

Interior point optimizer (IPOPT)

We compute gradients using automatic differentiation and pass them to IPOPT [2],

which implements a primal-dual interior point method. We use the Broyden-Fletcher-

Goldfarb-Shanno update within IPOPT in order to avoid prohibitively expensive com-

putation of the exact Hessian. Due to nonlinear nature of the objective function, good

initialization plays a crucial role in optimization; therefore, at every time step, we first

solve a simpler problem in the state space which does not include covariance matrices

but directly incurs a small cost for not looking at the ball, and then use this solution

as initialization for the full problem in the belief space.
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Chapter 3

Results

In this chapter, we present results of simulation experiments. We show that the pro-

posed model generates behaviors which agree with heuristics when they are applicable

(the ball is in the field of view of the catcher), and produces plausible behaviors even

when heuristics are not applicable (the ball is outside of the field of view of the catcher).

In the latter case, the catcher has to turn away from the ball for a short period of time

in order to gain speed; he compensates for the absence of observations by forward

simulating the internal model.

We explore effects of varying model parameters and demonstrate that qualitatively

different behaviors emerge depending on how much the catcher relies on the internal

model and how long is the reaction time compared to the task duration. Results can be

best illustrated on extreme cases. In baseball, the catcher has quite a good model of the

ball, and reaction delay (about 200 ms) is small compared to the task duration (about

3 s); therefore, the catcher can get many observations before he catches the ball, which

means, he uses a feedback strategy. Even if the actual trajectory of the ball deviates

from the initial prediction – due to wind change or effects of the spin – the catcher is

able to successfully intercept the ball because he continuously gets observations and

can adjust his prediction on the go. Another extreme case is table tennis. The ball flies

so fast that players have to predict where it will hit the table even before the opponent

hits the ball in order to be able to intercept it. Professionals take into account pose of
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the opponent and current game situation to perform such estimation; reaction delay

in this case is big compared to the task duration, which forces players to use open-loop

strategies and rely on predictive models.

We conclude that the view that humans rely on internal models and act optimally under

natural constraints can explain how humans catch balls in games such as baseball.

Heuristics may be regarded as necessary conditions of optimality for a restricted class

of problems, when the catcher has enough time to continuously tracks the ball. The

optimization-based approach is more general than the heuristic approach because it

can be uniformly applied to any problem by describing the model and specifying the

objective, while heuristics have to be independently discovered for every particular

case. So, hitting a ball in table tennis appears to be a completely unrelated problem to

catching a ball in cricket from the point of view of heuristics. Within the optimization

framework, however, they are both related and differ only in the objective and the

model. This generality may be key to understanding how humans can perform many

different tasks using the same kind of computation.

3.1 Comparison against heuristics

In this section, three catching scenarios are presented – (i) successful catch, in which

case all heuristics hold; (ii) failed catch, in which case heuristics do not hold; and

(iii) unexplainable by heuristics successful catch, in which case heuristics do not hold,

but the catcher nevertheless successfully intercepts the ball.

We consider four heuristics that have been proposed in the literature to explain how a

fielder catches a baseball. They can be divided into two groups: point mass based and

gaze based. Point mass based heuristics consider the catcher as a point mass, while gaze

based heuristics augment the model by explicitly including the catcher’s gaze and an-

alyzing how the ball is positioned within the catcher’s field of view. Optic acceleration

cancellation (OAC) [4] and constant bearing angle (CBA) [4] heuristics belong to the

first category, while generalized optic acceleration cancellation (GOAC) [14] and linear
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optical trajectory (LOT) [12] belong to the second category. GOAC, in fact, consists

of OAC and one additional gaze-based heuristic, so when we refer to GOAC, we refer

to that extra heuristic. This convention simplifies comparison with other heuristics.

Not all heuristics are independent [14]. OAC, for example, prescribes only how the

catcher should move when he is in the plane spanned by the ball trajectory (it assumes

a parabolic trajectory). It is not sufficient on its own, but has to be complemented

by a heuristic that would tell the catcher how to move in the horizontal plane. Two

alternatives have been proposed in the literature: CBA and GOAC. So, there are two

possible combinations: OAC+CBA and OAC+GOAC (more correctly would be to say

simply GOAC, as it already includes OAC). LOT, in contrast, is sufficient on its own.

It should be pointed out that since all heuristics are constructively derived from ge-

ometric considerations, they present sufficient conditions for a successful catch; thus,

if a catcher follows OAC+CBA, OAC+GOAC, or LOT, he is guaranteed to be at the

interception point at the right time. All these combinations have been reported to hold

in human experiments.

