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Abstract— Deep learning in combination with improved
training techniques and high computational power has led to
recent advances in the field of reinforcement learning (RL)
and to successful robotic RL applications such as in-hand
manipulation. However, most robotic RL relies on a well known
initial state distribution. In real-world tasks, this information is
however often not available. For example, when disentangling
waste objects the actual position of the robot w.r.t. the objects
may not match the positions the RL policy was trained for. To
solve this problem, we present a novel adversarial reinforcement
learning (ARL) framework. The ARL framework utilizes an
adversary, which is trained to steer the original agent, the
protagonist, to challenging states. We train the protagonist
and the adversary jointly to allow them to adapt to the
changing policy of their opponent. We show that our method
can generalize from training to test scenarios by training an
end-to-end system for robot control to solve a challenging object
disentangling task. Experiments with a KUKA LBR+ 7-DOF
robot arm show that our approach outperforms the baseline
method in disentangling when starting from different initial
states than provided during training.

I. INTRODUCTION

Deep reinforcement learning (DRL) methods have
achieved remarkable performance in playing Atari games [1],
[2], Go [3], Chess [4], Dota 2 [5] or Starcraft 2 [6]. However,
tackling such tasks required a large number of policy roll-
outs—typically in the order of billions. This huge sample
complexity is in stark contrast to the number of roll-outs that
are feasible when training a policy on a real robot, which is
typically in the range of tens or hundreds.

Still, deep reinforcement learning has proved its usefulness
also for robot applications such as in-hand manipulation [7],
object manipulation [8], quadruped locomotion [9] or au-
tonomous driving [10]. These results were made possible
by using a variety of techniques to reduce the required
number of real-world interactions, such as (pre-)training in
simulation, initializing from demonstrations, or incorporating
prior knowledge in the design of the Markov decision
process. However, policies that are trained with few real-
world interactions can be prone to failure when presented
with unseen states. It is, thus, important to carefully set the
initial states of the robot and its environment so that it also
includes challenging situations.

Furthermore, unlike simulations, the state of robot and
environment can not be easily reset. Using a human to
manually set up the environment after each roll-out can
often introduce a significant bottleneck in the data collection.
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Fig. 1. During training our Adversarial Reinforcement Learning (ARL)
approach loops over two steps. First, ARL trains the adversary to maximize
its current reward function, which depends on the protagonist’s current value
function VP(s′). The adversary’s updated policy generates a new challenging
initial state distribution µP(s) for the protagonist. Next, the protagonist is
trained to maximize expected reward when starting from this new state
distribution. The ARL process leads to a protagonist that can cope with a
challenging initial state while keeping the initial state distribution valid: the
adversary was able to explore those states.

Fig. 2. We show the benefits of our ARL approach in both simulation
and in a real robot task where the robot tries to disentangle an object from
another one. Left: The KUKA LBR+ 7-DOF robot arm with attached SAKE
gripper disentangling an ”S-shape” object from an ”O-shape” object. Right:
The 3D printed ”O-shape” and ”S-shape” objects.

Hence, successful applications of reinforcement learning to
robotics typically involved tasks that can be easily reset to
their initial states, for example playing table tennis against a
ball-cannon [11] or grasping objects from a bin [12].

Based on these observations, we investigate the research
question: How to automatically set up the environment to a
challenging state for the agent?

We present a novel adversarial learning framework for re-
inforcement learning algorithms: Adversarial reinforcement
learning (ARL). This framework helps to learn RL policies
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that can generalize to new situations by employing an
adversarial policy to steer the agent to unknown or difficult
situations. Through this adversary driven exploration of the
state space, the agent is more likely to learn a more general
policy than by using purely random exploration. While we
assume irreducibility of the MDP (otherwise the adversary
could make it impossible for the protagonist to solve the task)
we do not make any assumptions on the reinforcement learn-
ing algorithm. An overview of the framework is illustrated
in Figure 1.

We investigate the task of disentangling waste. There is
an enormous potential of robots in the waste processing
industry by reducing human labor and allowing for better
segregation and thus recycling of waste. Furthermore, there
is high interest in the nuclear industry to employ robots for
segregating nuclear waste, which is inherently dangerous for
humans. In order to apply reinforcement learning to waste
disentangling it would be desirable to automate the genera-
tion of challenging entanglements. However, designing such
procedure by hand is not straightforward and, thus, it is
interesting to investigate our learning-based approach.

