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Abstract—Identifying movement abnormalities from raw Elec-
tromyography (EMG) data requires three steps that are the data pre-
processing, the feature extraction and training a classifier. As EMG
data shows large variation (even for consecutive trials in a single
subject) probabilistic classifiers like naive Bayes or probabilistic
support vector machines have been proposed. The used feature
representations (e.g., principal components analysis, non negative
matrix factorization, wavelet transformation) however, can not capture
the variation. Here, we propose a fully Bayesian approach where both,
the features and the classifier, are probabilistic models. The generative
model reproduces the observed variance in the EMG data, provides
an estimate of the reliability of the predictions and can be applied in
combination with dimensionality reduction techniques such as PCA
and NMF. In first tests, we found that these probabilistic extensions
outperforms classical approaches in terms of the prediction of knee
abnormalities from few samples with a performance of 86 percent of
correctly classified abnormalities.

I. INTRODUCTION

Making medical diagnoses is challenging. Doctors might
have a different angle on a certain topic, their examination
time is limited or comparative studies are not accessible. If
the judgment is wrong, it can cause severe consequences
for a patient. To support the decision process computer-
aided systems therefore aim at providing additional insights
by making use of large but noisy data sets. In this work,
we propose a probabilistic model that can be trained from
EMG data, models the noise and is used to predict movement
abnormalities.

Electromyography (EMG) signals are recorded electric sig-
nals resulting from the activation of muscle cells (see, e.g.,
[1] for a recent tutorial). There is a wide spread use of EMG
data in research disciplines such as muscle surgery [2], neu-
rology [3], rehabilitation [4], [5], movement analysis [6], [7],
biomechanics [8], [9], or in ergonomics as risk prevention [10].
A computational model that can be applied to these different
disciplines needs to implement two important features. First,
the ability to compute reliable predictions to group subjects
and second, to analyze EMG signal similarities in a lower-
dimensional and thus easy to visualize feature space.

For classification neural networks [11]–[13], linear discrim-
inant analysis, kernel based methods [14], or support vector
machines [15] have been proposed. For dimensionality reduc-
tion, principal components analysis (PCA) [16], non negative
matrix factorization (NMF) [17] or wavelet transformation
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Fig. 1. Concept of the probabilistic EMG model: (a) EMG signals are
rectified, low-pass filtered and optionally Dynamic Time Warping (DTM) is
applied to correct for varying initial velocities in the trials. (b) For individual
groups, the aligned EMG-channels (i.e., the first two EMG channels for
subjects with an without knee abnormalities are illustrated) are mapped to
the features space using a Probabilistic Trajectory Model (PTM). This model
captures the mean and the covariance of the features. The statistics can
be used directly in a naive Bayes Classifier (the mixture model approach)
or dimensionality reduction techniques such as PCA or NMF are applied
beforehand, i.e., the proposed probabilistic feature space variants of PCA and
NMF.

[18] were investigated. While probabilistic classifiers demon-
strated to be robust in terms of signal noise [19], currently
used feature representations can not reproduce the omnipresent
EMG signal variation. Solely the mean of the EMGs signals is
reproduced and a large quantity of the entropy is lost through
averaging.

We propose a probabilistic EMG model that captures the
mean and the covariance of multiple EMG channels. The
model learns a distribution over the signals which can be
used either directly in a naive Bayes classifier (we refer to
this model as mixture model) or PCA and NMF are applied
to classify EMG trials in a lower-dimensional feature space,
see Figure 1. PCA and NMF are often used when working
with EMG data. Either directly on the signals or after feature
extraction like wavelet transformation. Here we apply the di-
mensionality transformation by PCA and NMF to probabilistic
features, and as such we present 3 alternatives. We can show
that the mixture model is the best choice and dimensionality
reduction yields no further improvement on this simple data
set. Together, the mixture model and the probabilistic feature
space variants of PCA and NMF are the contributions of this
work.



II. A PROBABILISTIC MODEL OF EMG SIGNALS

A. Problem statement

Let yt ∈ RD denote a D-dimensional column vector of,
e.g., EMG measurements from D channels. The subscript t
denotes a discrete time index. A sequence of T consecutive
measurements is denoted by the matrix Y = 〈y1,y2, . . . ,yT 〉
which is of the dimension RD×T .

The goal of a computational model is to approximate the
data Y through some function, i.e, Ỹ = f(w). The vector
w denotes a set of scalars that can be learned. Classical
principal components analysis (PCA) [16] and non-negative
matrix factorization (NMF) [17] approximate Y through a
reduced feature representation (encoded by w) and classify
unseen observations using a Mahalanobis distance measure
on the reconstructed signals, see, e.g., [12], [14], [20]. We
follow here a different approach and model the data Y as a
probability distribution.

