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Abstract
High Dimensional Reinforcement Learning requires a useful low dimensional representation of the input data to be able
to train an agent. However, learning these features requires complete knowledge about the input data, which in general
is not available. Initially, to acquire the needed knowledge, many experiments have to be used to explore the input data
space at the before training. Preferably, the process of learning useful features should be done on the fly, during the
training of the agent. One major challenge for this online feature learning is to find a feature learning method, that is
time-efficient and able to adapt to changing input data distributions. One method that meets both of these criteria are
incremental autoencoders. In this thesis, we evaluate the perormance of incremental autoencoders for online feature
learning for Q-Learning and present limited results of applying incremental autoencoders as feature learning method on
the visual pole balancing task.

Zusammenfassung
Hochdimensionales Reinforcement Learning benötigt ein gute niedrigdimensionale Repräsentation der Eingangsdaten
um einen Controler zu trainieren. Um diese Features zu lernen, wird allerdings ein gewisses Maß Information über die
Daten benötigt, welches zu Beginn von Reinforcement Learning für gewöhnlich nicht vorhanden ist. Um das benötigte
Wissen zu extrahieren, müssen vor Beginn des Reinforcement Learning viele Experiment durchgführt werden um den
Eingangsdatenraum zu erkunden. Vorzugsweise sollten gute Features gelernt werden, während der Controler trainiert
wird. Eine Hauptaufgabe für dieses Online Feature Learning ist es, eine Feature Learning Methode zu finden, die sowohl
zeiteffizient ist, als auch in der Lage ist, sich verändernden Verteilungen der Eingangsdaten anzupassen. Eine Methode,
die beide dieser Anforderungen erfüllt, sind inkrementelle Autoencoder. In dieser Thesis wird ein Weg vorgestellt, um
inkrementelle Autoencoder für Online Feature Learning für Q-Learning zu nutzen. Zum Testen wird hierbei das oft
verwendete invertierte Pendel verwendet. Trotz der eher enttäuschenden Ergebnisse, zeigt dieser Ansatz eininge positive
Aspekte und könnte durch weiteres Tuning der der Integration von inkrementellen Autoencodern in die Q-Learning
Umgebung weiter verbessert werden.
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1 Introduction
Many machine learning methods require high-dimensional training data to deal with the rising complexity of modern
learning tasks. However, reinforcement learning does not scale up well to high-dimensional input data. This problem is
known as the curse of dimensionality [1]. Traditionally, this problem is handled by using hand-crafted low-dimensional
feature vectors. Creating good feature vectors is a very challenging task for complex input data and therefore usually
requires an expert to the specific task. However, an expert is time-consuming and not always available. To avoid this
problem, machine learning methods can be utilized to automatically learn low-dimensional feature representations of
the high-dimensional input data. This process is commonly known as Feature Learning.

One common method to reduce the dimensionality of data is Deep Learning, i.e. autoencoders [2, 3, 4]. However, many
existing methods for feature learning require a lot of time to produce usable results. This usually makes it infeasible to
gradually improve the features during training reinforcement learning as the input data space is explored, since it does
require feature learning to be done multiple times. In this thesis, we propose a method to speed up the feature learning
process in order to learn features online during reinforcement learning.

1.1 Motivation

Figure 1.1: Ideal high dimensional reinforce-
ment learning framework with on-
line feature learning

In general, at the beginning of reinforcement learning, there usually
is very little to no knowledge about the input data available. This
requires the agent to perform many random experiments to collect
data in the beginning, since learning features on a very little subset
of the input space may lead to bad low dimensional representations
and therefore poor performance of the reinforcement learning. In an
ideal high dimensional reinforcement learning framework, features
are learned "on the fly", as the agent is exploring the state space. This
Online Feature Learning requires to relearn new features of the input
data many times, which leads to a significant increase in training time
to find an optimal policy. To efficiently perform online feature learn-
ing for reinforcement learning, a feature learning method is needed,
that : a) can be trained quickly, and b) is able to adapt changing input
data distributions.

The pole-balancing task is a popular task to explore the possibility of
doing high-dimensional reinforcement learning. In 2012, Jan Mat-
tner, Sascha Lange and and Martin Riedmiller used learned to swing
up an inverted pendulum from raw visual visual data only [5]. In this
approach, a stacked denoising autoencoder [6, 7] was used to learn
low dimensional features from the visual input data. These features
were then used to train an agent to swing up the pendulum using
Fitted-Q [8] However, one of the major drawbacks of stacked autoen-
coders is the relatively long training time. In order to obtain useful
features, the stacked denoising autoencoder was trained on 2000 pre-
viously acquired training images. To avoid having to train multiple
stacked denoising autoencoders, the feature learning was removed from the loop shown in Figure 1.1 and only per-
formed once in the beginning. However, a reinforcement learning agent may be exposed to a changing environment.
Using this approach may come across difficulties, when dealing with changes in the input data distribution, while an ap-
proach, that is using online feature learning could simply adapt its feature representation to its new environment.