Contribution.
• We propose an adversarial framework (ARL) for rein-

forcement learning that alternately trains an agent for
solving the given task and an adversary for steering the
protagonist to challenging states.

• We evaluate ARL in simulation as well as on a real
robot on the object disentangling task. For the robot
experiment, a KUKA iiwa R820 in combination with
a SAKE EzGripper is tasked to disentangle two 3D-
printed objects as shown in Figure 2.

Outline.
The remainder of this paper is structured as follows: Sec-

tion II introduces the proposed adversarial learning frame-
work. In Section III, we discuss related works. We present
the results of our experimental evaluation of our method
using the object disentangling task as well as a continuous
point mass maze environment. Finally, Section V provides
a conclusion from our experiments and discusses potential
future works.

II. ADVERSARIAL REINFORCEMENT LEARNING

We consider an irreducible Markov Decision Process
(MDP) with state space S , action space A , system dy-
namics P(s′|s,a), initial state distribution µ(s), reward
function r(s,a,s′), discount factor γ and a finite horizon Hp.
The goal of RL methods is to find a parameterized policy
πθ (a|s) that maximizes the accumulated discounted reward
when sampling the state at time step zero from the initial
distribution µ(s) and afterwards following the policy πθ and
system dynamics P , i.e.,

J(π) = Eµ,πθ ,P

[
Hp−1

∑
t=0

γ
tr(st ,at ,s′t)

]
.

However, we assume that the initial state distribution
µ(s) is unknown and resetting the robot to it is infeasible.

Instead we only assume that we can reset the environment
according to a reset distribution µR(s) which is typically
less diverse and less challenging. For example, in the robot
disentangling task, we want to solve the MDP for a wide
range of entanglements but are only able to reset the robot
(and its attached object) to a small number of manually
specified positions.

The main idea of our approach is to reduce the distribution
mismatch (covariate shift) between the reset distribution and
the unknown initial distribution by steering the agent into
regions in which the current policy performs poorly. For
steering the agent into these regions, we train an adversarial
agent that chooses the protagonist’s initial position by inter-
acting with the environment. The adversary’s task is to find
areas in the environment’s state space that are challenging for
the protagonist. The adversary is rewarded for moving the
agent to situations that are expected to yield low returns for
the protagonist under its current policy. At the beginning of
each episode, the agent is controlled by the adversarial policy
for a fixed number of time steps after which the protagonist
takes over again. The adversary’s and protagonist’s policies
are trained jointly to allow the adversary to adapt to the
changing protagonist policy.

Our learning framework consists of an MDP environ-
ment E of horizon HP and two policies, the protagonist
πP and the adversary πA, which both interact with the
same environment. The ARL framework aims to learn a
protagonist’s policy πP that performs well in as many areas
of the environment as possible. We extend the original RL
framework, to encourage directed exploration of difficult
areas. At the beginning of each training episode, the agent
acts for HA time steps under policy πA and subsequently
follow the protagonist policy πP for HP time steps. We
can formulate the protagonist’s objective function in the
following way:

J(πP) = EµP,πP,P

[
HP−1

∑
t=0

γ
tr(st ,at ,s′t)

]
, (1)

where the protagonist’s initial state probability µP(s0) is
produced by executing the adversary for HA steps starting
from a state that is sampled from the reset distribution µR(s).

The adversary’s goal is to find states s in the environment
for which the protagonist’s expected return is low. The
protagonist’s state-value function V π estimates the expected
return of following policy π starting in state s. Thus, we
can define a reward function r(s,a,s′) that evaluates the
adversary’s action through the protagonist’s negative state-
value of the reached state, that is,

rA(st ,at ,s′t ;πP) =−VP(s′),

where VP is the current protagonist’s estimated state-value
function. It is to note that we do not only provide reward
based on the adversary’s final state but also for immediate
steps in order to provide a more shaped reward. With this
choice of reward function, the adversary is encouraged to



explore the environment to find states in which the protago-
nist’s policy is expected to perform poorly. We can formulate
the adversary’s objective as

J(πA) = Eµ,πA,P

[
HA−1

∑
t=0

γ
trA(st ,at ,s′t ;πP)

]
.