3.1.1 Successful catch

We reproduce the settings from the experimental study [14], which allows us to compare

simulation results with real human data. In that study, the ball was thrown from the

origin and landed after 3 s at the distance of 15 m away from the origin. Four different

initial positions of the catcher were reported, all of which lie within a circle of radius

6 m from the interception point. In the present work, we double the distances in

order to enhance graphical representation of the results. All conclusions hold without

restriction in the original settings from [14] as well. Along with the simulation results,

we also report initial interception plans of the catcher in order demonstrate effects of

the system and observation noises on interception trajectories.
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Initial plan

Figure 3.1 shows a typical catch, where the catcher has enough time to get to the

interception point without rushing. He plans to continuously track the ball in order to

reduce the final uncertainty about the system. All four heuristics hold for the plan as

can be seen in figure 3.2.
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Figure 3.1: Initial interception plan of the catcher. The ball is thrown from the origin
with initial uncertainty indicated by the red circle around the origin. The ball lands
around the point (30, 12) after about 3 s in the air. The catcher’s initial gaze is directed
towards the origin. His goal is to be at the interception point at the right time and
have the smallest possible posterior uncertainty about the system.

In figure 3.1 the catcher runs forward and to the right. The same analysis can be

carried out for running forward and to the left, and backwards to the left and right.

Heuristics hold in all four cases.

Simulation

Heuristics hold in simulation as well, with the only difference that the plots are noisier,

as can be seen in figure 3.4. That is due to the fact that the catcher has to incorporate

new observations, which introduces stochasticity into the system. It is worth noting

that the catcher does not necessarily follow a straight trajectory in simulation, contrary

to the plan (compare figures 3.3 and 3.1). Human catchers, indeed, rarely run in a

straight line.
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Figure 3.2: Heuristics for the initial interception plan. All four heuristics hold within
the precision of human experiments. Although CBA demonstrates seemingly nonlin-
ear behavior, absolute variation is less than 3 deg, which is below the measurement
precision of human experiments. Last instants in all graphs should be ignored because
heuristics do not apply to the final phase of the catch, where the catcher is assumed
to rely on hand-eye coordination instead.
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Figure 3.3: Successful catch that obeys heuristics. The catcher continuously tracks
the ball and adjusts his interception strategy based on incoming observations. The
catcher’s trajectory is not necessarily a straight line.
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Figure 3.4: Heuristics hold in simulation. CBA stays within a 10 deg margin.
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3.1.2 Failed catch

If the catcher fails to intercept the ball, heuristics do not hold, as expected. Fig-

ure 3.5 shows a typical failed catch, where the catcher is too slow to intercept the ball.

Figure 3.6 depicts the heuristics.
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Figure 3.5: Failed catch. None of the heuristics hold in this case, as expected. The ball
falls too far from the catcher’s initial position, so that the catcher fails to intercept it
even if he runs at maximum velocity.
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Figure 3.6: Heuristics do not hold if the catcher does not intercept the ball.
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3.1.3 Unexplainable (by heuristics) catch

Figure 3.7 gives an example of a successful catch for which none of the heuristics hold,

even for the planned trajectory. Heuristics assume that the catcher keeps the ball in the

field of view all the time; this assumption is violated if the ball flies over the catcher’s

head, forcing him to turn around. Figure 3.8 shows heuristics in this case.
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Figure 3.7: If the catcher sees that the ball will fly over his head and fall at a consid-
erable distance from his initial position, he decides to turn away from the ball in the
beginning for a short period of time in order to speed up. This behavior follows from
the fact that the catcher can gain higher velocity when running forward. Heuristics do
not apply in this case, because they all assume that the ball is in the field of view of
the catcher all the time.
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Figure 3.8: Unexplainable catch, heuristics. None of the heuristics hold despite the
fact that the catcher successfully intercepts the ball.
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3.2 Effects of noise and reaction time

In this section, we analyze effects of varying model parameters on the catcher’s strategy.

In particular, we focus our attention on system to observation noise ratio (denoted α)

and reaction time to task duration ratio (denoted β). These two parameters determine

whether the catcher uses open-loop or feedback control policy.

When α is small, the catcher gives more weight to his internal model and relies less on

observations. In this case, the catcher chooses between using open-loop and feedback

control strategy based on how big is the reaction delay compared to the task duration.