Therefore, in order to be able to perform online feature learning during reinforcement learning, the feature learning pro-
cess needs to be sped up significantly. This way, feature learning can be put back into the loop (see Figure 1.1). One fast
method to learn features in an online manner are incremental autoencoders, first introduced in 2012 by Guanyu Zhou,
Kihyuk Sohn and Honglak Lee [9]. This new type of autoencoder can be trained online with a fast incremental learning
algorithm. This algorithm allows to train the autoencoder on only a small fraction of the available data, profoundly
speeding up the process. The algorithm is able to add new hidden neurons to the autoencoder and to merge similar ones
into one. This allows the incremental autoencoder to adapt to changes in the input data distribution.
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Figure 1.2: Visualization of the high dimensional
reinforcement learning process in [5]

Additionally, this adds a certain robustness to the choice of the size
feature vector. Choosing the amount of necessary features to repre-
sent the input data, while still being able to perform reinforcement
learning in a fast way can be a very complex task. The ability of the
incremental autoencoder to change the size of its hidden layer makes
the this choice a less critical issue.

1.2 Contribution

The goal of this thesis is to find a method to sufficiently speed up
the feature learning process to make it possible to include it into
the loop of high dimensional reinforcement learning. In particular,
we evaluate the possibility of using incremental autoencoders for on-
line feature learning in reinforcement learning. For the experiments,
Q-Learning [10], one the most common methods, was chosen for re-
inforcement learning. To test the online feature learning methods,
developed during the course of this thesis, a simplified version of the
popular and interesting pole-balancing task was used.

At first, we evaluate the performance of incremental autoencoders
as a feature learning method compared to standard (denoising) au-
toencoders intensively with respect to time and reconstruction perfor-
mance. The results show, that they can indeed greatly speed up the
feature learning process in comparison to standard (denoising) au-
toencoders without having a less quality reconstruction. Additionally,
the incremental autoencoder is able to adapt to changing input data
distributions without having to be retrained

We then propose an algorithm using incremental autoencoders for online feature learning in reinforcement learning,
i.e. Q-Learning and subsequently test this algorithm on the pole-balancing task. Using this algorithm allows to learn
good features in a stepwise during the training of the reinforcement learning agent. The resulting high dimensional
reinforcement learning framework is illustrated in Figure 3.1. The evaluation of this approach shows limited results, yet
great promise for improvement.

1.3 Outline

The remainder of this thesis is divided into the following chapters: In chapter 3 of this thesis we will give a brief
overview of Feature Learning using artificial neural networks. First, we will describe how to change the dimensionality
of data with autoencoders and how to prevent them from overfitting the training data. In the subsequent section the
incremental autoencoder will be introduced. Chapter 4 gives an introduction to Reinforcement Learning. The chapter
begins with an explanation of Q-Learning, one of the most commonly used RL-methods and in the following describe how
feature learning with autoencoders can be applied to it, in order to perform high dimensional reinforcement learning.
Experimental results are shown and explained within the fourth chapter. Finally, chapter 5 will give a conclusion of the
experiments and describe possible future work on this particular topic.
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2 Feature Learning
One of the main problems of Reinforcement Learning stems from the fact, that it does not scale up well to high dimen-
sional input data. This issue is usually handled by using low dimensional feature vectors to represent high dimensional
inputs. However, finding useful feature vectors can be a difficult task, which usually requires a good a priori knowledge
about the problem. The process of using machine learning methods to automatically find useful low dimensional repre-
sentations of the input data is called Feature Learning. In this thesis, we decided to use deep learning (autoencoders) for
learning features, however many other methods exist, e.g. principal component analysis.

2.1 Autoencoders

One method to change the dimensionality of data are so called autoencoders. Autoencoders are artificial neural networks
with one hidden layer, which has the desired dimensionality of the input data. The input and output layers both have
the same amount of units - one for each dimension of the given input data. The network is trained to reproduce the
input values at the output layer. The autoencoder learns two functions, an encoder function and a decoder function. The
encoder function transforms the input data x into a hidden representation

y= f (Wx+ b) (2.1)

The decoder function reconstructs the hidden representation x back into its original representation

z= f (Why+ bh) (2.2)

Therefore, the network has the parameters θ = [W,Wh,b,bh], where W and Wh represent the weights of the neural
network and b,bh its biases. Additionally, the network requires a transfer function f , e.g. the log-sigmoid function.
During training, the parameters are optimized with respect to a given cost function such as the least-squares-error
or cross-entropy. A common method to reduce the amount of parameters of this optimization problem is to use tied
weights, which is done by adding the the following constraint: Wh =WT .

The training of the autoencoder can be viewed as the following optimization problem:

argminθ E(z, x), (2.3)

where E(z, x) denotes the error between the input and the output of the autoencoder. In this thesis, we decided to
use the mean squared error (MSE) as error function. This optimization problem can be solved with common methods
such as Gradient Descent [11] or RPROP [12]. The necessary gradients of θ can be efficiently computed with the
backpropagation algorithm. However, autoencoders often overfit to the training data.

2.2 Denoising Autoencoders

One method to prevent autoencoders from overfitting the training data and achieve a better generalization, is to corrupt
the input data during training. During training, a corrupted input data x̃ is created by adding noise noise to the original
input, e.g. zeroing noise, salt-n-pepper noise or gaussian noise. The network is then trained to reconstruct the original
input data x from the corrupted data x̃. Just as the standard autoencoder, the denoising version is trained learns an
encoder (see equation 2.1) and decoder (see equation 2.2) function. However during training modified in the following
way to include the added noise:

ỹ= f (Wx̃+ b) (2.4)

z̃= f (Whỹ+ bh) (2.5)
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Therefore, the training of the denoising autoencoder can be viewed as the following optimization problem:

argminθ E(z̃, x) (2.6)

While denoising autoencoders generalize the training data fairly well, they are not able to efficiently adapt to changes
in the input data distribution. This requires a complete retraining from scratch, whenever the distribution changes, e.g.
when new input data is discovered during reinforcement learning.

