
Learning

Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Abstract Robot learning uses advanced machine learning and statistical methods to
improve the e�ectiveness of algorithms and models used in robotics, including low-
level control, dynamics models and high-level planning. Having such autonomous
learning for physical systems has been a long-standing vision of robotics, artificial
intelligence, and cognitive sciences. In the past two decades, the Robot Learning
community has developed a large repertoire of learning techniques that enable robots
to acquire new skills from data. This book chapter aims to provide a straightforward
and intuitive introduction to the approaches that enabled these methods, starting
from optimal control theory, and incorporating ideas from machine learning that
facilitate model-based and model-free reinforcement learning and imitation learning.
To enable practical learning on real robotic platforms, we describe inductive biases
for robotic learning, such as movement primitives; and how they are used for sample-
e�cient, data-driven control.

1 Introduction

Over the past several decades, robotics research has yielded the necessary theory
and understanding to design, program and deploy a vast variety of robotic platforms
across a broad range of settings, from subterranean mapping to surgical procedures.
More recently, advances and widespread adoption of information technology has
led to increased interest in machine learning (ML) [12, 6], a research field devoted
to the development and study of algorithms and models for prediction, statistical
modelling and optimization. The intersection of robotics and machine learning is
known as Robot Learning [83].

Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters
TU Darmstadt, Hochschulsstr. 10, 64293 Darmstadt, Germany.
e-mail: {firstname.lastname}@tu-darmstadt.de

1

2 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

For robotics, machine learning provides a means of data-driven design – replacing
human engineering with data acquisition and processing. As our robots are expected
to perform increasingly more complex tasks where manual may become infeasible,
this automation has the promise of accelerating the design of these systems by
leveraging large datasets of experience. Breakthroughs in computer vision [49],
natural language processing [107] and decision making [69, 105] have demonstrated
that this paradigm enables performance that matches or even surpasses human
capabilities. However, these breakthroughs occurred on either static or abstract tasks
while robot learning requires considering dynamically changing tasks in real-world
embedding. Thus, achieving similar results on real-world robots requires models and
algorithms that respect and incorporate their physical embodiment.

1.1 What is Robot Learning?

From the robotics perspective, Robot Learning constitutes the use of data-driven
approaches to improve the e�ectiveness of the system. This paradigm builds on
longstanding methods in robotics such as system identification [61, 112] and adap-
tive control [5]. From the machine learning perspective, Robot Learning consid-
ers models and algorithms that are relevant to the robotic setting, ranging from
(semi-) supervised learning to make sense of visual and tactile perception [53, 57]
to optimal interaction with the environment by reinforcement learning (RL) algo-
rithms [110, 47].

D��������� 1: R���� L�������
Robot learning considers the intersection of robotics and machine learning.
The goal is to provide methods that allow robots to acquire novel skills, im-
prove its performance, or adapt to dynamic environments through algorithms
applied to acquired data. These methods apply to every aspect of the robot,
including the morphology, perception, motor control and high-level reason-
ing. The physical embodiment of the robot provides both design constraints
and inspiration for algorithm design, such as safety, latency and inductive
biases such as physics and geometry.

Moreover, the specific robotic setting motivates task- and system-specific induc-
tive biases [7] is often necessary when data has to be generated in real-time on real
system (which may su�er from damages as well as wear and tear) to ensure feasi-
bility or at least to improve performance. Such inductive biases can include insights
from physics-inspired models, geometry-constrained planning and approaches bor-
rowed from control theory. Finally, the real-world embedded deployment requires
additional considerations, such as computational e�ciency, robustness, safety and
continual learning. For a formal definition, see Definition 1. Examples are provided
in Fig. 1.

Learning 3

(a)

(b) (c)

Fig. 1: Diverse applications of robot learning. (a) High-acceleration robot jug-
gling [84], (b) precise dexterous object manipulation [27] (copyright MPI for Intel-
ligent Systems), and (c) fine bi-manual manipulation [60]. Panel (b) adapted from
[1] with permission from Felix Widmaier; Copyright MPI for Intelligent Systems.

Given its broad definition, this introduction focuses on a specific aspect of Robot
Learning, looking at methods for learning motor actions. We chart the evolution
of classical ideas from robotics, such as optimal control and system identification,
to their modern interpretations as reinforcement learning and statistical machine
learning. We motivate the use of purely data-driven control design methods, such as
model-free policy search1, and show how these methods can be extended to settings
such as learning from demonstration (LfD; often also called imitation learning).
Moreover, we discuss how robotics-inspired inductive biases can be incorporated
into the statistical models, such as Bayesian linear regression with dynamic move-
ment primitives for learning smooth robot motion from noisy demonstrations. Robot
Learning covers many more aspects of robotics, such as perception, state estimation
and scene understanding. While these topics are out of scope for this introduction,
they are also relevant for learning motor actions, such as visuomotor control. More-
over, Robot Learning is intrinsically linked to the computation and instrumentation
hardware available, as it informs the data that is available and the algorithms that are
feasible. However, we do not discuss this aspect in this chapter.

1 The term “control policy” is shortened to just “policy” in the machine learning literature but
typically includes both a control law and the trajectory generator from classical robotics.

4 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Fig. 2: Illustration of a sequential decision making process in which an agent is
interacting with an environment, such as optimal control of a robot. In this example,
the agent’s actions are computed based on a parametric neural network policy aC =
c\ (sC) and applied to a robotic manipulation task which then yields the next state
sC+1 and reward AC . The setting is described as Markov decision process.

1.2 Structure of the Chapter

This chapter looks specifically at Robot Learning in the context of learning motor
control for robotics. Section 2 introduces optimal control and Markov decision pro-
cesses (MDP) as the underlying framework. Section 3 covers the basics in statistical
machine learning and deep learning for regression, which is required for learning
models from data. How these models are used for system identification and data-
driven control is discussed in Section 4, and for useful policy representations in
Section 5. Section 6 considers data-driven control without the notion of an explicit
dynamics model, using the formalism of model-free reinforcement learning. Finally,
Section 7 looks at imitation learning, which involves learning from expert demon-
strations.

Notation. We adopt lowercase boldface letters x for vectors, uppercase boldface
for matrices ^, otherwise G, - denote scalar variables. The expression x ⇠ ?(x)
means that a random variable x is distributed according to the distribution ?(x). The
log-likelihood under this distribution is expressed as L(x) = log ?(x). A multivari-
ate Normal distribution with mean - 2 R= and covariance ⌃ 2 (=+ is N(-,⌃), where
+ denotes positive (semi-) definiteness. For a random variable x, E[x], V[x] and
H[x] denote the mean, covariance and entropy respectively. The Kullback-Leibler
divergence between distributions ?(x) and @(x) is denoted ⇡KL [?(x) | | @(x)]. For
scalar function 5 (x, y), we use the shorthand fx = m 5 /mx and Lxy = m

2
5 /mxmy for

Jacobians and Hessians respectively. Vector-valued functions have a matrix Jacobian
Lx .

2 Optimal Control from Robot Forward Models

Classical control covers a multitude of criteria for control design, such as stability,
frequency response and disturbance rejection. As machine learning methods tend

Learning 5

to be presented as an optimization problem, optimal control is the preferred control
foundation in Robot Learning. A highly e�ective robot learning approach can be
obtained by simply swapping the manually acquired forward model in the optimal
control literature with a model identified by supervised learning. Moreover, optimal
control covers not only continuous state and action spaces, but also discrete spaces,
so it can be applied to both continuous control and also more abstract forms of robot
decision making.

This section introduces the Markov decision process for optimal control in the
discrete setting. For continuous control, we first look at the linear quadratic regulator
(LQR), which has a closed-form solution for the optimal control law. Finally, we
discuss approximate optimal control methods for the nonlinear dynamical systems
that we often encounter in robotics.

2.1 Markov Decision Processes

Before introducing methods for obtaining optimal controllers, we first have to define
the problem. A wide range of problems in robotics ranging from path planning to low
level control can be formalized as Markov decision processes (MDPs, Definition 2,
Figs. 2 & 3) [9, 87].

D��������� 2: M����� D������� P������
A stationary Markov decision process (MDP) describes the stochastic dy-
namics of a sequential decision making process that satisfies the Markov
property. In particular, it is defined by state space s 2 S, action space
a 2 A, transition dynamics ?(sC+1 |sC , aC), reward function A (sC , aC), and
initial state probabilities `0 (s). Importantly, the transition dynamics fulfill
the Markov property, i.e. the state transitions only depend on the current state
and action and are thus conditionally independent of previous states and ac-
tions, ?(sC+1 |sC , aC , sC�1, aC�1, ...) = ?(sC+1 |sC , aC). Note that non-stationary
MDPs follow the same definition but include time-varying transition dynam-
ics, ?C (sC+1 |sC , aC) and reward functions AC (sC , aC).

MDPs do not only define the transition dynamics but also include a function that
evaluates the quality of the current state and action. Hence, the goal is to obtain
policies c that are reward optimal. A policy is a function mapping from states to
actions which are either be deterministic, a = c(s), c :S!A, or stochastic, i.e.,
defining a probability distribution over all actions given the current state, a ⇠ c(·|s),
c :S ⇥ A ! R. Given the properties of MDPs, Richard Bellman formulated the
“principle of optimality” in 1957 stating that “an optimal sequence of controls in
a multistage optimization problem has the property that whatever the initial stage,
state and controls are, the remaining controls must constitute an optimal sequence
of decisions for the remaining problem with stage and state resulting from previous
controls considered as initial conditions.” In short, Bellman’s principle of optimality

6 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

s0

s1
a0

⇡00

a1

⇡01

a0
⇡10

a1

⇡11

p000, r00

p010, r01

p001, r00

p011, r01

p100, r10 p101, r10

p110, r11

p111, r11

Fig. 3: A diagram of a stationary Markov decision process with two states {B0, B1}

and two actions {00, 01}. The policy and dynamics are represented by probabilities
csa and ?sas’, with the next state B

0 and the reward values Asa.

implies that every part of the optimal solutions must itself be optimal, which directly
results into a recursion often called the Bellman equation2

+
⇤

C
(s) = E?,c⇤

⇥Õ
)

g=C A (sg , ag)
⇤
= max

aC
A (sC , aC) ++

⇤

C+1 (sC+1)| {z }
&
⇤
C
(sC ,aC)

= max
aC

&
⇤

C
(sC , aC),

(1)

with value function +C (sC), state-action value function &C (sC , aC) that is sometimes
also referred to as &-function3, optimal policy c

⇤, optimal value and &-function
+
⇤
,&
⇤. All methods that exploit this idea of decomposing the original problem into

smaller subproblems belong to the family of dynamic programming (DP) algorithms.

Algorithm 1 Value Iteration
Init: +

⇤

)
(s)) A (sC) , + ⇤

C!=) (sC!=)) = 0
repeat

/* Compute &-function for each state action pair and point in time
&
⇤
C
(sC , aC) A (sC , aC) +

Õ
sC+1

? (sC+1 |sC , aC)+ ⇤
C+1 (sC+1)

/* Compute V-function for each state and point in time
+
⇤
C
(sC) maxaC

&
⇤
C
(sC , aC)

until +
⇤
C
(sC) converged for all states and points in time

return Optimal policy: c⇤
C
(sC) = arg maxaC

&
⇤
C
(sC , aC)

2 The Bellman equation was named in Bellman’s honor but was known to Carathéodory, von Neu-
mann, Morgenstern, Wald and others before Bellman generalized it into the principle of optimality
and the generic method of dynamic programming.
3 Following on from value, & stands for quality.

Learning 7

Algorithm 2 Policy Iteration

Init: +
c

)
(s)) A (sC) , + c

C!=) = 0, c random
repeat

repeat

/* Compute Q-function for each state action pair and point in time under current policy
&

c

C
(sC , aC) A (sC , aC) +

Õ
sC+1

? (sC+1 |sC , aC)+ c

C+1 (sC+1)

/* Compute V-function for each state and point in time
+

c

C
(sC) &

c

C
(sC , aC=cC (sC))

until +
c

C
(sC) converged

/* Update Policy
cC (sC) arg maxaC

&
c

C
(sC , aC)

until Convergence of policy
return Optimal policy: c⇤

C
(sC) cC (sC)

It is relatively straightforward to apply these ideas in tabular environments with
discrete sets of actions, states and known transition dynamics, and results in the two
algorithms of value and policy iteration [9, 11, 110]. In value iteration (VI, cf. Alg.
1), one computes the optimal value function recursively starting from the final state,
which directly also yields the optimal policy, i.e. the action that actually maximizes
the value in each state. In policy iteration (PI, cf. Alg. 2), we are starting with a fixed
policy and first compute all the &-values & c

C
(sC , aC) under the current policy, and

then update the policy to greedily choose the actions that yield highest value in each
state. This process is repeated until convergence and also yields the optimal policy.
Policy iteration is known to be computationally more e�ective as it allows e�ects of
policy changes to propagate through the value function before requiring redundant
use of the max-Operator on an unchanged value function.