B. Modeling a distribution over EMG signals

We use a multinomial distribution to model the output vector
of a function approximator

o =
〈
yT
1 ,y

T
2 , . . . ,y

T
T

〉T ∈ RD ·T × 1 ,

where the upper scrip T denotes the transpose operation and
must not be confused with the number of discrete time steps
T . As in [21] we use a Gaussian mixture model approach to
represent the vector of concatenated EMG measurements o
with

p(o|w) = N (o|Ωw, Σ̃y) =

T∏
t=1

N (yt|Ψtw,Σy) . (1)

The matrix Ω ∈ RT ·D×D ·K is a concatenation of T block di-
agonal matrices (K is the number of Gaussian basis functions
introduced later), where Ω = 〈Ψ1,Ψ2, . . . ,ΨT 〉. The block
diagonal matrix Ψt ∈ RD×D ·K is a clever arrangement of
basis function vectors for multi-dimensional data,

Ψt =


φT

t,1 0 . . . 0

0 φT
t,2 . . . 0

...
...

. . .
...

0 0 0 φT
t,D

 .

For each dimension denoted by i we use a vector of K scalar
basis functions, i.e., φT

t,i = 〈φt,1, φt,2, . . . , φt,K〉
T . Different

distributions are applicable for the model, depending on the
task. A popular choice for rhythmic movements are Von-Mises
basis functions [22], whereas for point to point movements
Gaussian basis functions are widely used [21],

φt,k =
exp

(
−0.5(t− ck)2

)∑K
k=1 exp (−0.5(t− ck)2)

.

Usually, the means (denoted by ck) and the variances of the
Gaussian features are kept fixed and only the parameter vector
w ∈ RD ·K× 1 in (1) is learned. This parameter vector is a
concatenated vector of D feature vectors, one per dimension,
where w =

〈
wT

1 ,w
T
2 , . . . ,w

T
D

〉T
. Note that we omitted the

variances in this notation for the sake of brevity.

The covariance matrix Σy in (1) denotes the
measurement noise. We assume Zero mean Gaussian
noise where yt = Ψtw + εy where εy is sampled from
εy ∼ N (εy|0,Σy).

C. Learning

In (1) we assumed that the parameter vector w is known.
Now for learning the vectorw we introduce a prior distribution
p(w). This prior is in the simplest case a Gaussian distribution,

p(w) = N (w|µw,Σw) , (2)

where the generative probabilistic model can be computed in
closed form, i.e.,

p(o) =

∫
p(o|w) p(w)dw

= N (o|Ωw, Ω Σw ΩT + Σ̃y) . (3)

The prior is used to model a distribution over multiple
recordings o[m], where m denotes the m-th trial or sample of
recorded multi-dimensional EMG signals. Usually the mean
µw and covariance matrix Σw are learned from the data
by maximum likelihood with help of, e.g., the Expectation
Maximization algorithm as in [23], which generalizes to more
complex hierarchical prior distributions. For our Gaussian
prior a much simpler approach based on least squares regres-
sion was proposed [21], i.e.,

w[m] = (ΩT Ω + λ I)−1 ΩTo[m] . (4)

The scalar λ denotes a regularization term that is typically
set to a small value (we used 1e − 6). The mean and the
covariance of p(w) can be estimated by the sample mean and
sample covariance of the w[m]s’.

D. Dimensionality reduction

Let matrix W ∈ RD ·K×M denote the collection of m =
1, ...,M trials with W =

〈
w[1], w[2], . . . , w[M ]

〉
. Without

dimensionality reduction we argued in the previous subsection
that the mean and the covariance of the prior distribution p(w)
can be estimated by computing the mean and the covariance of
W . We refer to this technique as mixture model in the results
section.

In addition, we apply the matrix factorization techniques
principal components analysis (PCA) [16] and non-negative
matrix factorization (NMF) [17] to W . Instead of computing
the prior statistics directly from W , the mean and the covari-
ance are computed from an approximation denoted by W̃ .

In NMF, this approximation is given by W̃ = V H , where
V ∈ RN×R is a non-negative data matrix and H ∈ RR×M

denotes a weight matrix. The dimension R is chosen such that
W̃ is a compressed version of W . We refer to this application
of NMF to the probabilistic feature space as p-NMF. The
application of PCA is straight forward and we refer to it as
p-PCA in the results section. Note that N = DK denotes the
number of features and M is the number of samples or trials
in our notation.