2.3 Incremental Autoencoders

During Reinforcement Learning the amount of available data is constantly increasing. This data can be used to find
a better low dimensional representation. However, relearning new features whenever new data is collected requires
training a new (denoising) autoencoder on the entire data, which usually takes up a lot of time.

An alternative has been presented by [9], the incremental autoencoder. The incremental autoencoder can be trained in an
incremental manner and is able to adapt to changing input data distributions. Additionally, the incremental autoencoder
can change the size of its hidden layer during training.

Since finding the optimal dimensionality of data can be rather difficult, it would be useful to automatically adapt the
amount of hidden units of the autoencoder from the given input data. This can be done with incremental autoencoders.
After each training iteration the reconstruction error is evaluated and the amount of hidden units is changed appropri-
ately. If the error is very large, new features are added. If the error is decreasing, similar features are merged to decrease
the complexity of the model. By doing this, over time the amount of feature converges to a reasonable amount, which is
enough to return a good reconstruction of the input data while keeping the complexity as low a possible.

Onl ine I ncr ement al Feat ur e Lear ning w i t h D enoising q ut oencoder s

… …Hiddenpvfeature-player

Inputplayer
ve0g0ppixelpvalues-

Mergingpsimilarpfeatures Incrementingp
features

…

… …

Figure M{ Illust rat ion of single layer incremental feature learning0 During the t rainingj our incremental feature
learning algorithm opt imizes the parameters of new features vthe orange units and the blue units on the right -j
while holding the other features vyellow units outside the dot ted blue box on the left -0 The orange units are
incremental featuresj and the blue unit is themerged feature from the similar exist ing features depicted as yellow
units in the dot ted blue box0 See text for details0

tures and the corresponding act ivat ions are not chang[
ing during thet raining of new featuresj wecomputehO
once and recall the cdvhO - repeatedly for each t rain[
ing examplewithout addit ional computat ional cost 0 In
this wayj we can e cient ly opt imize the new parame[
ters greedily via stochast ic gradient descent 0

N0W0W D iscr im inat ive t r aining

q discriminat ive object ive funct ion computes an av[
erage classificat ion loss between the actual label y ∈
[Kj M]K and the predicted label y ∈[Kj M]K 0 More pre[
ciselyj the cross[ent ropy is used as a performancemea[
sure and we pose an opt imizat ion problem as follows{

min
W N jb N jΓ N

M
| |

i∈ 

Ldi scvx
v i - j y v i - -j vB-

where Ldi scvx j y - 7 Hvy j y vx--0 Note that the label y
is a binary vector with a softmax unit that allows one
element to be M out of K dimensions for K [way classi[
ficat ion problem vi0e0j yk 7 M if and only if theexample
is in the k[th class-0 Formally speakingj the discrim[
inat ive model predicts y as a posterior probability of
class labels via the softmax act ivat ion funct ion

y 7 softmaxvν 2 ΓO f O vx- 2 ΓN f N vx--j v=-

where softmaxva-k 7
expvak -

k expvak - j k 7 Mj 000j K for a ∈

R K 0 q similar interpretat ion for ν2 ΓO f O vx-j as in the
generat ive t rainingj is possiblej and thereforej we can
e cient ly t rain the new parameters {W N j bN j ΓN }
using gradient descent 0

N0W0N H ybr id t r aining

Considering thediscriminat ivemodel asa singleobjec[
t ive funct ion has a risk of overfit t ing0 qs a remedyj we
can use a hybrid object ive funct ion that combines the
discriminat ive and generat ive loss funct ion as follows{

L hybr i dvx j y - 7 Ldi scvx j y - 2 λLgen vx-0 vH-

In hybrid object ive funct ionj we further normalize
both loss funct ions with respect to their target dimen[

sions0 In our experimentsj we found that any value of
λ ∈[K0Mj K0|] gave roughly the best performance0

N0N M erging feat ures

qs described in the previous sect ionj incremental fea[
ture mappings can be e cient ly t rained to improve
the generat ive and discriminat ive object ives for on[
line datasets0 Howeverj monotonically adding features
could potent ially result in many redundant features
and overfit t ing0 To deal with this problemj we con[
sider merging similar features to produce more com[
pact feature representat ionsj which can mit igate the
problem of overfit t ing as well0

Our merging process is done in two steps{ we select a
pair of candidate features and merge them to a single
feature0 Detailed descript ions are given below{

• Select a set of candidate features to be mergedj
M 7 {mMjmW} ⊂ Oj and replace f O by f O \ M
vi0e0j remove mM[th and mW[th features from O-0

• qdd a new feature mapping f N that replaces the
merged features vSee also Sect ion N0W-0

The candidate feature pair and the new feature map[
ping can be determined by solving the following opt i[
mizat ion problem{

min
θN jM

M
| |

i∈ 

Lhybr i dvx
v i - j y v i - -0 vk-

Howeverj opt imizing vk- joint ly with respect to θN
and M is computat ionally expensivebecause the com[
plexity of an exhaust ive search over all pairs of can[
didate features increases quadrat ically in the number
of features0 qs an approximat ionj we decompose the
original opt imizat ion problem into a two[step processj
where we first find the most similar feature pair for
merging candidatesj and then solve the opt imizat ion
problem with θN only0 In addit ion to being e cient
in t rainingj this approximateopt imizat ion processalso
minimizes the upper bound of the object ive funct ion
in equat ion vk-0 The process is described below{

M|B=

Figure 2.1: Visualization of an incremental autoencoder (taken from [9])

During training, each presented data point with a reconstruction error that is higher than the average loss of the past
several data points is added to a small subset B of difficult training examples (see lines 2 and 3). Once the size of the
set "hard" examples B has reached a certain value τ, the set is used to add new features, merge similar existing features
of the incremental autoencoder and train the newly created features. The incremental autoencoder to use the small
subset of data points B to train the new added features. This allows the incremental autoencoder to adapt to new data
by optimize a small set of new parameters on a fraction of the previously seen data instead of having to be retrained
completely on the entire available data.