We jointly train both agents by alternating between im-
proving the adversary’s policy and the protagonist’s policy.
Figure 1 presents a high-level visualization of the ARL
learning framework. Our implementation is based on the soft
actor-critic [9] RL algorithm which is off-policy and, thus,
we describe our implementation for off-policy reinforcement
learning. It is, however, also possible to use the ARL
framework in combination with on-policy RL methods (see
Appendix V-A for pseudo-code). Training begins by updating
the adversary for KA episodes. At the start of each episode,
the environment is reset to one of its initial states sampled
from µR. Next, at each timestep t, the adversary selects an
action using its policy a(A)t ∼ πA and observes the next state
st+1. The adversary’s reward is computed using the current
approximation of the protagonist’s state-value function, i.e.
r(A)t = −VP(s′). The tuple (st ,a

(A)
t ,r(A)t ,st+1) is added to

the adversary’s replay buffer, from which subsequently a
minibatch of transitions is sampled in order to update the
adversary’s policy. After HA steps, it is the protagonist’s turn
to interact with the environment. Note that the environment
is not reset before the protagonist begins its interactions,
thus the protagonist’s initial position is sHA . The protagonist
collects tuples (st ,a

(P)
t ,r(P)t ,st+1) for HP time steps. The

tuples are added to the protagonist’s replay buffer DA.
However, the protagonist’s policy is not updated during these
rollouts. Once the protagonist has completed its interaction
with the environment after HP time steps, the environment
is reset. This process is repeated for KA episodes in which
the adversary’s policy is updated at each time step, while
the protagonist simply collects experiences to store in its
replay buffer DP. After KA rollouts, it is the protagonist’s
turn to be improved. At the beginning of each rollout, the
environment is reset. Next, the adversary interacts with the
environment for HA time steps to generate the protagonist’s
starting position, while storing the experienced transitions in
its replay buffer DA. After the adversary has completed HA
actions, it is the protagonist’s turn again. For HP time steps
t, the protagonist samples action a(P)t ∼ πP(st), observes the
new state st+1 and receives the reward r(P)t . Next, the tuple
(st ,a

(P)
t ,r(P)t ,st+1) is added to the replay buffer DP and the

protagonist’s policy πP and state-value function approxima-
tion VP are updated using a minibatch of samples drawn
from DP. This sequence of alternating between training the
adversary and training the protagonist is repeated for a fixed
number of iterations N. It should be noted that the ARL
framework introduces three additional hyperparameters: KA,
KP and HA. Furthermore, it is possible to use any off-
policy RL method in this learning framework, as long as
the protagonist’s state value function VP is approximated.

Algorithm 1 shows the pseudocode of our proposed method.

Algorithm 1: Off-policy adversarial reinforcement learn-
ing

Input: Arbitrary initial policies πA and πP with replay
buffers DA and DP, Environment E,

for i← 0 to N do
for j← 0 to KA do

reset(E) ;
for t← 0 to HA do

(st ,a
(A)
t ,r(A)t ,st+1)← step(E, πA));

DA ← DA ∪ (st ,a
(A)
t ,r(A)t ,st+1);

πA ← train(πA, DA) ;

for t← 0 to HP do
(st ,a

(P)
t ,r(P)t ,st+1)← step(E, πP));

DP ← DP ∪ (st ,a
(P)
t ,r(P)t ,st+1);

for j← 0 to KP do
reset(E) ;
for t← 0 to HA do

(st ,a
(A)
t ,r(A)t ,st+1)← step(E, πA));

DA ← DA ∪ (st ,s
(A)
t ,r(A)t ,st+1);

for t← 0 to HP do
(st ,a

(P)
t ,r(P)t ,st+1)← step(E, πP));

DP ← DP ∪ (st ,a
(P)
t ,r(P)t ,st+1);

πP ← train(πP, DP) ;