2.2 The Linear Quadratic Regulator

For special cases, Markov decision processes with continuous states s 2 R3B and
actions a 2 R30 are solved analogously. For example, we can perform optimal control
using the value-iteration approach in a tractable fashion when the dynamics function
is a time-varying linear (a�ne) state-space model and the reward is time-varying
quadratic, where weights WC and XC are positive definite matrices and s6 is the goal
state. This setting is known as the linear quadratic regulation (LQR), see [14], with

sC+1 = fC (sC , aC) = GC sC + HC aC , AC (sC , aC) = �(s6�sC)>WC (s6�sC) � a>
C
XC aC .

For finite-horizon optimal control, we also can specify a terminal reward, only in the
state A) (s)) = �(s6�s))>W) (s6�s)). The Bellman equation

+C (sC) = max
aC

&C (sC , aC) = max
aC

AC (sC , aC) ++C+1 (fC (sC , aC))

8 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

can be solved analytically as a�ne systems combined with quadratic rewards imply
that the value function +C (sC) = s>

C
\C sC + v>

C
sC + EC is always a quadratic form.

This Bellman equation is solved by a parametric version of the value iteration
algorithm. Here, the value function is initialized by \) = W) and, subsequently, the
recursive parametric update equation

\C = WC + G>
C
\C+1GC � G>

C
\C+1HC (XC + H>

C
\C+1HC)

�1H>
C
\C+1GC (2)

is computed backwards in time from C =)�1 down to C = 1. Due the specific
structure of Eq. (2), it is known as a discrete algebraic Riccati equation (DARE).
Solving the value function for the optimal action, we arrive at a time-varying a�ne
controller in sC .

a⇤
C
= arg max

aC
&C (sC , aC) = �(XC+H>C \C+1HC)

�1
(H>

C
\C+1GC sC�H

>

C
vC+1) = QC sC + kC .

If the system is controllable, the control policy’s parameters QC , kC will converge
for C = Ĉ ⌧) for su�ciently large) long before C = 1. Thus, the stationary linear
controller a⇤ = Q

Ĉ
s + k

Ĉ
c is an infinite-horizon optimal control law.

2.3 Nonlinear Approximate Optimal Control

The LQR setting was restricted to time-varying linear dynamics and quadratic re-
wards. For many control problems in robotics, we have nonlinear dynamics and non-
quadratic objectives. In this section, we briefly describe two possible approaches to
this problem that perform approximate optimal control.

Di�erential Dynamic Programming. Inspired by LQR, we compute a local second-
order Taylor approximation of the dynamics and reward function computed along a
nominal trajectory (s̄C , āC) for every time-step C = 1 :) by

AC (s̄C + Xs , āC + Xa) = AC (s̄C , āC) +
⇥
rsC raC

⇤ 
Xs

Xa

�
+


Xs

Xa

�> 
XssC XsaC
X>saC XaaC

� 
Xs

Xa

�
,

fC (s̄C + Xs , āC + Xa) = fC (s̄C , āC) +
⇥
LsC LaC

⇤ 
Xs

Xa

�
+ f

00

C
,

with a Jacobian matrix L and second-order term f
00

C
that is computed by

5
(8)
00

C
=


Xs

Xa

�> "
L (8)

ssC L (8)

saC

L (8)>

saC L (8)

aaC


Xs

Xa

�

for every dimension 8 from 1 to 3B .

Learning 9

With these second-order approximations, we construct an approximate value func-
tions using the backward recursions, and obtain local time-varying linear controllers.
Due to its use of di�erentiation, this approach is known as di�erential dynamic pro-
gramming (DDP) [42]. One key di�erence between DDP and LQR is the requirement
of a trajectory about which to linearize the dynamics and cost. Therefore this algo-
rithm is iterative, where a forward pass computes the linearization trajectory, and
the backward pass performs local optimal control. The linearization trajectory in the
forward pass is obtained by simulating the current controller on the model of the
dynamical system. For iteration 8,

s8
C+1 = fC (s

8

C
, a8
C
), a8

C
= Q8�1

C
s8
C
+ k8�1

C
.

Due to the use of the Hessian, this optimization is equivalent to a Newton method
[13]. Given its local nature, line search routines are often used to ensure optimization
stability and convergence. One issue with DDP in practice is that the dynamics model
Hessians are high-dimensional tensors and therefore expensive to compute and slow
down optimization. Ignoring these terms, and using the Jacobians to approximate the
Hessians instead, is equivalent to Gauss-Newton optimization [13]. This approach
also requires careful regularization and line search for convergence, due to the
additional approximations. This approximate DDP method is known as sequential
LQR or iterative LQR (iLQR) [58, 104].

Approximate Dynamic Programming. An alternative strategy is to use func-
tion approximation for the value functions and policy. Given a set of transitions
(s8
C
, a8
C
, A
8

C
, s8
C
), C=1:) , 8=1:# over # rollouts, the stationary optimal value func-

tion and policy are iteratively estimated by using Bellman’s equation to compute
regression targets. We will cover the details of function approximation, and how the
approximate dynamic programming (ADP) [11] objectives are optimized, in more
detail in the next section. As ADP provides a means of performing optimal control
from sampled MDP transitions, it is the foundation on which many reinforcement
learning algorithms are constructed, which are discussed in more detail in Section 6.

3 Supervised Machine Learning: Acquiring Models from Data

This section will introduce some fundamental ideas from supervised machine learn-
ing for how to learn models from data. In the previous section, we assumed a fully
engineered dynamics model, which we used to perform optimal control. We also
already discussed the idea of function approximation to learn unknown value func-
tions and policies of approximate optimal control. This section aims to fill the gap
left for didactic reasons.

10 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Supervised machine learning is an important tool with many applications in Robot
Learning including:

• Learning models of unknown dynamical systems for control (i.e. using machine
learning for structure and system identification in Section 4).

• Approximate policies and value functions from samples policies in approximate
dynamic programming (Section 4) and reinforcement learning (Section 6).

• Approximate policies from experience or demonstrations (e.g., in imitation learn-
ing in Section 7).

• Learning other unknown robotics models, such as kinematic, sensor and camera
models.

We first consider the simplest model, a linear model [12], y = x], where y 2
R
3H
, x 2 R3G ,] 2 R3G⇥ 3H . Fitting = datapoints, where ^ 2 R=⇥ 3G , _ 2 R=⇥ 3H

and minimizing the squared error objective using the the L2 norm | · |
2 yields

]⇤ = arg min
]

|_ � ^] |
2 = (^>^)�1^>_ ,

which is known as the ‘normal equation’. When learning from only few datapoints,
we often require regularization of] to prevent overfitting to the observed data

]⇤ = arg min
]

|_ � ^] |
2
+ V

2
|] |

2 = (^>^ + V
2O)�1^>_ .

Adding a |] |
2 term into the objective to keep the weights small is known as ridge

or Tikhanov regularization, where V is a hyperparameter [12].
The simplicity of the linear model in x alone is often quite limiting. Thus, it

is popular to perform linear regression in a feature space q(x) 2 R3q instead,
which is a transformation of x. Such feature transformations include adding a bias
for a�ne models q(x) = [x 1]> or polynomial features for quadratic model, e.g.
q(x) = [G

2
1 G

2
2 G1G2 G1 G2 1]>. Moreover, we would also like to incorporate a notion

of uncertainty into our learned parameters and model predictions.

3.1 Bayesian Linear Regression & Nonparametric Gaussian Processes

In the introduction of linear regression so far, we have taken a so-called “frequen-
tist perspective” and assumed the existence of a single, unknown, optimal weight
parameter value]⇤. The fallacy of this assumption was evident in the need for pa-
rameter regularization, keeping the values small, in order to avoid overfitting when
presented with small sets of data. Bayesian methods take an alternative approach
where many parameter values are considered and their plausibility is assessed by
maintaining probability distributions over the model variables, initialized with a
prior distribution. Such probabilistic treatment has two key e�ects: The initial prob-
ability distribution (prior) regularizes the parameter updates, and propagating the
parameter uncertainty through the model provides uncertainty quantification of the

Learning 11

model’s prediction. Such predictive uncertainty can be used for downstream tasks
concerning safety, exploration and decision making – crucial in robot learning. The
catch with Bayesian methods is the increased complexity in the derivations and
implementations. While some Bayesian models can be learned in closed form with
exact inference, many are intractable and require approximate inference methods,
such as variational inference and Monte Carlo methods [6].

D��������� 3: B����’ T������
Bayes theorem is derived from conditional probability theory. When) is an
unknown model parameter, it is used to construct Bayesian statistical models.
Given a data likelihood ?(D|)) and a prior over parameters ?()),

?() |D)| {z }
Posterior

=

Likelihoodz }| {
?(D|))

Priorz}|{
?())

?(D)|{z}
Evidence

where the evidence, or marginal likelihood, is the probability of the data
given the model ?(D) =

Ø
?(D|))?())3) . The probability of the data

represents the normalizing constant for the probability density function in
Bayes rule; it is useful for model selection, i.e., for deciding which Bayesian
model is best for the data, and hyperparameter optimization.

When implementing Bayesian models, the fundamental tool is Bayes rules, which
describes the updated distribution (posterior) as a combination of the prior and
observed data (likelihood), as described in Definition 3. To provide a worked example
of Bayesian methods, consider estimating a position x using a noisy sensor y = x+n ,
corrupted by Gaussian noise n ⇠ N(0,f2O). To make an sensible estimate from
limited samples, we place a Gaussian prior on G which describes our initial guess
N(-0,⌃0). The sensor noise n defines our Gaussian likelihood. Given a single
estimate y1, the posterior distribution N(x1 |y1) is computed using Bayes rule in
closed-form

⌃1 = (⌃�1
0 +

1
f

2 O)
�1
, -1 = ⌃1 (⌃�1

0 -0 +
1
f

2 y1).

Note this update can be used recursively for new data, by using the posterior as the
subsequent prior. This aspect of Bayesian methods make them popular for localiza-
tion and state estimation [97, 23] when the Markov assumption is used.

Returning to regression, we focus on one-dimensional targets and place a mul-
tivariate Gaussian prior on w, and use Bayesian inference in a similar manner to
the small example above. The equations are summarized in Definition 4, and these
models are also known as Gaussian processes [91]. Note that when -0 = 0 and
⌃0 = O, the mean updated matches the ridge regression update above where V ⌘ f

2.

12 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

D��������� 4: G������� P������ �� B������� L����� R���������
For a linear model with Gaussian likelihood

H = q
>

xw + n , n ⇠ N(0,f2
),

where qx = q(x) with Gaussian prior w ⇠ N(-0,⌃0). For a dataset D of =
points {�, y}, � 2 R=⇥3q and y 2 R=⇥1, the weight posterior ?(w |D) is

w= ⇠ N(-=,⌃=), ⌃= =
✓
⌃�1

0 +
1
f

2
�>�

◆�1

, -= = ⌃=

✓
⌃�1

0 -0 +
1
f

2
�>y

◆
.

The closed-form Gaussian posterior predictive for query point x⇤ is

?(y⇤ | x⇤,D) = N(`H⇤ ,f
2
H⇤
), `H⇤

= q
>

⇤ -=, f
2
H⇤
= f

2
+ q
>

⇤ ⌃=q⇤.

Note that for Bayesian linear regression, the predictive uncertainty is now a
function of the input. This uncertainty can be broken down into two components

f
2
H⇤
= f

2|{z}
Aleatoric

+ q
>

⇤ ⌃=q⇤| {z }
Epistemic

.

Aleatoric uncertain describes that statistical uncertainty, for example sensor noise,
and is inherent to the problem independent from the dataset. Epistemic uncertainty
describes model uncertainty and arises from uncertain model parameters given on
the observed data. Once enough data is observed, Bayesian linear regression be-
comes more confident in w and the epistemic uncertainty disappears as ⌃=! 0.
Note that using just the (regularized) posterior mean, rather than the full posterior,
is called a maximum a posteriori (MAP) update [6].