Algorithm 1: Incremental Learning Algorithm

1 repeat
2 compute Error(x) of data sample x
3 if Error(x)> µ then
4 B = B ∪ x

5 if |B|> τ then
6 merge ∆M pairs of features
7 add ∆N new features
8 B = ;
9 update ∆N and ∆M

10 finetune on complete data
11 until convergence
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2.3.1 Adding New Features

The process of adding new features yN begins with creating δN new features, i.e. neurons in the hidden layer, initialized
with random weights. These new features are then trained on the subset of the collected hard training examples. The
optimization problem is posed as the following:

arg min
θN

1
|B|

∑

x∈B

L (z, x). (2.7)

Note that the network is only optimized over the parameters of the new features, while the weights and biases of the
already existing neurons remain unchanged. Now the encoder function for these new features yN can be written as the
following:

yN = f (WN x + bN ) (2.8)

z = f (W T
N yN +W T

O yO + c) (2.9)

The decoder depends on both, the new features yN and the old features yO . During optimization, the values of the old
features are fixed and can therefore be precomputed and be seen as an additional dynamic decoding bias cd(yO ):

cd(yO ) =W T
O yO + c (2.10)

This allows to compute the values of cd(yO ) only once and be reused during the training of the new features, in order to
further speed up the optimization. The decoder function, can now be written as the following:

z = f (W T
N yN + cd(yO )) (2.11)

2.3.2 Merging Similar Features

The merging process of similar features begins with creating δN pairsM of features which which have the least distance
to each other.

M = arg min
m1,m2

d(Wm1, Wm2) (2.12)

Each of these pairs is replaced by a new feature, whose weights are initialized with a weighted average of the two old
values. These new features are then trained on the subset of the collected hard training examples. The optimization
problem is then again posed as the following:

arg min
θN

1
|B|

∑

x∈B

L (z, x) (2.13)

This results in the new encoder and decoder functions for the new features, including the dynamic decoding bias:

yM = f (WN x + bN ) (2.14)

z = f (W T
N yN + cd(yO )) (2.15)
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2.3.3 Updating the parameters

After every iteration of adding/merging features the incremental learning algorithm requires to update the parameters
∆N and ∆M . This can be be done in various ways. In this thesis the parameters have been updated with the following
heuristic:

∆Nt+1 =







∆Nt , if n is even

∆Nt , if n is odd

∆Nt , otherwise

(2.16)

∆Mt+1 =∆Nt (2.17)

This is one of the three methods that have been tried by [9].
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3 Reinforcement Learning
A common problem in machine learning is to teach an agent to perform actions in order to achieve a given goal within its
environment. One method to train such an agent is called Reinforcement Learning which has been inspired by behavioral
psychology. The standard Reinforcement Learning set-up can be described as a Markov-Decision-Process, which consists
of

1. A finite set of states S, representing the environment.

2. A finite set of actions A, which can be performed by the agent.

3. A reward function r = R(s, a, s′), determining the the immediate reward of performing a given action a in a given
state s, that results in state s′.

4. A transition model T (s, a, s′) = p(s′|s, a), describing the probability of a transition between states s and s′ when
performing a given action a.

In Reinforcement Learning, the agent interacts with its environment for a finite amount of time. At every discrete time
step t, the agent receives an observation ot and chooses an action at from the available actions A. The environment
changes its state from st to st+1 according to the transition function T and returns a reward rt . The behavior of the
learning agent can described as a policy π(a|s) which assigns a probability for each possible action to every state. The
goal of the agent is to find an optimal policy π∗(a|s), i.e. maximize the expected accumulated discounted reward E[R|π]
with

R=
∞
∑

t=0

γt rt+1, (3.1)

where γ ∈ [0,1] is representing the discount factor. The discount factor determines how much previous rewards are
taken into account. For γ = 0, only the reward of the last time step is used, as for γ = 1 all previous rewards are used
with the same importance as the current reward.

3.1 Q-Learning

One approach to find an optimal policy π∗ is to use a value-function of all possible states and maximize this function in
every state. This value function can be defined as the expected accumulated discounted reward

Vπ(s) = Eπ[R(s, a) + γ Ep(s′|s,a)[V
π(s′)]]. (3.2)

To find an optimal policy, it is necessary to always choose the optimal action in each state by making use of the optimal
value function

V ∗(s) =max
a
(R(s, a) + γ Ep(s′|s,a)[V

∗(s′)]). (3.3)

However, computing the optimal value function V ∗ analytically needs a perfect model of the environment. Reinforcement
Learning is collecting samples of tuples (s, a, r, s′) by actually using the current policy. Q-Learning, first introduced by
Watkins in 1989, uses these collected samples to build an approximation of V ∗. Q-Learning divides the approximation of
the value-function in two steps, by introducing an optimal Q-function Q∗(s, a) for every state-action pair, which is defined
as