E. Classification

The learned prior distribution over EMG recordings in (2)
can be used in a naive Bayes classifier,

p(l|w∗) = N (w∗|µk,Σk)αl∑L
l′=1 α

′
lN (w∗|µ′l,Σ

′
l)

,

where l denotes the cluster index and w∗ is the feature vector
under test which was obtained through applying (4) on a
unseen test trail. The scalar αl denotes the cluster prior weight.
It can account for a different number samples per cluster. In
our experiments, we used balanced training sets, where for
both groups, subjects with and without knee abnormalities, an
equal number of trials were selected (α1 = α2 = 0.5).

F. Relationship to muscle synergy models

The generative probabilistic model in (3) can be related
to time-invariant [24] and time-varying [25] muscle synergy
models. Time-invariant synergies are represented as a set of
shared synergy vectors v that is scaled by task dependent time-
varying temporal profiles

ym
t =

K∑
k=1

αm
k (t)vk .

Time-varying muscle synergy models [25] generate EMG
measurements as weighted sum over time-shifted synergy
profiles

ym
t =

K∑
k=1

αm
k vk(t− tmk ) ,

where the activity vector vk(t) is shared among m tasks. For
simplicity we assumed here equal activations αm

k and time
shifts tmk for a D-dimensional vector vk.

Both generative laws relate to a single time step prediction
in (1), where the basis function matrix Ψt is shared among
tasks (like vk) and the learnable feature vectorw becomes task
dependent. Such task dependent feature weights were used
in [23] for transfer learning. Note that time shifts and task
dependent activity vectors vmk as used in temporal components
can not be modeled in this formulation.

In summary, the proposed model provides a probabilistic
formulation of well established muscle synergy models [24],
[25]. However, it utilizes a linear basis function approach
where the model parameters can be learned in a single step
(through least squares regression) in contrast to the iterative
approaches used in [24], [25].

III. RESULTS

A. Data and Preprocessing

We evaluated the proposed EMG models on a clinical lower
limb data set [26], where 22 subjects had to perform two
exercises. In the first, the subjects were instructed to fully
flex their knee while sitting. In the second set of continuously
recorded repetitions, the subjects had to stand up from the
sitting position. Prior to the exercises, a professional diagnosed
for 11 subjects some form of knee abnormalities.
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Fig. 2. Classification performance of deterministic and probabilistic
approaches: Comparison of the deterministic methods PCA, NMF and WT
to the proposed probabilistic variants p-PCA, p-NMF and MM. (a) Correctly
classified subjects for the knee flexion while sitting exercise. (b) Classification
success rate in percent on data recorded in the standing up exercise.

TABLE I
CLASSIFICATION RESULTS FOR AN INCREASING NUMBER OF

COMPONENTS. SHOWN IS THE CLASSIFICATION PERFORMANCE AND THE
F-SCORE IN PARENTHESES. FOR WT THE NUMBER OF COMPONENTS

WERE 10, 13, 19, AND 32.

#comp.: 2 3 4 5
PCA 0.55 (0.67) 0.56 (0.68) 0.56 (0.69) 0.60 (0.7)
NMF 0.53 (0.3) 0.62 (0.59) 0.55 (0.57) 0.57 (0.65)
WT 0.77 (0.75) 0.81 (0.8) 0.80 (0.77) 0.81 (0.79)
p-PCA 0.86 (0.86) 0.86 (0.86) 0.86 (0.86) 0.86 (0.86)
p-NMF 0.86 (0.86) 0.86 (0.86) 0.86 (0.86) 0.86 (0.86)

For each subject the knee angle and four EMG-channels
(rectus femoris, biceps femoris, vastus internus, and semitendi-
nosus) were recorded in two to six repetitions with a sample
rate of 1000 Hz. For more details we refer to [26]. Excluding
the first and last trial, we could manually extracted about two
to three trajectories per subject, which resulted in 30 samples
for each of the two exercises. Four samples were used for
testing in cross validation with 20 sets. The knee angle was
only used to align the trajectories using dynamic time warping
[27] and the models were trained with the four EMG signals
scaled to T = 300 time steps.

B. Probabilistic models outperform PCA, NMF and WT

We compared the prediction performance of the proposed
features space models to standard principal components anal-
ysis (PCA) [16], classical non-negative matrix factorization
(NMF) [17] and wavelet transformation (WT) [18]. The inves-
tigated probabilistic approaches are a Gaussian mixture model
denoted by MM (without dimensionality reduction) and two
extensions where we applied PCA and NMF in the Gaussian
features space (denoted as p-PCA and p-NMF).