What are the limits of feature regression? Designing features is a crucial design
choice in many machine learning applications, and the more features the richer the
modeling capacity. For this reason, features are often flexible and parametrized, and
then optimized using the evidence. For example, radial basis function (RBF; see
[12]) features q8 (x) = exp(�(x � c8)/2;2

8
) are defined by a centre c and length-

scale ;. An alternative approach for working with richer feature spaces is to use
kernel methods [37]. The kernel is the inner product of a feature space at two points
: (x1, x2) = q(x1)

>
q(x2), : : R3G ⇥ R3G ! R. Importantly, the kernel is always

a scalar function, regardless of the feature dimension 3q , and, thus, we can define
kernels that represent infinite feature spaces! By working purely with the kernel,
rather than the features explicitly, we can enjoy the benefit of the rich representation
while remaining computationally tractable. Two examples of kernels : (x1, x2) are

Learning 13

:RBF (x1, x2) = exp(�|x1 � x2 |
2
/2;2),

:arcsine (x1, x2) =
2
c

arcsin
©≠≠
´

2x̄1⌃x̄2q
(1 + 2x̄>1 ⌃x̄1) (1 + 2x̄>2 ⌃x̄2)

™ÆÆ
¨
, x̄ = [x, 1]>.

Such RBF kernel is derived from an infinite limit of RBF features, and is stationary
as it depends only on the distance between points. The arcsine kernel [126] is derived
from the limit of a single hidden layer neural network (see next section) with erf
function activations and a Gaussian distribution over the weights and bias. It is non-
stationary. To use kernels for Bayesian linear regression, we rewrite the posterior
update to use only the inner feature product, rather than the outer product [91]. This
model is described in Definition 5. The result is that the predictive distribution is
computed using the data directly, as we must use a data matrix Q = : (^, ^) that
computes the inner-products over the whole dataset. As the model is now explicitly
represented in a flexible manner using the data, rather than finite parameters that
need optimizing, we call it non-parametric. Non-parametric does not imply that there
are no parameters but that the number of parameters of the model grows implicitly
with the number of data points. Thus, the model complexity is now dependent on
the dataset size. This scaling is a quality, as model complexity increases with the
dataset size, but becomes an issue when working with very large datasets – both due
to computation and storage reasons.

D��������� 5: N��-���������� G������� P��������

Given a Gaussian likelihood ?(H |x,f2
) and kernel : , construct the data

matrix Q = : (^, ^) 2 R=⇥= from = data points. Again, there is a closed-
form Gaussian predictive ?(y⇤ | x⇤,D) = N(`H⇤ ,f

2
H⇤
),

`H⇤
= k⇤ (Q + f

2O)�1y, f
2
H⇤
= f

2
+ : (x⇤, x⇤) � k⇤ (Q + f

2O)�1k>⇤ ,

where k⇤ = : (x⇤, ^) 2 R1⇥=.

Due to the inversion of the data matrix used in the predictive distribution (Def-
inition 5), GP regression scales O(=

3
) with the dataset size. This computational

complexity has motivated sparse approaches to GPs that improve scaling through
approximation. Such approximations includes inducing points, which approximate
the dataset with fewer (optimized) samples [114], and random features, which ap-
proximate the kernel in a Monte Carlo fashion with a finite feature space [88].

While the description of GPs above is focused on the weight-space perspective,
GPs also permit a function-space view. The kernel, prior and likelihood can be
combined into a covariance function ⇠ (^) = f

2O + f
2
0 : (^, ^), which in turn de-

scribes the GP prior GP(<(x),⇠ (x)). Evaluating = inputs returns an =-dimensional
multivariate Gaussian. Sampling this Gaussian acts samples (evaluated) functions
from the function-space specified as the prior, as shown in Figure 4. Due to this

Learning 15

sively, we arrive at what are known as neural networks (NN), a biologically-inspired
architecture in which nonlinear features are built by propagating the intermediate
representations through linear transformations and nonlinear ‘activation functions’

Ĥ = q\ (x) =]= (... 52 (]2 (51 (]1x)))) =]= (... 52 (]2q\1 (x)))

=]= (... 52 (]2 l1)) =]= (...q\1 ,\2 (x)) =]= (...l2)
(3)

where each layer essentially consists of first applying a linear transformation] to
the layer input l8 , followed by a nonlinear activation function f (·) to yield the output,
which will be essentially the input to the next layer, i.e. l8+1 (x) = f8+1 (]8+1 l8 (x)).
The weights of the linear transformation contain the parameters that are to be learned,
the activation functions remain a choice to be made beforehand, and the layer input
depends on the output of the previous layer. Examples for activation functions are
the sigmoid, hyperbolic tangent or the rectified linear activation function (ReLU).
When combined, these layers produce feature that are optimized for fitting data. The
activation functions influence the nature of the features. For example, ReLU activa-
tions produce piecewise-linear features, while tanh activations produce features that
transitional smoothly between two saturation points. With this model structure, a NN
is defined by the width of each layer and the number of layers. An additional benefit
of this structure is that the model can perform representation learning by learning a
lower-dimensional intermediate representation of a high-dimensional input, such as
RGB images. These learned intermediate features indicate increased generalization
performance through the ability to compress the representation.

However, the question remains how to actually obtain the parameters, given the com-
plexity of the multi-layered representation and the nonlinear activation functions. We
will make use of gradient-based optimization and motivate automatic di�erentiation.
Consider the loss that is obtained by making a prediction with a two layered neural
network, i.e., ! (y, ŷ) with prediction ŷ(x) = f2 (]2 l1) = f2 (]2 f1 (]1x)). As we
want to minimize the loss, we have to adapt every parameter in the opposite direction
of the gradient of the loss function with respect to the parameter. Assume that we
calculated the prediction ŷ incrementally, in the forward path

l1 = f1 (]1x) l2 = f2 (]2 l1) ! (y, ŷ) = ! (y, l2).

We now determine each parameter’s influence on the loss by taking the appropriate
gradient in the backwards pass

m!

m ŷ
=

m!

m l2

m!

m]2
=

m!

m l2

m l2
m]2

m!

m]1
=

m!

m l2

m l2
m l1

m l1
m]1

.

As the individual gradients that emerge from the use of the chain rule can be calcu-
lated straightforwardly, and are actually reused for calculating the gradients for the
layers closer to the input, this combined procedure of forward and backward pass is
tractable and does scale to very deep networks. This combination of dynamic pro-
gramming and automatic di�erentiation is known as the backpropagation algorithm.

16 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Algorithm 3 Expectation Maximization for Model Learning

Initialization: Initial model parameters)0, measurements _ , initial state distribution ? (x1) ,
dynamics likelihood ? (xC+1 |xC ,)) and measurement model ? (yC |xC ,))
repeat

/* E-step: Bayesian filtering and smoothing of latent state trajectory given model and data
Trajectory posterior ? (^ |_ ,)8) by calculating ? (xC |y1:) ,)8) for C=1:)
/* M-step: Optimize) for expected log-likelihood objective given latent state trajectory
)8+1 = arg max) E^⇠? (·|_ ,)8)

[L (^ ,_ ,))]
until converged
return Learned model)

Finally, all the parameters are updated according to):+1 =): �Ur)! with learning
rate U.

It has been shown that feedforward neural networks are extremely powerful rep-
resentations and there exist theoretical proofs that one single layered neural network
is su�cient to represent any function [39, 19]. Yet, deeper networks can be seen as
performing a hierarchical decision process which in turn often simplifies the repre-
sentation of complex functions and results in requiring less parameters. While the
gradient based optimization scheme is very e�cient it also introduces several di�-
culties. Just to name two examples: the repetitive multiplication of gradients causes
very small gradients for the initial layers of deep networks, which slows optimiza-
tion. This phenomenon is known as ‘vanishing gradients’. Secondly, vast amount
of parameters and their ambiguous representation results in many local optima. To
counteract these issues, architectures with skip connections and the addition of mo-
mentum terms in the parameter update have been proposed. For more background
information and details, we refer the interested reader to [3, 30, 52, 99].

The combination of neural network features and Bayesian linear regression is
known as the neural linear model (NLM) [51, 78]. While such methods provide NNs
with uncertainty quantification, they are weaker at expressing uncertainty compared
to nonparametric GPs for fixed features. This weakness results from optimization
for the data when acquiring the learned features. Standard training does not enforce
feature diversity, therefore the model can be relatively overconfident outside of the
data distribution and especially between data points. As a result, such models need
to be trained in a way that specifically encourages feature diversity [51, 124, 123].
More generally, Bayesian neural networks (BNN) have a weight distribution over
all parameters [73]. The nonlinear nature of neural networks means that approxi-
mate inference is required for inference over all parameters, and poses a significant
challenge for achieving accurate inference for large models and datasets [41].

Learning 17

4 Model Learning for Control

After covering optimal control in Section 2, a logical approach for data-driven control
is to first learn an approximate dynamics model from data, and then apply optimal
control algorithms using that model. This approach is ubiquitous in practical robotics,
and is commonly known under the moniker of ‘model-based reinforcement learning’
(MBRL) or ‘optimal control with learned forward models’ in the context of Robot
Learning [22]. The idea of identifying model parameters for dynamical systems from
data is well-established in robotics as system identification [4, 112] while the model
structure is often computed using physical insights. In Robot Learning, ‘Model
Learning’ refers to the combination of system parameter and structure identification
using machine learning. This section will discuss model learning from the perspective
of Robot Learning, and follow-up with an overview of how optimal control can be
e�ectively applied to approximate dynamics models.

4.1 Model Learning: System Identification meets Machine Learning

System identification generally requires specifying a parametrized dynamics model
derived from physics, and then proposes a means of learning the model parameters
from data. The key consideration is learning model parameters that are physically
plausible, for example positive masses and lengths, which may require constrained
optimization or reparameterization to preserve the constraint [28].

In Section 3, we introduced feature regression and neural network function ap-
proximation, which fits data using more general, expressive models that take no
inspiration from physics. The use of such flexible models reduces the necessity to
carefully design and implement the model, but means more data coverage over the
domain of interest is required to fit these models su�ciently as generalization is no
longer guaranteed. In other words, physical plausibility is now enforced through data
coverage and not the inherent structure, which is problematic if the model is used
outside of the data distribution (OOD) or in increasingly high-dimensional spaces.
The benefit of these unstructured models is that they make no assumptions about the
data, which make them more widely applicable and simpler to implement. Crucially,
they are also able model phenomena that my not be captured by the physics model,
such as friction e�ects and other disturbances.

Viewing physics-derived models as ‘white-box’ models, and unstructured func-
tion approximators as ‘black-box’ models, we motivate an intermediate approach
of ‘grey-box’ modelling. Such ‘grey-box’ modelling could involve augmenting the
function approximators with inductive biases such as energy conservation [62], or
combining physics-based models with black-box components, capturing the resid-
ual error [76] or complex friction phenomena in the actuators [63]. The challenge
of grey-box modelling is capturing the necessary trade-o� in model structure, and
training the model such that each component learns its intended phenomena ade-

18 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

quately. While conceptually the white- and black-box components are distinct, during
learning they are inherently coupled.

Another important objective across the whole spectrum of models is the training
objective and algorithm. Dynamics models can be trained using forward or inverse
dynamics [77]. Forward dynamics can be trained for single-step prediction, or could
be trained to minimize multi-step prediction error to improve long horizon perfor-
mance [77]. Gradient-based optimization can also be used, either using analytical
gradients or automatic di�erentiation. However, care must often be taken to ensure
physically plausible parameters using constraints or virtual parameters [117, 106, 63].
Taking the inference perspective, the expectation-maximization (EM) algorithm can
be used [24], which naturally incorporates model-based data smoothing into the
system identification procedure (Algorithm 3). While EM is be performed exactly
for linear Gaussian dynamical systems [103], it required approximate inference for
nonlinear dynamical systems [29, 101].

4.2 Optimal Control for Approximate Dynamics Models

Combining the ideas from Section 2 and 4.1, a viable approach to data-driven
control is combining optimal control algorithms with learned dynamics models.
Compared to model-free methods (see Section 6), that perform more of a trial-and-
error approach for learning, combining finite-horizon optimization with approximate
dynamics incorporates an inductive bias that improved the sample e�ciency of learn-
ing, reaching better performance with less experience. For example, assuming local
extrapolation of the approximate dynamics, the planning of optimal control should
direct data-collection towards regions where either the model uncertain or constitute
approximately optimal trajectories. Model-free exploration lacks such an informed
search strategy. A key pitfall of model-based, data-driven control is designing opti-
mal control solvers to operate e�ectively under model error. For example, optimal
controls solvers are encouraged to exploit model errors that improve control perfor-
mance, that could lead to catastrophic controls that damage the robot, as they have no
indication of the model accuracy. For example, consider a navigation task of a maze
where the robot assumes that walls do not exist. Greedily optimizing for navigation
would lead to repeated crashing rather than a safer exploration strategy. One means
to alleviate this greedy phenomena is to use Bayesian models for the dynamics,
and use the epistemic uncertainty as a measure for possible prediction error [100].
Maintaining a distribution over the future state trajectory, the expected future reward
evaluation is regularized by the uncertainty. To appreciate why, consider a quadratic
state reward with a Gaussian belief in the state. Due to the quadratic law, the expected
reward incorporates the state variance as well as the mean

A (G) = �G2
, G ⇠ N(`,f

2
), A (E[G]) = �`2

, E[A (G)] = �`2
� f

2
.