Q∗(s, a) = R(s, a) + γ Ep(s′|s,a)[V
∗(s′)] (3.4)

8



The problem of approximating the optimal value function is now reduced to calculating the Q-values for all state-action
pairs by reformulating V ∗ as

V ∗(s) =max
a
(Q∗(s, a)). (3.5)

After initializing all Q-values (usually with zero), the optimal Q-values Q∗(s, a) can be approximated iteratively with the
collected observations (s, a, r, s′). For every sample, the Q-function is updated with the following rule:

Q t+1(s, a) =Q t(s, a) +αt [r + γ max
a′
(Q t(s

′, a′))−Q t(s, a)], (3.6)

where the learning rate αt determines how much the newly found information is taken into account in relation to the
current value. The training process is completed, once all Q-values have converged, or a maximum number of iterations
are completed. This results in an optimal policy, that always chooses the action with the maximum Q-value for a given
state:

π∗(s) = maxa(Q
∗(s, a)) (3.7)

The complete process of training an agent using Q-Learning can be described with the following algorithm:

Algorithm 2: Q-Learning

1 set parameters α,γ,ε
2 initialize Matrix of Q-values Q
3 repeat
4 observe current state s
5 compute random number r ∈ (0,1)
6 if r < ε then
7 select action a = arg maxa(Q(s, a))

8 else
9 select random action a

10 determine next state s′ using s, a
11 calculate reward r = R(s, a, s′)
12 update Q(s, a) =Q(s, a) +α [r + γ maxa′(Q(s′, a′))−Q(s, a)]
13 until convergence

The parameter ε determines the exploration rate of the algorithm, which allows to tune how much the state space is
explored, i.e. a random action is chosen, and how much the already learned information is exploited, i.e. the action that
maximizes the current Q-value for the given state is chosen.

3.2 Visual Q-Learning

As explained in the previous chapters, it is necessary to use low-dimensional feature vectors to represent high dimensional
input data, e.g. in the task of swinging up and balancing an inverted pendulum in an upright position from visual input
data only. One method to learn features for this task is to use (denoising) autoencoders as explained in chapter 2.
However, this requires to collect enough input data samples to find a useful representation. In general, the process of
teaching an agent with Q-Learning from high dimensional input data only looks like the following:
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Algorithm 3: Visual Q-Learning

1 collect initial input data D by performing a sequence of random actions
2 train autoencoder on available input data D
3

4 set parameters α,γ,ε
5 initialize Matrix of Q-values Q
6 repeat
7 observe current visual state o
8 transform observation into low dimensional representation s
9 compute random number r ∈ (0,1)

10 if r < ε then
11 select action a = arg maxa(Q(s, a))

12 else
13 select random action a

14 determine next state s′ using s, a
15 calculate reward r = R(s, a, s′)
16 update Q(s, a) =Q(s, a) +α [r + γ maxa′(Q(s′, a′))−Q(s, a)]
17 until convergence

In this algorithm, the autoencoder is trained on the initially given input data only. Afterwards the parameters α,γε and
the Q-Matrix are initialized. Then the Q-Learning loop is entered, where the current observed state is transformed into
its low dimensional feature representation using the autoencoder. Using this feature vector, the Q-Learning is performed
as explained above. To collect the necessary data in order to be able to find a useful feature vector, we need to do many
experiments before actually beginning to train the agent.

3.3 Visual Online Q-Learning

In order not to "waste" time and experiments to collect data for training the autoencoder, it is needed to learn a new
feature representation whenever new input data is available. This also leads to changing feature representations of the
input data over time. To avoid having to start Q-Learning from scratch every time a new feature representation is learned,
the new Q-Matrix can be reinitialized using experience replay.

Algorithm 4: Visual Online Q-Learning

1 set parameters α,γ,ε, numEx periments
2 initialize experience E = ;
3 repeat
4 train autoencoder on available input data D
5 initialize Matrix of Q-values Q using experience replay of E
6 repeat
7 i = 0
8 observe current visual state o
9 add observation to available data D = D ∪ o

10 transform observation into low dimensional representation s
11 compute random number r ∈ (0,1)
12 if r < ε then
13 select action a = arg maxa(Q(s, a))

14 else
15 select random action a

16 determine next state s′ using s, a
17 calculate reward r = R(s, a, s′)
18 update Q(s, a) =Q(s, a) +α [r + γ maxa′(Q(s′, a′))−Q(s, a)]
19 update experience E = E ∪ (s, a, r, s′)
20 until i = numEx periments
21 until convergence

10



This algorithm relearns a new feature representation after every numI terations performed actions. After the parameters
α,γ,ε, numEx periments and the experience E are initialized, the outer loop is entered. In this loop the currently
available data is used to train a new autoencoder and the Q-Matrix is initialized using experience replay. To do this,
every tuple (s, a, r, s′) during Q-Learning in E (see line 19 of the algorithm). During experience replay, every tuple in
E is sequentially used to update Q. Additionally, during each Q-Learning step, the observation is added to the currently
available dataset D (see line 9). The major drawback of this algorithm is however, that it requires a lot of time to train
multiple autoencoders.

3.4 Visual Incremental Online Q-Learning

Figure 3.1: Illustration of the developed
high dimensional reinforce-
ment learning framework

To improve the speed of online feature learning, it is possible use an incre-
mental autoencoder instead of a standard autoencoder. Feature Learning with
incremental autoencoders has the benefit, that the incremental autoencoder
only has to be trained on the newly acquired data, and not on the entire avail-
able data set.