III. RELATED WORK

Adversarial learning. The idea of embedding adversaries
into the training process has been shown to work successfully
in the field of supervised learning [13], [14] and imitation
learning [15]. Adversarial approaches have also been pre-
viously incorporated in RL methods to learn more robust
policies by adding adversary-generated noise to the policy’s
actions during training [16], [17], using an adversarial robot
to interfere with the protagonist [18] or training an adversary
to perturb the protagonist’s observations to cause the agent to
fail [19], [20], [21]. Gleave et al. investigate the vulnerability
of DRL methods against adversarial attacks in the context of
multi-agent environments [22]. They show how attacks can
be carried out effectively by training adversarial policies to
generate natural adversarial observation via self-play. Robust
adversarial reinforcement learning (RARL) framework by
Pinto et al. aims to train policies that are robust to the
sim-to-real gap by interpreting dynamics model errors of
the simulator as an additional noise and jointly training an
adversary and a protagonist. The adversary’s goal is to learn
adversarial actions that are added to the protagonist’s actions
at each time step as additional noise. The adversary’s reward
at each time-step is the negative reward of the protagonist,
thus, encouraging the adversary to apply harmful noise. By
training the protagonist in the presence of such an adversary,



the protagonist is required to learn a policy that is robust
to harmful perturbations, making it more robust to model
inaccuracies of the simulator and, thus, to the sim-to-real-
gap. However, in contrast to our method, such approach is
in general not able to steer the agent to far away states and
thus does not tackle initial state distribution mismatch.

Curriculum learning.

Curriculum learning methods learn to solve tasks in a
variety of contexts by presenting context-based tasks to the
learning agent in an order of increasing complexity instead of
presenting tasks randomly [23]. Held et al. train a generative
adversarial net (GAN) to produce increasingly difficult con-
texts [24]. Florensa et al. learn a reverse curriculum for goal-
oriented tasks, in which a goal state is provided that needs to
be reached from any initial state in the environment [25]. The
idea of this method is to maintain a set of initial positions
that is initialized to the provided set of goal states. New
candidates for initial states are generated by random walks
beginning from states of the current set. These candidates are
added to the set if they have the desired difficulty according
to a simple heuristic or dropped if deemed too easy. This
approach makes the assumptions that the environment’s goal-
state is known during training and that the environment
can be reset to arbitrary states in the environment, which
our approach does not. The POET algorithm uses evolution
strategies to generate a range of related environments to
learn policies that can transfer from one environment to
another [26]. Sukhbaatar et al. train an adversary to create
an automatic curriculum for the protagonist by interleaving
standard RL training with adversarial self-play episodes that
provide an intrinsic motivation to explore the environment
[27]. This context-based approach splits the training process
into two different types of episodes. In self-play episodes,
an adversarial policy controls the agent and interacts with
the environment until it selects a stop-action. At this point
in the episode, the protagonist takes over and is tasked with
either reversing the adversary’s trajectory or to replay it, the
desired state being provided to the policy as context. During
self-play episodes, no extrinsic reward is provided to the
agents: the adversary is rewarded positively for each time
step that the protagonist requires to reach the desired state
and negatively for each own action. This reward structure en-
courages the adversary to generate increasingly difficult self-
play scenarios for the protagonist. The protagonist’s reward
in self-play episodes is the negative number of steps required
to reach the desired state. The second type of episodes simply
consist of the target task that the protagonist is expected to
learn. The context in such episodes is set to zero and an
additional flag is set to inform the policy of current type
of episode. We attempted to test the self-play approach in
our maze environment. However, we were unable to achieve
better results than standard SAC in the continuous maze
environment despite best efforts. We hypothesize that the
approach does not scale well to continuous state and action
spaces. These findings are in line with the observations made
by [25].

Fig. 3. Illustration of the continuous maze. The agent’s task is to navigate a
point mass to the green goal square. Actions are continuous position deltas,
observations are continuous 2D coordinates. During training, the adversary’s
start position (or the protagonist’s start position if no adversary is present
during training) is sampled from the reset distribution (visualized in purple).
The adversary then moves to another state which becomes the initial state
for the protagonist. The true initial state distribution, uniform distribution
of all states in the maze (light yellow) is only available for evaluation.