Learning 19

As E[A (G)]  A (E[G]), incorporating the uncertainty in our state predictions into
reward evaluation will regularize the expected reward as long as uncertainty exists.
However, computing an accurate trajectory distribution can pose a challenge in the
nonlinear case due to the necessity of approximate inference methods.

Another issue with model-based reinforcement learning is long-horizon pre-
diction. Compounding prediction errors render long-horizon planning inaccurate,
especially if the model is trained using one-step prediction error. To avoid these
prediction errors, model predictive control (MPC) [67] is often used for MBRL.
MPC uses replanning each time step over a shorter time horizon, in order to reach to
prediction errors or disturbances. The consequence of this adaptivity is greater com-
putational cost due to the repeated replanning computation. Another benefit of MPC
is the amortization of the optimal control problem, which can avoid convergence to
local optima for complex tasks such as locomotion [113].

Finally, optimal control methods are designed for true dynamics functions, which
are generally continuous and smooth by definition or for numerical reasons, e.g.
smooth contact models. Learned dynamics models, especially neural networks with
discontinuous activations, do not behave in this smooth fashion and may have a
‘rough’ quality. Due to this aspect, gradient-based optimal control solvers are less
suitable for optimization, as they will likely su�er numerical issues or get stuck
in local optima. Some approximate model classes, such as kernel-based and time-
varying linear models, are well-suited to gradient-based optimization [21, 56]. As
a result of this phenomena, sample-based black-box optimization methods, such as
the cross-entropy methods (CEM) [95], have become a popular MPC solver for deep
MBRL [17, 127].

5 Policy Representations for Robotics

A policy c(a |s) is a function that maps a state s 2 S to an action a 2 A. In Section
2, the optimal control derivation returned the form of the policy, which was derived
to be discrete or time-varying linear. In the context of learning a robot policy by
reinforcement learning (Section 6) or imitation learning (Section 7), the choice of
the parameterized model to represent a policy is no longer defined and will directly
influence in the behaviour of our robot. We desire the policy to have properties that
facilitate safe and e�ective learning in continuous state and action spaces. Desirable
properties for such policies could include stability, smoothness or adaptability to
name a few.

5.1 From Torque Control to Motion Generation

To properly impose the desired properties in the policies, it is common to abstract
from the robot control signals and model our policies as motion generators. In

20 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

robotics, the common action space is the torque signal g applied on each joint of the
robot. The state s = [q, §q, c]> is composed of both the joints position and velocity
information, q, §q and the additional sensors input c. Thus, a robot policy is a function
that computes a desired torque signal given both the joint’s and the sensors input,
g = c(q, §q, c). To properly integrate the desired properties of stability, smoothness
or adaptability, we can abstract from the torque signal and control the robot directly
in the motion space, •q = c(q, §q, c). Given the robot’s dynamics model is usually
known,

S (q) •q = g � c(q, §q) � g(q)

with S is the inertia matrix, c the Coriolis and centrifugal forces and g the gravity
vector; we can smartly model the torque policy to set the desired acceleration in the
robot. With g = S (q) •qdes + c(q, §q) + g(q), the robot’s joint acceleration is •q = •qdes

as long as the inertia matrix is invertible. Given this change of variables, the policy
becomes a dynamical system. As we will show along this section, imposing a set of
desired properties in our policy models becomes trivial when modelling the policies
as dynamical systems. These motion generator type policies are widely known as
movement primitives.

5.2 Types of Movement Primitives

The literature in movement primitives is vast. Depending on the desired properties,
a wide set of policy models are proposed that can cover di�erent desired properties
from stroke-motion primitives, periodic primitives, orientation primitives or space-
constrained primitives. In this section we introduce three motion primitives that
are representative of di�erent classes of primitives. We will introduce, phase and
state dependant primitives c(q, §q, Z), phase dependant primitives c(Z) and state
dependant primitives c(q, §q).

Dynamic Movement Primitives (DMP) [98, 40] represent a globally-stable, ro-
bust and adaptable parameterized dynamic system that can learn highly nonlinear
dynamics. The model is composed of two elements: a state-dependant second order
linear attractor and a time dependant nonlinear forcing term that reshapes that linear
dynamics to follow the desired nominal behaviour.

Learning 21

D��������� 6: D������ M������� P���������
A dynamic movement primitive for a single degree-of-freedom trajectory @,
of a point-to-point movement is defined by

g •@ = U(V(6 � @) � §@) + 5 (Z), g §Z = �WZ ,

with U and V the gains of the linear attractor, 6 the target position, W the gain
for the phase dynamics and 5 the nonlinear forcing term. The forcing term
is modelled to become zero when Z approaches to zero.

A common choice to represent the forcing term is by a linear weighting of a set
of basis functions, q

5 (Z) =
Õ

:=0 F:q: (Z)Õ

:=0 q: (Z)

with each basis function modelled by an exponential basis function

q: (Z) = exp(�(Z � `:)
2
/f:).

The exponential basis function tends to zero the further Z is from the center `: , so
the forcing term will tend to zero the bigger the phase is, limZ�!1 5 (Z) = 0. Addi-
tionally, dynamic movement primitives allows to adapt to di�erent target positions
by changing the target state 6 while mantaining the nonlinear shape due to the forcing
term 5 .

Probabilistic Movement Primitives [79] represent phase dependant, probabilistic
motion primitives for both stroke and periodic movements. The proposed model
is composed of two parts. The time dependant desired position is computed by a
linearly-weighted sum of basis functions

?(q | Z , w) = k(Z)
>w + n@ , n@ ⇠ N(0,f2

)

with additional white noise. Then, rather than having fix values for the weights w as
in DMP, we assume they are sampled from a Gaussian distribution

w ⇠ N(w |-w ,⌃w)

This is closely related to the Bayesian linear regression model from Section 3, with
phase Z as the input and the trajectory as the target, but it is used as generative
model [6] rather than a regression model. Training these models is similar to direct
regression when a unique latent trajectory is assumed. For modelling a more diverse
distribution over trajectories, an EM procedure is used instead.

22 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Fig. 5: A visual example of learned stable vector fields given a set of letter shape tra-
jectories demonstrations [119]. The field produces stable limit cycles that reproduce
the expert demonstrations in a time-invariant fashion.

D��������� 7: P������������ M������� P���������
A probabilistic movement primitive (ProMP) represents a distribution in
the position, q in terms of the weights w, that belongs to a distribution
parameterized by)

?(q |Z ,)) =
π
w
?(q |Z , w)?(w |))dw =

π
w
N(q |k(Z)w,f2O)N (w |`w ,⌃w)dw

= N(q |k(Z)`w ,k(Z)⌃wk
|
(Z) + f

2O)

In contrast with dynamic movement primitives that directly provides the desired
acceleration; ProMP proposes to learn a distribution in the position. Therefore, to
control the robot we assume a tracking controller that exactly reproduces the given
trajectory distribution.

Stable Vector Fields (SVF) [45, 46] are a set of state dependant dynamic systems
that are stable by construction. Di�eomorphism based SVF can represent nonlinear
dynamics while remaining stable towards a target or a limit cycle (Fig. 5). In contrast
with DMPs or ProMPs, these motion primitives depend only in the robot state and
do not require an additional phase variable. This property makes them an ideal
choice for reactive motion generation or human-robot interaction, given they will
naturally adapt their movements without the requirement of a phase estimation. One
possible approach to build SVF is by exploiting a set of di�eomorphic functions.
Di�eomorphism-based SVFs [74, 119, 90] are a family of dynamic systems that
are composed of two parts. First, a globally stable linear dynamic system is defined
in a latent space §z = �z. Then, a parameterize di�eomorphic function, � is given
between the observation space Q and the latent space Z.

Learning 23

D��������� 8: D�������������-����� S����� V����� F�����
Given a globally stable dynamic system §z = 6(z) in a latent space Z and
a di�eomorphic map from the observation space Q to the latent space Z,
� : Q �! Z, then the dynamics in the observation space

§q = P�1
� 6(�(q))

are also globally stable.

SVF usually represent first-order stable dynamic systems. To control the robot,
we can apply an error correction in the acceleration

•qdes = U(§qdes � §q).

To model the di�eomorphic function �, several representations has been proposed
from Gaussian processes to invertible neural networks [119], such as those used in
normalizing flows.

6 Reinforcement Learning

A compelling notion from cognitive science and artificial intelligence is the ability
to learn optimal decision making from experience, improving performance through
trial and error in a systematic fashion [110]. Section 2 showed how to solve optimal
control using value function methods, namely value iteration (Algorithm 1), policy
iteration (Algorithm 2). These methods recover the optimal policy by maximizing
the state-action value function c

⇤
(B) = arg max

0
&
⇤
(B, 0). Although theoretically

sound, these methods make strong assumptions that do not always hold in practice.
Section 2.3 discussed the challenges and approximations required for nonlinear
optimal control, when the value function and optimal policy can not be obtained
exactly. Section 4 highlighted the strong assumption of knowing the dynamics model,
and the challenges faced when combining optimal control solvers with approximate
dynamics models.

This section looks at model-free reinforcement learning, which covers a broad
range of methods. These approaches include value-based methods (Section 6.1),
which develop on the idea of approximate dynamic programming. An alternative
strategy is to optimize the policy directly, using a broad of numerical methods (Sec-
tion 6.2). Policy gradient approaches use gradient estimation methods to obtain low
variance updates from policy evaluation data, and policy search methods in general
use a range of numerical methods for optimizing the policy. We will discuss episodic
relative entropy policy search, which uses inference-based methods for proximal
optimization. When moving from optimal control to reinforcement learning, an-
other key aspect is exploration, which is arguable orthogonal to optimal control but
essential for e�ective exploration.

24 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

6.1 Value Function Methods

In Section 2.3, we discussed approximate dynamic programming, where value func-
tions and policies are obtained using function approximation. As this approach is
already a combination of optimal control and machine learning methods, it translates
naturally into a reinforcement learning approach.

D��������� 9: I������� H������ O��������

�c = Es0⇠`0 , sC+1⇠P(sC , aC) , aC⇠c (sC)
⇥Õ
1

C=0 W
C
A (sC , aC)

⇤
= Es0⇠`0 [+

c

(s0)] ,

with initial state distribution `0, transition probability distribution P, and
discount factor 0  W < 1 that trades o� the short term and long-term
rewards.

In contrast to Section 2, classical reinforcement learning is typically directly
formulated for the infinite horizon objective as in Definition 9 [110], which is easier
in the discounted formulation introduced here (it can be introduced straightforwardly
in Section 2 but was omitted for simplicity). Definition 10 introduces, the state and
state-action value functions for continuous spaces, and the corresponding optimal
ones from Bellman’s principle of optimally.

D��������� 10: V���� F�������� �� A�������� P�������
The value functions induced by policy c, used in policy iteration

+
c

(s) = Ea⇠c (s)
⇥
A (s, a) + WEs0⇠P(s,a) [+

c

(s
0
)]

⇤
,

&
c

(s, a) = A (s, a) + WEs0⇠P(s,a) , a⇠c (s) [&
c

(s
0
, a
0
)] .

The optimal value functions, used in value iteration

+
⇤
(s) = max

a
A (s, a) + WE s0⇠P(s,a) [+

⇤
(s
0
)] ,

&
⇤
(s, a) = A (s, a) + WE s0⇠P(s,a)


max

a0
&
⇤
(s
0
, a
0
)

�
.