This algorithm is very similar to the Visual Online Q-Learning algorithm de-
scribed in the previous section. It, however, uses an incremental autoencoder
instead of a standard autoencoder. As described in the previous chapter, an
incremental autoencoder can be retrained on the new observations collected
by the Q-Learning loop. Note, that in line 5 of this algorithm, the input data
for the feature learning is reset to the empty set. With this algorithm can sig-
nificantly speed up the feature learning process by utilizing the properties of
the incremental autoencoder and therefore perform online feature learning in
a reasonable amount of time. The resulting high dimensional reinforcement
learning framework is illustrated in Figure 3.1.

Algorithm 5: Visual Incremental Online Q-Learning

1 set parameters α,γ,ε, numEx periments
2 initialize experience E = ;
3 repeat
4 train incremental autoencoder on new available input data D
5 D = ;
6 initialize Matrix of Q-values Q using experience replay of E
7 repeat
8 i = 0
9 observe current visual state o

10 add observation to available data D = D ∪ o
11 transform observation into low dimensional representation s
12 compute random number r ∈ (0, 1)
13 if r < ε then
14 select action a = arg maxa(Q(s, a))

15 else
16 select random action a

17 determine next state s′ using s, a
18 calculate reward r = R(s, a, s′)
19 update Q(s, a) =Q(s, a) +α [r + γ maxa′(Q(s′, a′))−Q(s, a)]
20 update experience E = E ∪ (s, a, r, s′)
21 until i = numEx periments
22 until convergence
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4 Experimental Results
In this section we will describe both, the setup and the results of the experiments, that were conducted for this the-
sis.

4.1 Pendulum Simulator

In order to perform experiments, we implemented a simplified simulator of an inverted pendulum. The dynamics of the
pendulum are defined by the following function

qt+1 = qt + 0.2 act ion (4.1)

where q is the current angle of the pendulum and act ion represents the control which is applied to the pendulum.

Using this simulator, a data set consisting of 1000 images has been created. These images of the pendulum served as visual
input data during the experiments. Every of these images has a resolution of 32x32 pixels, leading to a 1024-dimensional
input data set. Some example images of the data set can be seen in Figure 4.1.

Figure 4.1: Example images of the pendulum image data set

4.2 Results of Feature Learning Experiments

In the following section, the experiments on feature learning using autoencoders will be presented.

4.2.1 Autoencoders

To test the effectiveness of (denoising) autoencoders for feature learning we trained various types of (denoising) autoen-
coders on the pendulum data set. The effect of different types of noise, numbers of hidden units, optimization methods
and transfer functions were tested.

Figure ?? shows the training errors of multiple denoising autoencoders when using different optimization methods. All
autoencoders were using gaussian noise with a mean of 0 and a standard deviation of 0.1. It is clearly visible, that the
more hidden units are used, the the better reconstruction error gets. However, using more hidden units increases the
required training time. When comparing the three used optimization methods, RPROP clearly gives the best performance.
It does not only converge a lot faster than standard gradient descent or batch gradient descent, but also results in a lower
reconstruction error than the other two methods.
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(a) Training Reconstruction Error vs. Number of Iterations of
multiple denoising autoencoders with different numbers
of hidden units using the Gradient Descent optimization
method
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(b) Training Reconstruction Error vs. Number of Iterations of
multiple denoising autoencoders with different numbers of
hidden units using the Batch Graadient Descent optimiza-
tion method
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(c) Training Reconstruction Error vs. Number of Iterations of
multiple denoising autoencoders with different numbers of
hidden units using the RPROP optimization method

Figure 4.2: Comparison of different optimization methods for training autoencoders
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4.2.2 Feature Learning on shuffled data

Since during Reinforcement Learning the amount of available data is increasing over time, we conducted experiments to
test the speed and reconstruction errors of learning features from an iteratively growing data set using different methods
of feature learning.

Figure 4.3: Example images found in one shuffled data subset

To simulate the growing amount of data, the complete data set of 1000 images was first shuffled, and then split into
20 subsets of 50 images. These subsets were used to train an an incremental denoising autoencoder over 20 iterations.
The time and error of this experiment were compared to training a) a single denoising autoencoder trained on the entire
available data at each iteration and b) multiple denoising autoencoders from scratch, one at each iteration, on the entire
available data. Both cases were tested using the initial (50) as well as the final (76) amount of hidden units of the
incremental denoising autoencoder. All of the autoencoders were trained using gaussian noise with a mean of 0 and a
standard deviation of 0.1.

Figure 4.4 shows the reconstruction error during training time of all previously described feature learning setups. Training
multiple autoencoders from scratch at every iteration, does lead to a very "spikey" learning curve. This makes it difficult
to know when the training is actually done. The reconstruction error of the incremental autoencoder is the lowest of
all five tested setups. Also, the training of the incremental autoencoder is done in less time it takes to train a single
autoencoder multiple times, which in fact returns a nearly as good reconstruction error (see Figure 4.4e).