IV. EXPERIMENTAL RESULTS

A. Environments

1) Continuous maze: We evaluated our approach in a
continuous maze environment, in which the agent must
navigate a complex maze to reach a goal position. The
agent observes its current absolute coordinates and selects
a continuous velocity at each time step. The agent receives
a positive reward if the goal square is reached or a small
negative movement penalty otherwise. Actions that would
result in collisions with the maze walls ignore the component
of the action that causes the collision. The agent’s task in this
environment is to reach the goal position from any point in
the maze within a horizon of 100 time steps. During training,
only a limited set of training scenarios is available, as the
initial position of the agent is sampled from a single square
close to the goal. The maze environment is illustrated in
Figure 3.

2) Object disentangling: In the second environment,
which we call the Robot-arm disentangling environment
(RADE), the agent controls a seven degree-of-freedom
KUKA LBR iiwa R820 robotic arm which is equipped with a
SAKE EzGripper end-effector, holding an ”S”-shaped object
which is entangled with a second, ”O”-shaped object. Figure
2 shows the experimental hardware setup. The agent’s goal is
to disentangle the two objects through direct joint actions, i.e.
providing joint deltas for all seven joints at each time step,
in a fixed number of steps without colliding. The task solved
if the euclidean distance between the objects exceeds a
threshold of 0.5 meters. The agent receives a positive reward
for successfully solving the disentangling task. Collisions are
penalized with a negative reward that depends on the current
time step, where early collisions are punished more severely
than later ones. Otherwise, a small action penalty is given



Fig. 4. The top row of images shows the 4 initial positions from the training
set, the bottom row the entanglements from the test set. Note that for both
sets, the S-shape is positioned in the two top corners of the O-shape, once
from each side. The test set consists of slight variations of the positions
from the training set.

to the agent to encourage smaller steps. Thus, the reward
function for the disentangling task is formalized as,

r(s,a,s′) =


−1 1−γH−t+1

1−γ
, if collision detected,

1, if ‖p1−p2‖2 ≥ dthresh,

−‖a‖2, otherwise,

where p1 and p1 are the x, y and z coordinates of the two
objects.

We evaluated the learned protagonist polices in two dis-
tinct ways to measure and compare their respective perfor-
mances. The first method evaluates policies in simulation
on a test set of initial positions. This test set consists
of four different joint configurations in which the objects
are entangled. These configurations have not been used as
initial state for training. To measure how well an agent can
generalize to new situations, we evaluate the protagonist’s
performance over 100 episodes while sampling the initial
position uniformly from this test set. Figure 4 shows the
possible initial position from both the training set and the test
set. Additionally, we tested the learned policy’s performance
by evaluating it in the real world environment. The initial
states were sampled from the same distribution as during
training, i.e. µ(s) = µR(s).

3) Research questions: We designed our experiments in
both environments to answer the following research ques-
tions:

1) Does ARL learn more general policies than vanilla
SAC?

2) How robust is ARL with respect to its hyperparame-
ters?

B. Implementation details

In order to facilitate experiments, we created a simulated
version of the disentangling environment. The existing robot
simulator and controller Simulation Lab (SL) [28] was used,
both, for simulation and to control the real robots. Further-
more, we implemented our environments as extensions to the
existing OpenAI gym environments [29]. Using this standard-
ized environment interface allowed us to easily use readily

Method return success rate (%)
SAC −3.47±0.16 27.44±3.23
Random Adversary −3.43±0.19 28.08±3.67
ASAC10 −2.21±0.56 55.60±12.19
ASAC100 −2.44±0.59 51.33±12.90
ASAC1000 −2.08±0.63 59.21±13.97

TABLE I
MEAN RETURN AND SUCCESS RATE (± STANDARD ERROR), OVER 5

EVALUATION RUNS, FOR SAC, ASAC AND THE RANDOM ADVERSARY

BASELINE. MAXIMUM VALUES ARE IN BOLD FONT. ASAC
OUTPERFORMS BOTH SAC AND THE RANDOM ADVERSARY BASELINE.

available implementations of state-of-the-art RL methods like
SAC from the OpenAI baselines [30] and stable-baselines
[31] projects for our experiments.