With ADP, given a set of # transition samples from a policy acting on an environ-
mentD = {s8 , a8 , A8 , s

0

8
}8=1,...,# , and without access to the transition model, we use the

samples to learn the+ and& functions using temporal di�erence (TD) learning [109].
To understand TD learning let us start first with its tabular version. Given a single
transition (sC , aC , AC , s

0
C
), we want to update the+ function. If we have an estimate for

the value function, and using definition 10 we write + (sC) ⇡ +̂ (sC) = AC + W+ (sC+1).
Let us define the TD error as XC = +̂ (sC) � + (sC) = AC + W+ (sC+1) � + (sC), which is
then used to update the current value as

+new (sC) = + (sC) + UXC = (1 � U)+ (sC) + U(AC + W+ (sC+1)),

Learning 25

Algorithm 4 Temporal Di�erence Learning for acquiring +
c

Init: +0 (s) 0, C = 0, U 2 [0, 1]
repeat C = C + 1

Observe transition (sC , aC , AC , s
0
C
) using policy c

/* Compute TD error
XC = AC + W+C (sC+1) � +C (sC)

/* Update value function
+C+1 (sC) = +C (sC) + UXC

until Convergence of +
return Value function + c

where U 2 [0, 1] is an hyperparameter to control the update. With U=1 the new
value is solely based on the prediction. Note that if the TD error is positive, then the
value increases, and otherwise it decreases. The TD learning sampled-based version
for computing the value function of a policy c in discrete spaces is presented in
algorithm 4.

To obtain an optimal control policy from a value function we instead learn the
state-action value function &, whose TD update equations for &-functions are

XC = AC + W&C (sC+1, aC+1) �&C (sC , aC)

&C+1 (sC , aC) = &C (sC , aC) + U XC .

There are two ways to choose the action aC+1 used for the next-state esti-
mate. In the SARSA4 algorithm, aC ⇠ c(·|sC) [96]. These samples are on-policy
and produce estimates of the current &-function. In the &-learning algorithm,
aC = arg max

a
&C (sC , a) [122]. These samples are o�-policy, because aC+1 is obtained

using & rather than c, and produce &-function estimates of the optimal policy. Note
that this action selection only tells us which action we should select to estimate the
&-function at the next-state.

As the agent is traversing the environment, we still need to decide which action
to take in the current state. Should we take the best action according to our current
estimate, or should we take another action at random? Behaving optimally and
using the best action is known as ‘greedy’ behaviour, and may result in converging
to local optima. Random actions perform exploration, but are suboptimal policies.
This phenomenon is a well-established problem in reinforcement learning literature,
known as the exploration-exploitation trade-o� [110]. Two common strategies to
ensure exploration are the Y-greedy and softmax policies (Definition 11).

4 SARSA stands for state–action–reward–state–action.

26 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Algorithm 5 &-Learning

Init: & (s, a) arbitrarily, 8s 2 S, 8a 2 A, & (s is terminal, ·) = 0, U 2 [0, 1]
repeat for each episode

/* Sample an initial state
s s0
repeat for each step

Sample a from exploration policy (Y-greedy, softmax)
Observe transition (s, a, A , s

0
)

/* Update the &-function
& (s, a) & (s, a) + U [A + Wmaxa0 & (s

0
, a
0
)]

s s
0

until s is a terminal state
until Convergence of &
return &

⇤

D��������� 11: E���������� P�������

Y-greedy policy: c(a|s) =

(
arg max

a0
&(s, a

0
) with probability 1 � Y

other action with probability Y

Randomly switches between optimal and random actions.

Softmax policy: c(a|s) =
exp (V&(s, a))Õ
a0 exp (V&(s, a0))

Sample from a Boltzmann distribution, which originated from statistical
thermodynamics, ?(a|s) / exp(�⇢ (s)/)) with energy⇢ (s) and temperature
) , where the &-function is the negative energy function and V is the inverse
temperature.

Using these exploration strategies, the &-learning algorithm [122] (Algorithm 5)
is a classic method to learn an optimal &-function, and the basis for many of the
recent deep reinforcement learning algorithms such as deep Q-learning (DQN). In
the tabular version, this algorithm is proven to converge as long as all states and
actions are infinitely visited and U! 0 as training progresses.

Due to the curse-of-dimensionality, we cannot use the tabular version of &-
learning for continuous state spaces. For policy evaluation, we can approximate the
value function with a function approximator, e.g. a neural network with parameters
5, & c

(s, a) ⇡ &5 (s, a). Assuming &5 is di�erentiable w.r.t. 5, to find the optimal
parameters we can use a combination of TD learning and stochastic gradient descent
on a mean squared error (MSE) of sampled transitions D = {s8 , a8 , A8 , s

0

8
}8=1,...,#

following a policy c. Using bootstrapping, we iteratively optimize the value function
parameters 5⇤ = arg min5 LBS (5),

Learning 27

LBS (5) ⇡
1
#

#’
8=1

⇣
&̂
c

(s8 , a8) �&5 (s8 , a8)

⌘2
,

&̂
c

(s8 , a8) = A (s8 , a8) + WEa0⇠c (· |s)

⇥
&5 (s

0

8
, a
0
)
⇤
,

5:+1 = 5: � U:
d

d5
LBS (5),

where &̂
c is a bootstrapped target. In the context of value function learning, boot-

strapping (BS) means that we use the old approximation to get the target values for
a new approximation. Given an o�ine dataset of transitions, and a parametrized
approximation &5 , the fitted &-iteration algorithm uses a similar approach to &-
learning to find the (local) optimal parameters 5⇤ that minimize the bootstrapped
MSE [25, 93].

Learning value function approximations with TD learning and stochastic gradient
descent presents several challenges. One is that it is not a ‘proper’ gradient descent
routine, because the target values change after each parameter update. Nevertheless,
for the target we ignore this aspect and keep the parameters 5 fixed [68]. This
approach introduces a bias in the optimization, which means we are optimizing
a di�erent objective than the mean squared error. In certain cases the optimization
procedure can even diverge, for example when training with o�-policy samples [120].
One workaround is to maintain two value functions, where one is used for the target
values and another is updated, and the target function is updated at a slower pace [68].

6.2 Policy Search Methods

Value function methods are well motivated and developed, but if we are only in-
terested in the optimal policy, the added complexity of modelling the approximate
value functions and ill-posed bootstrap training can introduce many issues. Many
of these problems can be avoided by performing policy search [22, 82]. Instead of
learning value functions to obtain a policy, we can learn the policy directly. More-
over, using task-specific policies is possible and beneficial, as discussed in Section
5. For instance, for a robotic task it seems more reasonable to learn the parameters
of a dynamic movement primitive instead of a generic &-function [98, 71].

For value-based methods, we used the &-function to sample from a Boltzmann
distribution. For policy search methods, we can parametrize the policy distribution
explicitly. Similarly, for a Gaussian policy, which are popular for continuous control,
we have c(a|s;)) = N(-) (s),⌃) (s)) [32], a Gaussian process as seen in Section 3.

To make our explanation of model-free policy search clearer, we describe a generic
procedure in Algorithm 6.

28 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Algorithm 6 Generic model-free algorithm to learn c
⇤

Init: current policy c:
repeat

/* Exploration
Generate (multiple) trajectories 3 following the current policy c:
/* Policy Evaluation
Assess the quality of the whole trajectory or single actions
/* Policy Update
Compute new policy c:+1 using the trajectories and evaluations

until Convergence of c
return c

⇤

An important distinction in policy search methods is whether we learn the policy
parameters) in an episodic or step-based manner. The distinction of both methods
is in the policy evaluation and update parts in Algorithm 6.

6.3 Episodic Policy Search

In episodic policy search, we learn a high-level policy that encodes a search distri-
bution c();8) over the parameters of a lower-level policy c(a|s;)). For instance,
c();8) can be a Gaussian distribution c();8) = N ();8={-,⌃}). Often in this
context the lower-level policy is a deterministic policy a = c(s;)), which reduces
the variance in the returns and allows for smooth exploration in the real robot [22].
Algorithm 7 shows the generic approach to episodic policy search.

D��������� 12: E������� P����� S�����
Formally, episodic policy search solves the problem

8⇤ = arg max
8

�8 = arg max
8

E)⇠c ();8) ['())] ,

where '(\) is the expected episodic return of the lower-level policy.

Using the Gaussian process perspective from Section 3, we can see the high-level
as the weight distribution that’s iterative updated using the data (episodic experience)
and the lower-level policy is the regression model itself.

Policy Gradient. Solving the policy update in Algorithm 7 without any constraints
involves maximizing an expectation. For that we can resort to gradient-based meth-
ods, which include the computation of a gradient estimate, followed by a policy
update by applying that gradient with a learning rate U, 8:+1 = 8: + Ur8�8 , where
the gradient can be estimated using methods such as finite di�erences or likelihood
ratio gradients (Definition 13) [81, 70].

Learning 29

Fig. 6: Illustration of a policy update in parameter space under a Gaussian parameter-
ization. The grey circles represent samples from the initial policy, and their size the
corresponding reward. The updated policy Gaussian (red) was approximated from
the weighted samples. The REPS algorithm applies a constraint to this update in
terms of the KL divergence between the posterior and prior parameter distributions.

D��������� 13: L��������� R���� E������� P����� G�������
The likelihood ratio gradient of the expected return �8 = E)⇠c ();8) ['())]
is given by

r8�8 = r8
Ø
c();8)'())d) ⇡ 1

#

Õ
#

8=1 r8 log c() 8;8)'
8
.

Usually an 8-independent baseline 1 is subtracted to '
8 to obtain a lower

variance gradient estimate, while keeping the estimator unbiased.

Probabilistic Search. To overcome the premature convergence seen with some
policy gradient methods, an alternative is to perform a gradient step by considering

Algorithm 7 Generic episodic policy search algorithm

Init: initial upper-level policy c ();80)

repeat

/* Exploration
Sample lower-level policies from the upper-level distribution)8 ⇠ c ();8:) , 8 = 1, . . . , #
/* Policy Evaluation
Collect returns Depisode = {)8 , '8

}8=1,...,# , with '8 =
Õ

)�1
C=0 A

8

C

/* Policy Update
Obtain a new policy c ();8:+1) based on Depisode

until Convergence of c ();8)

return c ();8⇤)

30 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

the underlying probability metric [125]. However, in this approach a learning rate is
still an hyperparameter to be tuned. A di�erent direction is to write the optimization
to ensure that policy updates are only Y-apart in distribution space, according to the
KL-divergence. This idea is behind the episodic version of the relative entropy policy
search (REPS) algorithm (Definition 14) [80], which does not solve the policy update
by gradient updates, but rather by solving the constrained optimization problem
in closed-form using Lagrangian multipliers. The update resembles the recursive
Bayesian update, see Section 3, where the exponential return acts as an unnormalized
likelihood. As a result, approximate inference methods such as importance sampling
as used to update the parameter distribution (Figure 6).

D��������� 14: R������� E������ P����� S�����
Episodic policy search can be formulated as a relative entropy search problem

max
c ();8)

π
c();8)'())d) s.t. ⇡KL [c();8)k@())]  Y,

π
c();8)d8 = 1,

where in a sequential policy update @ is usually the previous (or initial)
policy. The closed-form solution to this maximization problem is

c();8) / @()) exp ('())/[⇤) ,

where [
⇤ is the Lagrangian multiplier that results from minimizing the dual

function [
⇤ = arg min

[
[Y + [log

Ø
@()) exp ('())/[) d) .

6.4 Step-based Policy Search

Contrary to episodic policy search, which explores in parameter space, in step-
based methods the exploration is done in the action space by the lower-level policy
c(a|s) [22]. Algorithm 8 shows the generic approach to step-based policy search.

D��������� 15: S���-����� P����� S�����
Formally, step-based policy search solves the problem

)⇤ = arg max
)

�) , �) = E3⇠`0 ,P,c) ['(3)] =
π

?(3;))'(3)d3,

where 3 = s0a0 . . . s) �1a) �1 is a state-action trajectory, `0 is the initial state
distribution, P the transition dynamics, c) the parametrized policy, and '(3)
the trajectory return.