For both exercises, we found that the three probabilistic
approaches outperform standard PCA, NMF and WT, see
Figure 2. For all approaches the optimal number of (principal)
components were determined, i.e., PCA (5), NMF (3), WT
(13 = level 5), p-PCA (2), p-NMF(2). For the probabilistic
trajectory model 30 Gaussians were sufficient to model the
EMG data. Details are provided in Table I. Note that for the
limited data set more than two components did not change the
classification strategy for the p-PCA and the p-NMF method
on the same data set.
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Fig. 3. Investigation of the robustness to Gaussian noise: (a) From
left to right, the raw EMG signals were low-pass filtered with an increasing
cutoff frequency to simulate additive measurement noise. (b) Classification
performance for an increasing cutoff frequency on the knee flexion exercise.
(c) Results for the standing up exercise.

C. Feature models are less sensitive to noise

We investigated the effect of Gaussian noise on the EMG
signal on the classification performance. Noise was simulated
through evaluating all six methods with EMG data filtered
with an increasing cutoff frequency in the low-pass filter, see
Figure 3(a) for sample recordings of the vastus internus.

The methods were optimized for a cutoff frequency of
2 Hz, see Table I. With an increasing cutoff frequency the
performance decreased for both exercises. Note that cutoff
frequencies smaller than 2 Hz were not applicable due to
numerical instabilities and poor classification results. For the
knee flexion while sitting exercise the performance values are
shown in Figure 3(b) and for the standing up exercise the
results are illustrated in Figure 3(c). For both exercises, the
NMF and the PCA method tend to have inferior performance
compared to the four feature based methods (WT, p-NMF, p-
PCA, and MM). However, for significant results investigations
on larger data sets are necessary.

IV. DISCUSSION

In this work we introduced three new probabilistic models of
EMG signals and evaluated them on two limited data sets with
22 subjects performing three to five motions. The good results
in spite of working with the limited data sets only showed
how much potential our proposed models have. However,
for meaningful conclusions when comparing to traditional
approaches larger data sets need to be evaluated. Not only
the data sets themselves but also the number of recorded
muscles is a crucial factor that needs to be investigated further.
We belief that models of more than four EMG channels
could greatly improve the classification rates. In particular, the
number of extracted components is limited be the number of
recorded muscles and the question of independently activated
versus co-activated muscle patterns remains open. (Note that
the shapes of all four EMG signals are very similar in our

data set). Furthermore, the tests and the applied optimizations
in our robustness against noise study should be extended.

V. CONCLUSION

Electromyography (EMG) signals in, e.g., prosthetic and
rehabilitation tasks [4], [9], [28], [29] are typically corrupted
by sensor noise, the surface electrodes’ position might change,
and even for the same executed movement different EMG
patterns are observed (known as motor variability). While the
first issue can be circumvented through averaging, the other
two require EMG models that represent the variance of the
data.

We presented a probabilistic model that maps EMG sig-
nals to a feature space using Gaussian basis functions. The
Gaussian means and the variances are fixed while the am-
plitudes are scaled by learnable features. The probabilistic
model implements Bayesian linear regression in fixed basis
functions [30] and was previously used as part of a movement
representation in robotics [21]. It can be trained through least
squares regression or variational inference and scales to more
complex hierarchical Bayesian models [23] relevant for EMG
applications.

In this paper, we extended the model by applying the dimen-
sionality reduction techniques principal components analysis
(PCA) [16] and non-negative matrix factorization (NMF) [17]
to the learned Gaussian features. We evaluated the resulting
approaches in a clinical lower limb data set [26] with the
task of predicting knee abnormalities. We found that the
proposed models outperform standard PCA, NMF and wavelet
transformation [18] in terms of classification performance.
First tests on the limited data set indicate that the feature based
models are less sensitive to noise.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreements No. 610967
(TACMAN) and No. 600716 (CoDyCo). The authors would
like to thank Guilherme Maeda and Rudolf Lioutikov for
comments that greatly improved the manuscript.

REFERENCES

[1] Peter Konrad. The abc of emg. A practical introduction to kinesiological
electromyography, 1, 2005.

[2] John E Duggan and Gordon B Drummond. Abdominal muscle activity
and intraabdominal pressure after upper abdominal surgery. Anesthesia
& Analgesia, 69(5):598–603, 1989.
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