C. Results

To answer the previously stated research questions, we
carried out a small sensitivity study, comparing various hy-
perparameter settings. Our main focus in these experiments
was to investigate how the number of training episodes
per iteration—KA and KP—and the adversary’s horizon,
HA, affect the learning process. To analyze the effects of
these hyperparameters, we trained three different variants
of the adversarial SAC algorithm with varying choices of
KA and KP. Hereby, we chose to set KA = KP to allow an
equal number of training episodes for both protagonist and
adversary:
• ASAC10: Adversarial SAC with KA = KP = 10
• ASAC100: Adversarial SAC with KA = KP = 100
• ASAC1000: Adversarial SAC with KA = KP = 1000
Note that all policies were trained for the same number of

episodes. Thus, the number of training iterations N depends
on the choice of KA and KP, i.e. to train ASAC10 for ten
thousand episodes, one thousand iterations were required,
while training ASAC1000 for the same amount of episodes
only 10 training iterations are required.

D. Maze results

In the following, we present the findings of the evalua-
tion of the ARL framework in the maze environment. We
evaluated the same three variants of ASAC and compared
their performance against standard SAC and an additional
baseline using a random adversary. In all our experiments
in the maze environment, we set the adversary horizon HA
to 100 time steps. This choice allows the adversary to reach
any point in the maze regardless of its start position. We
evaluate how well the protagonist performs by testing its
performance starting from positions uniformly distributed in
the entire maze.

Table I shows the mean episode return and success rate
on the complete maze of ASAC, SAC and the random
adversary baseline. We can observe that all ASAC methods
clearly outperform SAC and the random adversary baseline,
being able to solve the maze task from about twice as many
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Fig. 5. Example progression of mean return after 1000, 2000, 3000 and 4000 training episodes depending on the agents initial position. Top row shows
the random adversary baseline, middle shows SAC and the bottom row shows ASAC10. Guided by the adversarial policy, ASAC contiuously progresses
to explore distant regions of the maze, while SAC and the random adversary only explore regions close to the reset square.

different start positions. While SAC only explores the maze
close to the reset state, the random walk adversary is not
able to extend the training set of scenarios in a way that aids
the protagonist’s learning process. Figure 5 shows heatmaps
of the mean return of the protagonist the training process of
ASAC, SAC and the random adversary baseline.

1) Object disentangling: In the disentangling environ-
ment, we tested all three variants of ASAC using three
different horizons for the adversary and compared them
against a baseline of standard SAC. In the following, we
will present and discuss the results of this sensitivity study.
We used feedforward neural network policies with 2 hidden
layers of 64 units for all disentangling experiments. All SAC
hyperparameters were set equally, performing 5 optimization
steps for every step in the environment with a learning rate
α of 0.0003. The policies were trained for ten thousand
episodes each.

Table II shows the performance of the learned protagonist
policies on both the training set and the test set in simulation.
The score corresponds to the mean return during the last
100 episodes of training over 10 separate runs. Despite the
presence of an adversary that increases the difficulty of the
protagonist’s task, all variants of ASAC achieve a similar
performance to SAC on the training set. We evaluated the
final learned policies of all 10 runs on the test set 100 times
(25 trial per test scenario). The left side of the table shows the
mean scores and percentages of solving the task of the final

100 episodes of training. We can observe that ARL leads
to policies that are able to solve the majority of examples
presented to it. The fact that the performance of most ASAC
methods is lower than that of standard SAC is to be expected
because standard SAC was trained on the ideal initial state
distribution. The right side of the table displays the evalua-
tion of the final policies on the test set in simulation. We can
observe that all policies that were trained with the presence
of an adversary achieve a better performance than standard
SAC. Especially ASAC using a single step adversary is
able to solve the presented test scenario twice as often as
SAC. We hypothesize that the slightly better performance
of ASAC with a single step adversary, compared to those
with larger horizon, is caused by the fact that the training
and test scenario are similar, thus only a single action of the
adversary generates a new meaningful scenario. While larger
horizons enable the adversary to potentially find a greater
variety of difficult scenarios, it also requires the adversary to
explore areas of the environment that are trivial to solve for
the protagonist, such as positions in which the object already
are disentangled.