Learning 31

Algorithm 8 Generic step-based policy search algorithm

Init: initial lower-level policy c (a |s;))
repeat

/* Exploration
Sample trajectories 38 using the (stochastic) lower-level policy
/* Policy Evaluation
Collect step-based returns Dstep = {s

8

C
, a

8

C
,&

8

C
}C=0,...,)�1;8=1,...,# , with &8

C
=

Õ
)�1
⌘=C A

8

⌘

/* Policy Update
Obtain a new policy c (a |s;):+1) based on Dstep

until Convergence of c (a |s;))
return c (a |s;)⇤)

The step-based exploration and policy evaluation are straight forward to compute,
but how do we approach the policy update? We can again use a gradient-based
approach and perform gradient ascent on the objective �) . Again, we make use
of the likelihood ratio trick to compute the gradient of an expectation. With the
Markovian structure of the MDP we write the trajectory distribution as ?(3;)) =
?(s0)

Œ
) �1
C=0 ?(sC+1 |sC , aC)c(aC |sC ;)). The likelihood ratio gradient results in

r)�) =
π

?(3;))r) log ?(3;))'(3)d3

=
π

?(3;))r)

) �1’
C=0

log c(aC |sC ;))

!
'(3)d3, (4)

where we used the fact that the transition probability does not depend on) .
Hence, to compute the policy gradient, it su�ces to be able to sample trajectories

from the environment, without requiring the analytical form of the model. The
return of the trajectory '(3) can be decomposed further, by noticing that rewards
that appear before the state and action at time C can be dropped, since they were
not caused by future states and actions [8]. After some algebraic manipulation and
noticing that rewards to come after a state-action pair are simply the &-function, we
arrive at the policy gradient theorem in Definition 16 [111].

32 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

D��������� 16: P����� G������� T������
The policy gradient theorem computes the gradient of the infinite horizon
objective from Definition 9 w.r.t. the policy parameters as

r)� ()) = E s⇠`
c

W

π
r)c(a|s;))& c

(s, a)da

�

= E s⇠`
c

W

π
c(a|s;))r) log c(a|s;))& c

(s, a)da

�
,

where `
c

W
is the discounted state distribution, `

c

W
(s) = (1 � W)3

c

W
(s) =

(1 � W)
Õ
1

C=0 W
C
%(sC = s|s0, c), with s0 the initial state.

An important conclusion of this theorem is that we need only to be able to
sample from the discounted state distribution, but do not need to compute
its gradient. In practice, to reduce the estimator’s variance, while keeping its
unbiasedness, the & function estimate is replaced by the advantage function
�
c
(s, a) = &

c
(s, a) �+

c
(s).

6.5 Episodic- or Step-based Policy Search?

There are clear benefits and drawbacks of both approaches, and both methods should
be considered taking into account the robotic application.

Some characteristics of the episode-based methods are the exploration in parame-
ter space, which allows for more sophisticated exploration strategies of deterministic
policies that can be deployed in a real robot [48, 85]. It is e�cient for a small amount
of parameters (up to ⇠100); generalization and multi-task learning of open-loop
policies such as DMPs. It is also a structure-less optimization problem and it can
be solved with any black-box optimizer, such as genetic algorithms or Bayesian
optimization [15].

Some characteristics of the step-based methods are exploration in action space
allows for finer grade exploration at every time step. A stochastic exploration in
action space is di�cult to deploy in the real system and correlated exploration is
needed [121]. Future rewards can be traced to a particular action, which leads to better
credit assignment [108]. There is less variance in policy evaluation, and there are
more data points to update the policy. It is less likely to create unstable policy updates,
as it uses the structure of the MDP. The policy gradient theorem shows that we can
update the policy immediately after collecting a single sample [111, 59, 26, 32].

Learning 33

7 Imitation Learning

In contrast to reinforcement learning, in imitation learning we optimize a policy to
imitate a set of provided demonstrations. It is common to classify imitation learning
algorithms between those that aim to learn an explicit action generator (policy)
c : S �! A, that generates actions similar to the ones from the demonstrations and the
algorithms that aim to learn an implicit state-action function (reward) A : S⇥A �! R
that will learn to set a high reward to those state-action pairs that are similar to the
ones in the demonstrations. We will refer to the first as imitation learning and to the
second as inverse reinforcement learning algorithms.

7.1 Learning Policies by Imitation

In this subsection, we introduce a set of algorithms to learn a robot policy c given a
set of state-action demonstrations D. Behavioral cloning (BC) refers to the approach
of directly learning a conditioned distribution from a set of demonstrations

c
⇤ = arg max

c

Es,a⇠? (D) [log c(a |s)], (5)

which is closely related to regression or density estimation. An alternative approach
considers the problem of learning a policy that matches the state-action occupancy
distribution of the expert demonstrations

c
⇤ = min

c

k(dc , dD) � _H(c) (6)

withk being a divergence distance that measures how close the stationary distribution
of the expert demonstrations and the policy are. H(c) is the ‘causal entropy’ of the
policy that helps during the learning process by regularizing c. We call this approach
apprenticeship learning (AL) [36]5.

Behavioral Cloning. Revising Equation 5, the BC approach directly models the
condition action-state distribution using regression or density estimation. As a result,
it can be used o�ine and does not require online data collection. While this method
is very e�ective for many problems, the limitations of naive behavioral cloning are
clear from the formulation. The approach needs many demonstrations to generalize
e�ectively and it may easily su�er from covariate shift [86]. In regression, covariate
shift refers to the performance degredation when a model is used outside its training
data distribution. For BC, it manifests as a policy that cannot act or recover in
unseen states. Given the problem of behavioral cloning only optimizes over the
instant state-action pairs; if the robot finds itself in a state that does not belong to

5 Note, apprenticeship learning is sometimes used interchangably with imitation learning in the
older literature.

34 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Fig. 7: Performance of a learned policy for helicopter acrobacy. The policy was
trained by apprenticeship learning to mimic a set of expert demonstrations doing
acrobatics [18]. Figure reproduced with permission from Pieter Abbeel.

the demonstrations, the robot has to rely on extrapolation and interpolation to know
what action to take.

A possible solution to this problem is given by DAGGER [94]. This algorithm
proposes to measure how certain the robot is in a particular state. By computing the
state distribution, if the robot lies in a state that was not in the demonstrations, the
robot will be uncertain on which action to take. If the robot is uncertain, it will ask
the teacher for additional demonstrations. These demonstrations will be added to
the set of demonstrations and the robot will re-learn the policy. DAGGER proposes
to solve the imitation learning problem by actively increasing the demonstrations
dataset.

Another solution is proposed by DART [50]. This algorithm, rather than querying
additional demonstrations from the teacher, it will inject additional noise in the
action while the teacher provides demonstrations. This noise injection allows to
generate more diverse demonstrations and encourages robust policies. The recorded
demonstrations will provide information on how to recover from states close to the
optimal trajectories.

Apprenticeship Learning. In contrast with behavioral cloning, apprenticeship
learning proposes to learn a policy that matches the stationary state-action pairs
rather than the conditioned distribution. The obtained policy is going to be more
robust than the policies learned by behavioral cloning. On the other hand, appren-
ticeship learning methods require a dynamic model from which new samples can be
generated, or online samples.

Di�erent apprenticeship learning algorithms have proposed di�erent divergence
distances k, to measure the distance between the occupancy distributions d(s, a).
The classical apprenticeship learning [2] proposes to model the distance metric k

by contrastive divergence

k(dc , dD) = max
2

Es,a⇠dc [2(s, a)] � Es,a⇠dD [2(s, a)]

while a more modern approach, generative adversarial imitation learning (GAIL) [36],
gets inspiration from generative adversarial networks (GAN) and substitute the con-
trastive divergence by the Jensen-Shannon divergence

Learning 35

k(dc , dD) = max
2

Es,a⇠dc [log(2(s, a))] + Es,a⇠dD [log(1 � 2(s, a))] .

In practice, apprenticeship learning algorithms combine a reinforcement learning
phase with a cost learning phase. Given an initial policy c a set of trajectory demon-
strations are generated by evaluating the policy on the system. The cost function
2(s, a) is trained to set high cost to the samples generated by the policy c and low
cost to the samples generated by the demonstrations. Then, the policy is trained by
reinforcement learning to maximize over the cost function 2(s, a). By iteratively
training both the cost and the policy, the policy will learn to generate trajectories
that match the stationary distribution of the expert demonstrations. One of the most
successful use cases of apprenticeship learning is for helicopter acrobacy learning
(Fig. 7). A policy trained on human expert demonstrations was able to perfectly
mimic the expert on doing acrobacies in the sky.

7.2 Learning Rewards from Data: Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) deals with the problem of learning the reward
function A : S ⇥A �! R that the expert demonstrations are trying to maximize [75].
While most of the apprenticeship learning algorithms learn a proxy reward function,
in this section we will focus in the learning of the reward itself.

The problem of inverse reinforcement learning can be framed as finding the true
reward A

⇤
(sC , aC) where

EaC⇠cD (sC) , sC+1⇠? (· |sC ,aC) , s0⇠? (s0)

"’
C

W
C

A
⇤
(sC , aC)

#
�

EaC⇠c (sC) , sC+1⇠? (· |sC ,aC) , s0⇠? (s0)

"’
C

W
C

A
⇤
(sC , aC)

#
, 8 c 2 ⇧.

such that the reward A
⇤ is maximized for the behavioral cloned policy cD compared

to the other policies in a set ⇧. The problem definition is challenging given it
is an ill-posed problem. Setting A (sC , aC) = 0 satisfies the inequality, which is
not a meaningful reward function. Moreover, we have only a finite set of expert
demonstrations and not the whole expert state-action distribution. We assume the
demonstrations come from an optimal expert policy rather than a suboptimal one,
and finally we assume we can consider all possible policies through ⇧.

In the following, we introduce two methods to tackle the problem: Maximum
margin [92] and maximum entropy IRL [131, 130]. In both cases, we will consider
a reward function modelled as a linearly-weighted sum of features A (s) = w|q(s).
Given the features are linear,

36 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

'̂
⇤ = EaC⇠cD (sC) , sC+1⇠? (· |sC ,aC) , s0⇠? (s0)

"’
C

W
C

A
⇤
(sC)

#
,

= E

"’
C

W
Cw|q(sC)

#
= w>E

"’
C

W
C

q(sC)

#
= w>�(cD),

where �(cD) represents the average sum of discounted features induced by cD .

Maximum Margin Inverse Reinforcement Learning [92] proposes to solve the
IRL problem by optimizing

min
w

w>w s.t. w|�(cD) � w|�(c) + <(cD , c), 8 c 2 ⇧.

The optimization problem will search for the smallest weights that satisfy that the
reward in the demonstrations policy cD is bigger than the reward for the rest of
the policies up to a margin term <(cD , c). The chosen margin should increase
for policies that are very di�erent from cD . This approach is closely related to
support vector machines, which are maximum margin models for classification. The
connection here is that our reward function is acting as a classifier to di�erentiate
cD from the other policies in ⇧.

Maximum Entropy Inverse Reinforcement Learning [131] frames the problem
as a maximum entropy problem. Given g is a state-action trajectory and given an
expert policy cD , we aim to find

arg max
?

H(?) = �
π
g

?(g) log ?(g)dg s.t.
π
g

?(g)�(g)dg = �(cD).

with ? being a distribution over the trajectories. The optimal solution of the max-
imum entropy problem is ?(g) / exp{w⇤>�(g)}, that is the maximally uncertain
distribution subject to it agrees with all known constraints (expert policy). The
optimal return for a trajectory is '(g) = w⇤>�(g).

8 Outlook

This chapter has introduced Robot Learning in the context of optimizing controllers
from sampled data. By building on ideas from optimal control, we have motivated
model-based and model-free methods for policy optimization by incorporating tools
from machine learning, including function approximation and gradient estimation.
Moreover, we have extended these ideas to imitation learning, where policies and
rewards are estimated from expert human demonstration.

Due to the breadth and depth of Robot Learning, many topics and settings were
not discussed in this chapter. This includes discussing the learning challenges on
specific robot platforms, such as autonomous vehicles and legged robots. We also

Learning 37

omitted specific tasks that are important robotic problems, such as navigation, robotic
grasping, state estimation and human-robot interaction. As an outlook, we wish to
briefly discuss some key topics and open problems in the field of Robot Learning.