If β is small, the catcher is not restricted in the choice of the strategy. In most cases the

catcher prefers a mixture of both, predicting for a moderate time into the future and

adjusting his prediction based on incoming observations. When β grows, the catcher

switches to a predictive strategy because he does not have enough time to get more

observations.

When α is big, the catcher believes that he has an unreliable model; therefore, he puts

more weight on observations. In this case, for small β, the strategy is purely reactive;

the catcher compensates for the absence of a good model by extensively relying on

observations. With growing β, the catcher is forced to switch to a predictive strategy,

which usually means he is going to perform poorly due to the lack of a good model.

3.2.1 Experimental setup

The ball is thrown from the origin and lands at the point (30, 15, 0) after 3 seconds.

The catcher starts at rest at point (20, 5) looking towards the origin. All parameters

apart from the reaction delay and system noise are kept fixed. In particular, task

duration and observation noise are kept fixed. For every reaction delay we document

two quantities: number of turns the catcher makes and the fraction of time the catcher

is looking at the ball. Failed attempts are marked with letter ’f’. Results are averaged

over 10 trials. Figure 3.9 shows the averaged data and figure 3.10 gives a description

of different catching strategies that emerge under different choices of parameters.
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Figure 3.9: Effects of noise and reaction time on the catcher’s interception strategy. Top
right: purely open-loop strategies. Bottom left: mostly feedback strategies. Otherwise,
the strategy is mixed. Bottom right: failed catches.

Figure 3.10: Legend for figure 3.9. Different strategies are color coded.
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Chapter 4

Conclusions

In this work, we have shown that observed human behavior in tasks such as catching

a baseball can be explained by assuming that the catcher has an internal model of the

environment and himself and acts optimally (maximizing the probability of catching

the ball) under biological constraints (finite maximum velocity, running backwards is

slow) and imperfect knowledge of the world (internal models only approximate reality).

We have demonstrated in simulation experiments that the optimization-based approach

is consistent with the heuristic view, a competing theory of ball catching, when heuris-

tics are applicable (the catcher keeps the ball in the field of view all the time). The

optimization-based approach has been shown to be more general than the heuristic

view, as it can explain catches to which heuristics do not apply (e.g., when the ball

flies over the catcher’s head). Experiments with human subjects are required to confirm

that such strategies are indeed used by real players.

Lastly, we have shown that the belief-space-based modeling approach allows one to

explain how humans switch between reactive and predictive catching strategies. The

choice of a strategy is defined by two parameters: the quality of the internal model

and the task duration. If the model is excellent and the task duration is short, the

catcher uses a predictive strategy; if the model is bad and the task duration is long,

the catcher uses a reactive strategy; if the model is good and the task duration is long,

the catcher uses a mixture strategy.
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Appendix A

Derivations

A.1 Three types of uncertainty

In this section, we analyze uncertainties associated with predicting a future state of a

stochastic system. We first derive the classical Kalman filter, revealing the meaning

of system uncertainty and a posteriori uncertainty, and then show how to obtain the

a priori uncertainty by integrating out future observations. Finally, we prove that the

sum of the a priory and a posteriori uncertainties equals the system uncertainty.

A.1.1 Kalman filter

Let us begin by linearizing the dynamics and observation function:

xk = Ak−1xk−1 +Bk−1uk−1 + εk, (A.1)

zk = Ckxk + δk. (A.2)

Figure A.1 shows the corresponding graphical model.

Assume the previous state is Gaussian distributed

p(xk−1) = N (xk−1 | x̂k−1, Σk−1). (A.3)
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Figure A.1: One step of the Kalman filter.

Dynamics (A.1) can be rewritten as the conditional distribution

p(xk |xk−1) = N (xk |Ak−1xk−1 +Bk−1uk−1, Qk−1). (A.4)

From (A.3) and (A.4) we can integrate xk−1 out to obtain

p(xk) = N (xk |Ak−1x̂k−1 +Bk−1uk−1, Ak−1Σk−1A
T
k−1 +Qk−1). (A.5)

Distribution (A.5) corresponds to the prediction step of the Kalman filter. We intro-

duce shortcut notation for the predicted mean and covariance p(xk) = N (xk | x̄k, Σ̄k).

Covariance matrix Σ̄k gives the system uncertainty ; it does not depend on observations.