When comparing Figure 4.4a and Figure 4.4b, it becomes clear, that the retraining of the autoencoders from scratch
leads to many undesirable spikes, while training the existing autoencoder with the newly acquired data is increasing in
reconstruction error as the input data distribution changes. The difference in the number of hidden neurons does not
impact greatly on the resulting reconstruction error (compare Figure 4.4a and Figure 4.4c or Figure 4.4b and Figure 4.4d
respectively). However, when the autoencoder are retrained from scratch at every iteration, the training time is affected
more by the size of the hidden layer than in the case of training a single autoencoder multiple times.
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(a) Single autoencoder with 50 hidden units
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(b) Multiple autoencoders with 50 hidden units

0 50 100 150 200
0

100

200

300

400

500

Time

R
ec

on
st

ru
ct

io
n 

E
rr

or

Training AE single final

(c) Single autoencoder with 76 hidden units
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(d) Multiple autoencoders with 76 hidden units
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(e) Incremental autoencoder with initially 50 hidden units

Figure 4.4: Reconstruction error of different autoencoder types during training on the shuffled pendulum dataset
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4.2.3 Feature Learning on unshuffled data

In order to simulate a way of incrementing the available data to the feature learning, that is closer to the the data
Reinforcement Learning methods would observe on the pendulum task, we also performed the same experiments from
the previous section without shuffling the data set.

Figure 4.5: Example images found in one unshuffled data subset

By feeding the data in this unshuffled fashion to the autoencoder, it is necessary to adapt to changing distributions of the
input data.

Figure 4.6 shows, that training on the unshuffled data set leads to an increase of the reconstruction error over time
when training a single autoencoder. This shows that, it is not able to adapat to the changing data distribution well.
Training multiple autoencoders, while dealing with the same "spike-issue" as before does get better results than the
single autoencoder setting. The incremental autoencoder is not only able to adapt to the changing distribution of input
data, but also can be trained in a time-efficient manner (see Figure 4.6e).

When comparing Figure 4.6a and Figure 4.6b, just as in the previous experiment, the retraining of the autoencoders
from scratch leads to many spikes. However, training the same autoencoder with the newly acquired data multiple times,
shows an even bigger increase in reconstruction error as the input data distribution changes. This further shows the
inability of the standard autoencoder to adapt to its changing input data distribution. The difference in the number of
hidden neurons has the same effects as in the previous experiment on the shuffled data set.

In Figure 4.7, only the reconstruction error at the end of each iteration is shown for the experiments on both, the shuffled
and the unshuffled data set. When looking at Figure 4.7a, it becomes clear, that when no change in the data distribution
occurs (using the shuffled data set), the single autoencoder can achieve a similar reconstruction error as its incremental
counterpart. With respect to the training time, it is however significantly outperformed by the incremental autoencoder.
Figure 4.7b shows, that all autoencoder variants show an increase in reconstruction error when dealing with the changing
input data distribution of the unshuffled dataset. However, the incremental autoencoder outperforms all other variants
significantly. Additionally, the incremental autoencoder, shows no significant increase in training time when compared
to the experiments on the shuffled data set. The single autoencoder, in contrast requires a lot more time to optimize in
each iteration when dealing with the changing distribution.

16



0 50 100 150 200 250
0

100

200

300

400

500

Time

R
ec

on
st

ru
ct

io
n 

E
rr

or

Training AE single

(a) Single autoencoder with 50 hidden units
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(b) Multiple autoencoders with 50 hidden units
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(c) Single autoencoder with 76 hidden units
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(d) Multiple autoencoders with 76 hidden units
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(e) Incremental autoencoder with initially 50 hidden units

Figure 4.6: Reconstruction error of different autoencoder types during training on the unshuffled pendulum data set
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(a) Reconstruction Error at the end of each iteration vs. time
of different types of autoencoders trained on the shuffled
data set
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Figure 4.7: Performance comparison of training on the shuffled and unshuffled data set
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4.3 Results of Reinforcement Learning Experiments

In this section, all experiments on the various forms of Q-Learning described in chapter 3 and their experiments will be
presented and explained.

4.3.1 Q-Learning
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Figure 4.8: Mean reward and variance vs. number of ex-
periments using standard Q-Learning

To test our implementation of the pendulum simulator, a
standard version of Q-Learning was implemented. The state
space was discretized into 360 states, one for every degree
of the pendulums angle. The agent was given a set of five
actions [big move in counterclockwise direction (-10), small
move in counterclockwise direction (-3), do nothing (0), big
move in clockwise direction (3), big move in clockwise di-
rection (10)]. For all Q-Learning experiments a learning
rate α of 0.2, a discount factor γ of 0.9 and an exploration
rate ε of 0.1 were used. In the following one episode of
50 Q-Learning iterations will be referred to as one experi-
ment. The summed reward of an experiment is the sum of
the reward of all transitions, that were done during this ex-
periment. Every run of training a Q-Learning agent consists
of multiple experiments.

Figure 4.8 shows, that the summed reward of standard
Q-Learning is converging to the optimal policy, which is
reached after circa 1500 experiments with a summed re-
ward of circa 400. The figure shows the mean and variance
of the summed reward of 150 runs.

4.3.2 Visual Q-Learning

Next, we performed visual Q-Learning on the created pendulum data set using algorithm as seen in chapter 3. Again,
all hyperparameters (α,γandε) were set to the same values as in the standard Q-Learning. For the feature learning, a
denoising autoencoder with gaussian noise was used to reduce the dimensionality of the input data from 1024 to 10. It
was trained on the entire pendulum data set for 500 iterations using the RPROP optimization method. Once the feature
learning was done, visual Q-Learning was performed using the 10-dimensional features. To do this, the values of the
feature vector were discretized into five units.
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(a) Mean reward and variance vs. number of experiments using
visual Q-Learning
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(b) Mean reward and variance vs. number of experiments using
visual Q-Learning after learning features from only partial
data
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Figure 4.9a shows, that the learned 10-dimensional features can indeed be used for Q-Learning. After circa 1000 experi-
ments, the summed reward is converged to the value that was produced by standard Q-Learning.