Deep Reinforcement Learning considers the combination of reinforcement learning
algorithms with deep neural networks [69, 102, 33]. This approach has demonstrated
impressive performance on complex tasks and has been widely adopted by the
research community. However, these methods have seen less adoption in practical
applications and products, due to their performance variance and lack of performance
guarantees. Due to their sample e�ciency and lack of safety guarantees, their use is
mainly limited to learning in simulators rather than physical systems.
Inductive Biases for Deep Robot Learning. One means of improving sample
e�ciency and safety is to incorporate useful structures into machine learning models
that enforce the desired characteristics [7]. The flexibility of automatic di�erentiation
means that a broad range of structure can be incorporated into deep learning models,
such as computer vision models [34], state estimation algorithms [31, 44], non-
holonomic constraints [64], stability guarantees [119] and energy conservation [62].
Striking the right balance with inductive biases, providing enough useful structure
without underfitting to the data, can provide Robot Learning methods with a greater
degree of interpretability, safety and sample e�ciency for deployment on real-world
systems.
Parallelized and Di�erential Simulators. Extending the notion of inductive biases
eventually results in a feature-complete di�erentiable simulator, that model rigid-
body physics, contact and rendering [20, 116, 43, 129]. This enables simulators
that themselves learn from data. Moreover, gradients from the simulator can be
used to accelerate learning in a model-based fashion. Finally, implementing these
simulators on hardware accelerators such as GPUs provides dramatic speed-ups for
sample-based methods such as deep reinforcement learning, which in turn accelerates
Robot Learning research and deployment.
Transferring from Simulation to Reality. The widespread adoption of simulators
in Robot Learning methods introduces the issue of the ’reality gap’, the di�erence
between the real-world and the simulated replication. Methods for ‘sim2real’ transfer
consider means of designing or perturbing the simulator during training to minimize
the adverse e�ects of the reality gap [115, 72, 89]. E�ective sim2real methods,
combined with advances in simulation, would facilitate more real-world deployment
of many powerful RL algorithms.
Task and Motion Planning (TAMP) considers higher-level robot control that re-
quires many subsystems, such as perception, motor control and navigation [16, 128].
While this chapter has focused on ML for motor control, ML methods can also be
combined with classical approaches for TAMP to improve performance in a data-
driven fashion [38, 55]. For example, it enables joint optimization of each system,
allowing representations from perception to be optimized to aid planning, and navi-
gation to to be fine-tuned for motion control. Advances in TAMP are crucial if robots
are to be able to carry out complex tasks in everyday, unstructured environments.

38 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

Safe Learning for Robotics. The restriction of many Robot Learning methods
to simulators is in part due to safety concerns when learning on physical systems.
While ‘safe’ is an ambiguous term, it generally refers to algorithms that can learn with
certain guarantees that prevent catastrophic failure of the robot [10, 35]. Safe methods
can be developed by considering inductive biases, such as motion constraints of the
robot, as seen in Section 5 with motion primitives. Safety can also be incorporated
by considering the statistical uncertainty of the learned models.
Multimodal Robot Learning. A quality of deep learning models are their abil-
ity to easily combine di�erent ‘data modalities’, such as vision, sound, speech and
other telemetry [30]. Advances in vision and natural language processing can enable
robots that can learn to integrate diverse sensor inputs [54], and also interpret and
communicate with humans via speech or gestures for richer human-robot interac-
tion [65, 66, 118].

In conclusion, Robot Learning represents an exciting paradigm for robotics, with
many opportunities for robots to learn, adapt and improve the skills they need to
carry out complex tasks and integrate with society.

Cross References

This chapter contains cross-references to content published in other chapters be-
longing to the four “Robotic Goes MOOC” books; Please click on each reference to
access the material: KNO2, KNO3, KNO7.

References

1. Real robot challenge. https://real-robot-challenge.com/.
2. A�����, P., ��� N�, A. Y. Apprenticeship learning via inverse reinforcement learning. In

Proceedings of the twenty-first international conference on Machine learning (2004), p. 1.
3. A�������, C. C., �� ��. Neural networks and deep learning. Springer 10 (2018), 978–3.
4. Å�����, K. J., ��� E������, P. System identification—a survey. Automatica (1971).
5. A�����, K. J., ��� W���������, B. Adaptive Control, 2nd ed. Addison-Wesley Longman

Publishing Co., Inc., USA, 1994.
6. B�����, D. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2011.
7. B�����, J. A model of inductive bias learning. Journal of artificial intelligence research

(2000).
8. B�����, J., ��� B�������, P. L. Infinite-horizon policy-gradient estimation. J. Artif. Int.

Res. 15, 1 (Nov. 2001), 319–350.
9. B������, R. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.

10. B���������, F., T��������, M., S��������, A. P., ��� K�����, A. Safe model-based re-
inforcement learning with stability guarantees. In Advances in Neural Information Processing
Systems (2017), p. 908–919.

11. B��������, D. Dynamic programming and optimal control. Athena scientific, 2012.
12. B�����, C. M. Pattern Recognition and Machine Learning. Springer New York, 2006.
13. B���, S., ��� V�����������, L. Convex optimization. Cambridge university press, 2004.

Learning 39

14. B�����, A. E. Applied optimal control: Optimization, estimation and control. Routledge,
2018.

15. C�������, R., S�������, A., P�����, J., ��� D���������, M. Bayesian optimization for
learning gaits under uncertainty. Annals of Mathematics and Artificial Intelligence (AMAI)
76 (06 2015).

16. C�����, S., A����, R., ��� G�����, F. A hybrid approach to intricate motion, manipulation
and task planning. The International Journal of Robotics Research 28, 1 (2009), 104–126.

17. C���, K., C�������, R., M�A�������, R., ��� L�����, S. Deep reinforcement learning in
a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems (2018).

18. C�����, A., A�����, P., ��� N�, A. Y. Autonomous Helicopter Flight Using Reinforcement
Learning. Springer US, Boston, MA, 2017, pp. 75–85.

19. C������, G. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems 2, 4 (1989), 303–314.

20. D������, J., H������, M., D�����, J., �� ��. A di�erentiable physics engine for deep
learning in robotics. Frontiers in neurorobotics 13 (2019), 6.

21. D���������, M., ��� R��������, C. E. Pilco: A model-based and data-e�cient approach
to policy search. In International Conference on Machine Learning (2011).

22. D���������, M. P., N������, G., P�����, J., �� ��. A survey on policy search for robotics.
Foundations and Trends® in Robotics (2013).

23. D�������, F. Factor graphs: Exploiting structure in robotics. Annual Review of Control,
Robotics, and Autonomous Systems 4, 1 (2021), 141–166.

24. D�������, A. P., L����, N. M., ��� R����, D. B. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological)
(1977).

25. E����, D., G�����, P., ��� W�������, L. Tree-based batch mode reinforcement learning.
J. Mach. Learn. Res. 6 (Dec. 2005), 503–556.

26. F�������, S., ��� H���, H., ��� M����, D. Addressing function approximation error
in actor-critic methods. In Proceedings of the 35th International Conference on Machine
Learning (2018), vol. 80, pp. 1587–1596.

27. F���, N., S�����, C., M����, R., Y�����, T., D� J����, J. U., W�����, J., G�����,
E. K., W�������, F., B����, S., S��������, S. S., B������������, T., W�����, M. R., ���
P�����, J. Benchmarking structured policies and policy optimization for real-world dexterous
object manipulation. IEEE Robotics and Automation Letters 7, 1 (2022), 478–485.

28. G����, A. R., ��� T�����, S. Structured learning of rigid-body dynamics: A survey and
unified view from a robotics perspective. GAMM-Mitteilungen 44, 2 (2021).

29. G���������, Z., ��� R�����, S. T. Learning nonlinear dynamical systems using an em
algorithm. Advances in neural information processing systems (1999), 431–437.

30. G���������, I., B�����, Y., ��� C��������, A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

31. H�������, T., A���, A., L�����, S., ��� A�����, P. Backprop kf: Learning discriminative
deterministic state estimators. In Advances in neural information processing systems (2016).

32. H�������, T., Z���, A., A�����, P., ��� L�����, S. Soft actor-critic: O�-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proceedings of International
Conference on Machine Learning (ICML) (2018), vol. 80, pp. 1856–1865.

33. H�������, T., Z���, A., A�����, P., ��� L�����, S. Soft actor-critic: O�-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on
machine learning (2018), PMLR, pp. 1861–1870.

34. H����, A., B������, M., P���������, V., S����, S., M�C�����, J., ��� D������, A.
gvnn: Neural network library for geometric computer vision. In European Conference on
Computer Vision (ECCV) (2016).

35. H�����, L., W��������, K. P., M�����, M., ��� Z��������, M. N. Learning-based model
predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and
Autonomous Systems 3, 1 (2020), 269–296.

40 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

36. H�, J., ��� E����, S. Generative adversarial imitation learning. Advances in neural
information processing systems 29 (2016), 4565–4573.

37. H������, T., S��������, B., ��� S����, A. J. Kernel methods in machine learning.
Annals of Statistics 36 (2008).

38. H���, C., K����, U., ��� M����-A����, H. Learning methods to generate good plans:
Integrating htn learning and reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence (Jul. 2010), vol. 24, pp. 1530–1535.

39. H�����, K., S����������, M., ��� W����, H. Multilayer feedforward networks are uni-
versal approximators. Neural networks 2, 5 (1989), 359–366.

40. I�������, A. J., N��������, J., H�������, H., P�����, P., ��� S�����, S. Dynamical
movement primitives: learning attractor models for motor behaviors. Neural computation 25,
2 (2013), 328–373.

41. I�������, P., V�����, S., H������, M. D., ��� W�����, A. G. G. What are bayesian
neural network posteriors really like? In Proceedings of the 38th International Conference on
Machine Learning (18–24 Jul 2021), M. Meila and T. Zhang, Eds., vol. 139 of Proceedings
of Machine Learning Research, PMLR, pp. 4629–4640.

42. J�������, D. H., ��� M����, D. Q. Di�erential dynamic programming. North-Holland,
1970.

43. J�������������, K. M., M������, M., G�����, F., V�����, V., P������, L., W����,
M., C��������, B., P�����-L�������, J., X��, K., E������, K., P����, L., S������, F.,
N�������������, D., ��� F�����, S. gradsim: Di�erentiable simulation for system iden-
tification and visuomotor control. In International Conference on Learning Representations
(ICLR) (2021).

44. J�����������, R., R������, D., ��� B����, O. Di�erentiable particle filters: End-to-end
learning with algorithmic priors. In Proceedings of Robotics: Science and Systems (Pittsburgh,
Pennsylvania, June 2018).

45. K�������-Z����, S. M., ��� B������, A. Learning stable nonlinear dynamical systems
with gaussian mixture models. IEEE Transactions on Robotics 27, 5 (2011), 943–957.

46. K�������-Z����, S. M., ��� B������, A. Learning control lyapunov function to ensure
stability of dynamical system-based robot reaching motions. Robotics and Autonomous
Systems 62, 6 (2014), 752–765.

47. K����, J., B������, J. A., ��� P�����, J. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research (ÒRR) (2013).

48. K����, J., ��� P�����, J. Learning motor primitives for robotics. In IEEE International
Conference on Robotics and Automation (ICRA) (2009), pp. 2112–2118.

49. K���������, A., S��������, I., ��� H�����, G. E. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems 25 (2012),
1097–1105.

50. L�����, M., L��, J., F��, R., D�����, A., ��� G�������, K. Dart: Noise injection for
robust imitation learning. In Conference on robot learning (2017), PMLR, pp. 143–156.

51. L�����-G�������, M., ��� F��������-V����, A. R. Marginalized neural network mixtures
for large-scale regression. Transactions on Neural Networks 21, 8 (2010).

52. L�C��, Y., B�����, Y., ��� H�����, G. Deep learning. Nature 521, 7553 (2015), 436–444.
53. L��, M. A., Z��, Y., S���������, K., S���, P., S�������, S., F��-F��, L., G���, A., ���

B���, J. Making sense of vision and touch: Self-supervised learning of multimodal represen-
tations for contact-rich tasks. In 2019 International Conference on Robotics and Automation
(ICRA) (2019), IEEE, pp. 8943–8950.

54. L��, M. A., Z��, Y., Z�������, P., T��, M., S���������, K., S�������, S., F��-F��, L., G���,
A., ��� B���, J. Making sense of vision and touch: Learning multimodal representations
for contact-rich tasks. IEEE Transactions on Robotics 36, 3 (2020), 582–596.

55. L�������, M., I�����, L., ��� S����, P. A synthesis of automated planning and reinforce-
ment learning for e�cient, robust decision-making. Artificial Intelligence 241 (September
2016), 103 – 130.

56. L�����, S., ��� A�����, P. Learning neural network policies with guided policy search
under unknown dynamics. In Advances in Neural Information Processing Systems (2014).

Learning 41

57. L�, Q., K������, O., S�, Z., V����, F. F., K�����, M., ��� R�����, H. J. A review of
tactile information: Perception and action through touch. IEEE Transactions on Robotics 36,
6 (2020), 1619–1634.

58. L�, W., ��� T������, E. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In 1st International Conference on Informatics in Control, Automation
and Robotics (2004).

59. L��������, T. P., H���, J. J., P������, A., H����, N., E���, T., T����, Y., S�����, D.,
��� W�������, D. Continuous control with deep reinforcement learning. In International
Conference on Learning Representations, (ICLR) (2016).