The next step is to incorporate observation zk. Equation (A.2) is equivalent to the

conditional distribution

p(zk |xk) = N (zk |Ckxk, Rk). (A.6)

Using it together with A.5 we can invert the conditioning:

p(xk | zk) = N (xk | x̄k + Lk(zk − Ckx̄k), Σ̄k − LkCkΣ̄k), (A.7)

where

Lk = Σ̄kC
T
k S

−1
k , (A.8)

Sk = CkΣ̄kC
T
k +Rk (A.9)

Conditional distribution (A.6) corresponds to the correction step of the Kalman filter.

In shortcut notation p(xk | zk) = N (xk | x̂k, Σk). Covariance matrix Σk gives the a

posteriori uncertainty; it is the uncertainty after observing zk.



A.1. THREE TYPES OF UNCERTAINTY 31

A.1.2 A priori uncertainty

During planning, future observations are not available, which increases the uncertainty

about the future states. Therefore, future observations should not be considered fixed,

as was done in (A.6), but should rather be treated as random variables. The corre-

sponding graphical model is shown in figure A.2. For the Kalman filter, x̂k is a number,

because zk is considered to be a fixed value; If, however, zk is a random variable, then

x̂k also becomes a random variable, a Gaussian with a mean and a variance, which can

be thought of as hyperparameters of the mean state.

Figure A.2: Mean states x̂k become random variables.

Let the previous mean be Gaussian distributed:

p(x̂k−1) = N (x̂k−1 |µk−1, Λk−1). (A.10)

The conditional p(x̂k | x̂k−1) can be found by integrating out the observation zk:

p(x̂k | x̂k−1) =

∫
p(x̂k | x̂k−1, zk) p(zk | x̂k−1) dzk, (A.11)

where

p(x̂k | x̂k−1, zk) = δ(x̂k − (I − LkCk)x̂k − Lkzk), (A.12)

p(zk | x̂k−1) = N (zk |Ckx̄k, Sk). (A.13)

Thus, we get the dynamics of the mean state:

p(x̂k | x̂k−1) = N (x̂k | x̄k, LkCkΣ̄k). (A.14)
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Finally, we integrate x̂k−1 out to obtain the update equations for the hyperparameters:

p(x̂k) = N (x̂k |Ak−1µk−1 +Bk−1uk−1, Ak−1Λk−1A
T
k−1 + LkCkΣ̄k), (A.15)

which, in short, is p(x̂k) = N (x̂k |µk, Λk). Covariance matrix Λk gives the a priori

uncertainty; it is computed before the observations arrive by integrating them out.

A.1.3 System uncertainty decomposition

Now, we can combine results of the two previous subsections to show that the system

uncertainty is the sum of the a priori and a posteriori uncertainties. Figure A.3 shows

the graphical model where instead of observations we have hyperparameters.

Figure A.3: Observations get absorbed into hyperparameters.

The conditional and marginal distributions are given respectively by:

p(xk | x̂k) = N (xk | x̄k, Σk), (A.16)

p(xk) = N (xk |µk, Σk + Λk). (A.17)

Recall the equations for Σk and Λk:

Σk = Σ̄k − LkCkΣ̄k, (A.18)

Λk = Ak−1Λk−1A
T
k−1 + LkCkΣ̄k. (A.19)

Their sum gives:

Σk + Λk = Σ̄k + Ak−1Λk−1A
T
k−1. (A.20)
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During planning, initial mean is fixed, i.e., Λ0 = 0, leading to Σ1 + Λ1 = Σ̄1. If it holds

for k − 1, then it also holds for k:

Σk + Λk = Σ̄k + Ak−1Λk−1A
T
k−1 (A.21)

= Ak−1Σk−1A
T
k−1 +Qk−1 + Ak−1Λk−1A

T
k−1 (A.22)

= Ak−1Σk−1A
T
k−1 +Qk−1 + Ak−1(Σ̄k−1 − Σk−1)ATk−1 (A.23)

= Qk−1 + Ak−1Σ̄k−1A
T
k−1 (A.24)

= Σ̄k. (A.25)

Thus, it is shown by induction that Σk + Λk = Σ̄k for any k.



34

A.2 Probability of success as the objective function

In this section, we define an event successful catch, analyze its probability and show

how to maximize it. We first consider 1D case, then generalize it to higher dimensions,

and, finally, discuss how maximization of probability can be encoded within the model

predictive control framework. Notation in this section slightly differs from the rest of

the thesis to simplify derivations.