In Reinforcement Learning, initially there is not the entire data available to be used for feature learning. To test the use-
fulness of the learned features from training the autoencoder only on a partial data set, we repeated the same experiment
again, while training the autoencoder on only a third of the entire pendulum data set. The images chosen for this partial
data set, were the ones closest to the initial position of the pendulum.

In Figure 4.9b, the summed reward of the visual Q-Learning run with the features learned from this autoencoder are
shown. It is obvious, that policy learned from these features is outperformed by the one from the complete data set. The
learned features are apparently not good enough to be used for learning the optimal policy.

4.3.3 Visual (Incremental) Online Q-Learning

Eventually, we performed visual online Q-learning. To do so, we used the partial input data set from the previous
experiment as initially available data. We used both versions of online Q-Learning, the non-incremental one as well
as the incremental one. After every 500 experiments, the features were relearned using all observations made by the
agent during Q-Learning. To prevent the amount of training data from growing too large, all duplicate observations were
removed from the data set before training the autoencoders.
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Figure 4.10: Results for online Q-Learning

Figure 4.10a shows, that Q-Learning is able to find good policies when using the learned features. However, the down-
ward spikes of the summed reward every time new feature representations of the input data are learned, lead to the
conclusion that whenever new features are introduced, the Q-Learning is basically starting from scratch each time.
This most likely is a result of initially rather poor feature representations. In this case, it may happen, that multiple
states are mapped to the same state. The corresponding Q-value is then built as a weighted average of all these states
mapped to the same feature vector during experience replay. Q-Learning then requires further experiments to solve the
ambiguities.

The visual incremental online Q-Learning, as shown in Figure 4.10b, does suffer from the same problem as the visual
Q-Learning as the non-incremental version, where ambiguities in the feature representation of the input data lead to
messed up Q-values.

In order to further investigate the reasons for the disappointing performance of the online Q-Learning, we analyzed how
the Q-values change during training.

First, we looked at the amount of non-zero Q-values after every iteration, once at the beginning, i.e. after initializing
with experience replay, and once at the end of all experiments of the iteration, shown in Figure 4.11a. The fact that only
less than 1000 values are used, supports the hypothesis, that the learned features lead to ambiguities. Also, the actual Q-
values were analyzed during online Q-Learning. In Figure 4.11b it can be seen, that every time the features are relearned
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Figure 4.11: Q-Value analysis during online Q-Learning

an entirely different feature representation is learned. Again, this can lead to the previously mentioned ambiguities if
multiple states with different Q-values are mapped to the same feature vector. In this case, the new Q-values will be
messed up during reinitializing them with experience replay.
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5 Conclusion
Finding good features in high dimensional data can be a complex and time-consuming problem. It usually requires a
certain amount of knowledge about the data. In order to gain this necessary knowledge at the beginning of reinforcement
learning, it is necessary to spend many experiments to explore the data space. Preferably, the learned features are
improved simultaneously as the agent is learning. In order to make this approach feasible, it is necessary to improve the
speed of feature learning, which was the goal of the thesis.

In the process of this thesis, we initially investigated the performance of various types of autoencoders as a method
for feature learning with different numbers of hidden units, optimization methods and noise functions. While all au-
toencoders were able to get a decent reconstruction error, the incremental autoencoder gave the best performance with
respect to speed. Furthermore, the incremental autoencoder showed the best results when dealing with a data set, which
is growing over time, making it the the best choice out of the tested methods for online feature learning for reinforcement
learning.

When comparing the results for all tested optimization methods, it becomes obvious, that RPROP could achieve the best
results in both reconstruction error and necessary iterations until convergence, as seen in chapter 4. These observations
appear consistent throughout all tested configurations of noise function and number of hidden neurons.

We then tested these methods in combination with reinforcement learning, i.e. Q-Learning, using different algorithms
(see chapter 3). The results of these experiments show, that the learned features can indeed be used to perform the
simplified pole-balancing task and find an optimal policy, if the required knowledge is available to the autoencoder.
However, if the denoising autoencoder had only partial data available, the learned features could not be used to find
the optimal policy. This fact, again, underlines the importance of being able to perform online feature learning. A
reinforcement learning agent may be exposed to changes in its environment, leading to bad performance due to poor
feature representations unless it is able to adapt its feature representation of the environment it is observing. When
testing the online Q-Learning, we received relatively poor performances of the reinforcement learning. These rather
disappointing results were examined intensively. The main issue has been identified as the lack of separation of the
learned features, which lead to ambiguities during reinforcement learning. As discussed in the previous chapter 4, these
ambiguities in the feature representation of the observed states require the agent to relearn multiple Q-values whenever
its encoder function for obtaining the feature vector of an observation is changed. This appears to be a fixable problem,
however, could not be solved in this thesis due to lack of time.

A starting point to solve these issues in the future is to improve the learned feature space by using deep learning, i.e.
stacked incremental autoencoders. A deep structure is more likely to find a good low dimensional feature representation
of the high dimensional input data. Additionally, a deep autoencoder might produce better features (for visual input
data), when adding convolutional layers to its structure to obtain some information of the spatial relations between
each input value. Furthermore, it might be interesting to use a more sophisticated reinforcement learning method
than Q-Learning for online reinforcement learning and move to a more complex application than the very simplified
pole-balancing task used in this thesis, once all of the previously mentioned problems are fixed.
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