60. L��������, R., K������, O., P�����, J., ��� M����, G. Learning manipulation by se-
quencing motor primitives with a two-armed robot. In Proceedings of the 13th International
Conference on Intelligent Autonomous Systems (2014), vol. 302 of Advances in Intelligent
Systems and Computing, Springer, pp. 1601–1611.

61. L����, L. System Identification - Theory For the User. Prentice Hall, Upper Saddle River,
N.J., 1999.

62. L�����, M., R�����, C., ��� P�����, J. Deep Lagrangian Networks: Using physics as model
prior for deep learning. In International Conference on Learning Representations (ICLR)
(2019).

63. L�����, M., S����������, J., W�����, J., ��� P�����, J. A di�erentiable newton euler
algorithm for multi-body model learning. In Robotics: Science and Systems Conference
(RSS), Workshop on Structured Approaches to Robot Learning for Improved Generalization
(2020).

64. L�����, M., S����������, J., W�����, J., ��� P�����, J. Di�erentiable physics models for
real-world o�ine model-based reinforcement learning. In IEEE International Conference on
Robotics and Automation (ICRA) (2021).

65. L����, C., ��� S�������, P. Language conditioned imitation learning over unstructured
data. Robotics: Science and Systems (2021).

66. M�������, C., B�, L., Z����������, L., ��� F��, D. Learning from unscripted deictic
gesture and language for human-robot interactions. Proceedings of the AAAI Conference on
Artificial Intelligence 28, 1 (Jun. 2014).

67. M�����, A. Stochastic model predictive control: An overview and perspectives for future
research. IEEE Control Systems Magazine 36, 6 (2016), 30–44.

68. M���, V., K����������, K., S�����, D., G�����, A., A���������, I., W�������, D., ���
R���������, M. A. Playing atari with deep reinforcement learning. CoRR abs/1312.5602
(2013).

69. M���, V., K����������, K., S�����, D., R���, A. A., V�����, J., B��������, M. G.,
G�����, A., R���������, M., F��������, A. K., O��������, G., �� ��. Human-level control
through deep reinforcement learning. nature 518, 7540 (2015), 529–533.

70. M������, S., R����, M., F�������, M., ��� M���, A. Monte carlo gradient estimation in
machine learning. Journal of Machine Learning Research 21, 132 (2020), 1–62.

71. M�������, K., K����, J., K������, O., ��� P�����, J. Learning to select and generalize
striking movements in robot table tennis. In AAAI Fall Symposium on Robots that Learn
Interactively from Human Teachers (2012), pp. 263–279.

72. M�������, F., G������, M., ��� P�����, J. Assessing transferability from simulation
to reality for reinforcement learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2019).

73. N���, R. M. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto,
CAN, 1995.

74. N������, K., ��� S����, J. J. Learning robot motions with stable dynamical systems under
di�eomorphic transformations. Robotics and Autonomous Systems 70 (2015), 1–15.

75. N�, A. Y., R������, S. J., �� ��. Algorithms for inverse reinforcement learning. In Interna-
tional Conference on Machine Learning (2000), vol. 1, p. 2.

76. N�����-T����, D., ��� P�����, J. Using model knowledge for learning inverse dynamics.
In International Conference on Robotics and Automation (2010).

42 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

77. N�����-T����, D., ��� P�����, J. Model learning for robot control: a survey. Cognitive
Processing (2011).

78. O���, S. W., ��� R��������, C. E. Benchmarking the neural linear model for regression.
In Symposium on Advances in Approximate Bayesian Inference (2019).

79. P��������, A., D�����, C., P�����, J., N������, G., �� ��. Probabilistic movement
primitives. Advances in neural information processing systems (2013).

80. P�����, J., M������, K., ��� A����, Y. Relative entropy policy search. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence (2010), p. 1607–1612.

81. P�����, J., ��� S�����, S. Policy gradient methods for robotics. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems (2006), pp. 2219–2225.

82. P�����, J., ��� S�����, S. Reinforcement learning of motor skills with policy gradients.
Neural Networks 21, 4 (May 2008), 682–697.

83. P�����, J., T������, R., R��, N., ��� M�������, J. Robot Learning. Springer US, Boston,
MA, 2010, pp. 865–869.

84. P������, K., L�����, M., ��� P�����, J. High acceleration reinforcement learning for
real-world juggling with binary rewards. In Conference on Robot Learning (CoRL) (2020).

85. P������, K., L�����, M., ��� P�����, J. High acceleration reinforcement learning for
real-world juggling with binary rewards. In Conference on Robot Learning (CoRL) (2020).

86. P��������, D. A. Alvinn: An autonomous land vehicle in a neural network. Tech. rep.,
Carnegie-Mellon University Pittsburgh PA Artificial Intelligence and Psychology Depart-
ment, 1989.

87. P�������, M. L. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

88. R�����, A., ��� R����, B. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems (2008), J. Platt, D. Koller, Y. Singer, and S. Roweis,
Eds., vol. 20, Curran Associates, Inc.

89. R����, F., P�����, R., ��� F��, D. Bayessim: Adaptive domain randomization via proba-
bilistic inference for robotics simulators. In Robotics: Science and Systems (2019).

90. R���, M. A., L�, A., F��, D., B����, B., R����, F., ��� R������, N. Euclideanizing flows:
Di�eomorphic reduction for learning stable dynamical systems. In Learning for Dynamics
and Control (2020), PMLR, pp. 630–639.

91. R��������, C. E., ��� W�������, C. K. I. Gaussian Processes for Machine Learning. The
MIT Press, 2005.

92. R������, N. D., B������, J. A., ��� Z��������, M. A. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning (2006), pp. 729–736.

93. R���������, M. Neural fitted q iteration – first experiences with a data e�cient neural
reinforcement learning method. In Proceedings of the 16th European Conference on Machine
Learning (Berlin, Heidelberg, 2005), ECML’05, Springer-Verlag, p. 317–328.

94. R���, S., G�����, G., ��� B������, D. A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics (2011), JMLR Workshop and Conference Proceedings,
pp. 627–635.

95. R���������, R. Y., ��� K�����, D. P. The Cross Entropy Method: A Unified Approach To
Combinatorial Optimization, Monte-Carlo Simulation (Information Science and Statistics).
Springer New York, 2004.

96. R������, G. A., ��� N�������, M. On-line Q-learning using connectionist systems. Tech.
Rep. TR 166, Cambridge University Engineering Department, Cambridge, England, 1994.

97. S�����, S. Bayesian Filtering and Smoothing. Cambridge University Press, 2013.
98. S�����, S. Dynamic movement primitives-a framework for motor control in humans and

humanoid robotics. In Adaptive motion of animals and machines. Springer, 2006, pp. 261–
280.

99. S����������, J. Deep learning in neural networks: An overview. Neural networks 61 (2015),
85–117.

100. S��������, J. G. Exploiting model uncertainty estimates for safe dynamic control learning.
Advances in Neural Information Processing Systems (1997).

Learning 43

101. S����, T. B., L�������, F., D�����, J., W������, J., N�������, C. A., S�������, A., ���
D��, L. Sequential monte carlo methods for system identification. IFAC-PapersOnLine 48,
28 (2015), 775–786.

102. S�������, J., L�����, S., A�����, P., J�����, M., ��� M�����, P. Trust region policy
optimization. In International conference on machine learning (2015), PMLR, pp. 1889–
1897.

103. S������, R. H., ��� S������, D. S. An approach to time series smoothing and forecasting
using the em algorithm. Journal of time series analysis 3, 4 (1982), 253–264.

104. S������, A., ��� B�����, J. E. An e�cient sequential linear quadratic algorithm for solv-
ing nonlinear optimal control problems. In Proceedings of the 2005, American Control
Conference, 2005. (2005), IEEE, pp. 2275–2280.

105. S�����, D., H����, A., M�������, C. J., G���, A., S����, L., V�� D�� D��������, G.,
S������������, J., A���������, I., P�������������, V., L������, M., �� ��. Mastering
the game of go with deep neural networks and tree search. nature 529, 7587 (2016), 484–489.

106. S������, G., W���, A., L��, Y., M������, M., S�������, G., R��, A., ��� M����,
F. Encoding physical constraints in di�erentiable Newton-Euler Algorithm. Learning for
Dynamics Control (L4DC) (2020).

107. S��������, I., V������, O., ��� L�, Q. V. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems (2014), pp. 3104–3112.

108. S�����, R. S. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, Univer-
sity of Massachusetts Amherst, 1984. AAI8410337.

109. S�����, R. S. Learning to predict by the methods of temporal di�erences. Machine Learning
3, 1 (1988), 9–44.

110. S�����, R. S., ��� B����, A. G. Reinforcement learning: An introduction. MIT press,
2018.

111. S�����, R. S., M�A�������, D. A., S����, S. P., ��� M������, Y. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems (NIPS) (1999), pp. 1057–1063.

112. T��������, A. Principles of System Identification: Theory and Practice. CRC Press, 2018.
113. T����, Y. Theory and Implementation of Biomimetic Motor Controllers. PhD thesis, Hebrew

University of Jerusalem, 2011.
114. T������, M. Variational learning of inducing variables in sparse gaussian processes. In

Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics
(16–18 Apr 2009), vol. 5 of Proceedings of Machine Learning Research, PMLR, pp. 567–574.

115. T����, J., F���, R., R��, A., S��������, J., Z������, W., ��� A�����, P. Domain
randomization for transferring deep neural networks from simulation to the real world. In
International Conference on Intelligent Robots and Systems (IROS) (2017).

116. T��������, M. A., A����, K. R., S����, K. A., ��� T��������, J. B. Di�erentiable
physics and stable modes for tool-use and manipulation planning. In Robotics: Science and
Systems (2018).

117. T���������, S., B��������, S., E������, A., ��� N���, F. Identification of fully physical
consistent inertial parameters using optimization on manifolds. In International Conference
on Intelligent Robots and Systems (IROS) (2016).

118. T�����, M., A������, D., P���, R., S����, G. J., ��� R��, N. Learning unknown groundings
for natural language interaction with mobile robots. In Robotics Research. Springer, 2020,
pp. 317–333.

119. U����, J., G�����, M., T����, D., ��� P�����, J. Imitationflow: Learning deep stable stochas-
tic dynamic systems by normalizing flows. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2020), IEEE, pp. 5231–5237.

120. ��� H������, H., D����, Y., S����, F., H�����, M., S�������, N., ��� M������, J. Deep
reinforcement learning and the deadly triad. CoRR abs/1812.02648 (2018).

121. ��� H���, H., T��������, D., ��� P�����, J. Generalized exploration in policy search. In
Machine Learning (2017), pp. 1705–1724.

122. W������, C. J. C. H., ��� D����, P. Q-learning. Machine Learning 8, 3 (May 1992),
279–292.

44 Joe Watson, Julen Urain, Joao Carvalho, Niklas Funk, Jan Peters

123. W�����, J., L��, J. A., K����, P., P��������, J., ��� P�����, J. Latent derivative bayesian last
layer networks. In Proceedings of the 24th International Conference on Artificial Intelligence
and Statistics (2021).

124. W�����, J., L��, J. A., K����, P., ��� P�����, J. Neural linear models with functional
gaussian process priors. In Third Symposium on Advances in Approximate Bayesian Inference
(2021).

125. W�������, D., S�����, T., G����������, T., S��, Y., P�����, J., ��� S����������, J.
Natural evolution strategies. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 949–980.

126. W�������, C. K. Computing with infinite networks. In Advances in neural information
processing systems (1997), pp. 295–301.

127. W�������, G., W������, N., G�������, B., D����, P., R���, J. M., B����, B., ���
T��������, E. A. Information theoretic mpc for model-based reinforcement learning. In
2017 IEEE International Conference on Robotics and Automation (ICRA) (2017), IEEE,
pp. 1714–1721.

128. W����, J., M�����, B., ��� R������, S. Combined Task and Motion Planning for Mobile
Manipulation. In International Conference on Automated Planning and Scheduling (ICAPS)
(2010).

129. Z���, S., J����, W., ��� L�, T.-M. Physics-based di�erentiable rendering: From theory
to implementation. In ACM SIGGRAPH 2020 Courses (New York, NY, USA, 2020), SIG-
GRAPH ’20, Association for Computing Machinery.

130. Z������, B. D., B������, J. A., ��� D��, A. K. Modeling interaction via the principle of
maximum causal entropy. In ICML (2010).

131. Z������, B. D., M���, A. L., B������, J. A., D��, A. K., �� ��. Maximum entropy inverse
reinforcement learning. In Aaai (2008), vol. 8, Chicago, IL, USA, pp. 1433–1438.