A.2.1 1D case

Let’s consider the simplest case of a 1D ball and a 1D catcher and focus our attention

on the final time-step. The only stochastic variable is the position b of the ball:

p(b) = N (b |µ,Σ). (A.26)

Let the position c of the catcher be known with certainty. A catch is successful, if

distance r = b − c between the ball and the catcher is smaller than threshold α. The

distance r is normally distributed p(r) = N (r |µ − c, Σ), which allows us to find the

probability of success Pr(|r| ≤ α) by integrating the probability density:

J(c, Σ) = Pr(|r| ≤ α) =

α∫
−α

N (r |µ− c, Σ) dr. (A.27)

Optimal catcher position

The goal of the catcher is to maximize the probability of success J(c,Σ). We differen-

tiate (A.27) w.r.t. parameters in order to find the maximum:

∂J

∂c
=

α∫
−α

1√
2πΣ

e−
1
2

(r−(µ−c))2
Σ

(
−1

2
· 2 · r − (µ− c)

Σ

)
dr

=
1√
2πΣ

α−(µ−c)∫
−α−(µ−c)

e−
1
2
ξ2

Σ d

(
−1

2

ξ2

Σ

)

=
1√
2πΣ

[
e−

1
2

(α−(µ−c))2
Σ − e−

1
2

(α+(µ−c))2
Σ

]
. (A.28)



A.2. PROBABILITY OF SUCCESS AS THE OBJECTIVE FUNCTION 35

The derivative vanishes when the expression in brackets in (A.28) equals zero, which

happens if and only if µ = c. The objective function (A.27) is maximized if the catcher

happens to be at the most likely ball landing point, i.e., c = µ.

Optimal level of uncertainty

Let us now find the optimal variance. We use the fact that µ = c at the optimum when

substituting integration limits in the following formulas:

∂J

∂Σ
=

α∫
−α

1√
2πΣ

e−
1
2
ξ2

Σ
1

2

(
Σ− ξ2

)
dξ

=
α
√

Σ√
2π

e−
1
2
α2

Σ . (A.29)

When Σ → 0+, the derivative (A.29) approaches zero. The cost function (A.27) is

maximized when uncertainty about the ball position is minimized, i.e., Σ→ 0+.

A.2.2 2D case

We consider the problem in the coordinate system attached to the catcher c = 0; the

catcher controls µ indirectly by moving himself together with the coordinate system;

we align the x-axis with vector µ to ease analysis. The function to be maximized is

given by:

J(µ,Σ) =

∫∫
Ω

1√
(2π)2 det Σ

e−
1
2

(b−µ)TΣ−1(b−µ) dx dy, (A.30)

where Ω = {b | |b| ≤ α} is a disc of radius α centered at the origin.

In order to simplify analysis, we assume the ball coordinate b to be isotropic Gaussian,

i.e., Σ = diag{σ2, σ2}. It allows us to rewrite (A.30) in more detail:

J(µ, σ2) =

∫∫
Ω

1

2πσ2
e−

(x−µ)2+y2

2σ2 dx dy (A.31)

Tail integrals over circular areas of the Gaussian distribution cannot be computed in

closed form; they are given by the Marcum Q-function. However, if we replace disk Ω
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by square G = {b | |bi| ≤ α, i = x, y}, integral (A.31) becomes separable:

J(µ, σ2) =

α∫
−α

1√
2πσ2

e−
(x−µ)2

2σ2 dx

α∫
−α

1√
2πσ2

e−
y2

2σ2 dy (A.32)

This reduces the 2D problem to two 1D problems which we have solved already; higher-

dimensional cases can be treated in the same way.

Figure A.4: The isotropic Gaussian probability density function centered at µ is to be
integrated over the orange disc Ω of radius α. In order to make the integral tractable,
we integrate over the square G instead; it gives an upper bound for the true probability
because we increase the integration area.

A.2.3 Model predictive control objective

We have shown that the probability of success is maximized if the uncertainty of the ball

position is minimized and the catcher is located at the mean predicted ball position at

the final time. The catcher has to minimize the system uncertainty, because it is what

eventually defines the spread of the ball positions. The system uncertainty can only

grow with time; therefore, the only factor that can shrink the final system uncertainty

is the initial system uncertainty, which, in its turn, equals the a posteriori uncertainty

from the previous planning iteration. Thus, the a posteriori uncertainty has to be

reduced in every iteration in order to reduce the final system uncertainty overall. This

reasoning leads to the cost function (2.16), which penalizes the a posteriori uncertainty.
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