We chose the method that showed the best performance
on the test set in simulation, namely ASAC10 with HA = 1,
to be evaluated and compared against SAC in the real-world
environment on both the test set. We evaluated five learned
policies of each method for three trials per scenario, totalling
120 rollouts on the real robot. Table III shows the mean score



Method Training Test set
return success rate (%) return success rate (%)

SAC 0.44±0.29 90.5±4.84 −3.90±0.39 17.0±6.63
ASAC10 (HA = 20) 0.20±0.51 86.4±8.65 −3.71±0.60 20.20±10.11
ASAC100 (HA = 20) 0.07±0.43 84.2±7.31 −2.60±0.72 39.00±12.27
ASAC1000 (HA = 20) −0.42±0.63 76.0±10.67 −3.83±0.45 18.2±7.64
ASAC10 (HA = 5) −0.18±0.35 80.0±6.01 −3.57±0.41 22.6±6.96
ASAC100 (HA = 5) −0.51±0.49 74.34±8.28 −3.03±0.43 31.78±7.26
ASAC1000 (HA = 5) −0.26±0.25 78.6±4.25 −2.74±0.37 36.7±6.21
ASAC10 (HA = 1) 0.30±0.29 88.1±4.99 −2.56±0.31 39.7±5.27
ASAC100 (HA = 1) 0.70±0.05 94.88±0.83 −3.01±0.28 32.13±4.78
ASAC1000 (HA = 1) 0.00±0.33 83.1±5.60 −2.81±0.36 35.0±6.39

TABLE II
MEAN RETURN AND SUCCESS RATE (± STANDARD ERROR), OVER 10 EVALUATION RUNS, FOR SAC AND ASAC WITH ADVERSARIES OF VARYING

HORIZONS ON THE TRAINING AND TEST SETS. MAXIMUM VALUES ARE IN BOLD FONT. ASAC OUTPERFORMS SAC ON THE TEST SET.

Method Training Test set
return success rate (%) return success rate (%)

SAC −0.44±0.55 80.0±9.35 −4.31±0.36 10.0±6.12
ASAC10 0.41±0.59 90.0±10.00 −2.44±1.02 41.67±17.28

TABLE III
MEAN RETURN AND SUCCESS RATE (± STANDARD ERROR), OVER 5 EVALUATION RUNS ON THE REAL ROBOT, FOR SAC AND ASAC10 WITH A

SINGLE STEP ADVERSARY ON THE TRAINING AND TEST SETS. ASAC OUTPERFORMS SAC ON THE TRAINING SET AND THE TEST SET.

and success rate of the policies. We can observe that ASAC
does not only solves the test scenarios 4 times as often, but
also outperforms SAC on the training set. We believe that,
due to the extended training set generated by the adversary,
the protagonist was able to learn a more general policy that is
more robust to the sim-to-real gap than SAC. Furthermore,
in all of our disentangling experiments the presence of an
adversary improved the learned policy’s performance on the
test set, indicating that our method does in fact help to
alleviate the problem of overfitting in DRL.

V. CONCLUSION

In this paper, we introduced a novel adversarial learning
framework, ARL, that trains agents to learn more general
policies by introducing an adversary to the learning process.
The adversary steers exploration to unseen and difficult re-
gions of the environment, implicitly generating new training
scenarios for the protagonist, making the protagonist less
likely to overfit the predefined set of training scenarios and
more robust to the sim-to-real gap.

To evaluate ARL, we performed multiple experiments both
in simulation and on the real robot. Our experiments included
a sensitivity study to investigate the effects of changing
hyperparameters of ARL, namely the adversary’s horizon HA
and the number of training episodes per iteration KA and KP
for each policy. The results of the sensitivity study show

that the performance of ARL is robust to the choice of KA
and KP as all tested choices led to a significantly improved
performance on the test scenarios. The adversary’s horizon
does impact the learning process as adversaries with too short
horizons HK lack the possibility to explore larger parts of
the environment’s state space. However, even a single step
adversary was able to improve the protagonist’s ability to
generalize. Furthermore, ARL is indeed able to generalize
from training in simulation to deployment in the real world.

The results of our experiments provide several natural
starting points for potential future work. Firstly, investigating
how ARL performs using other base algorithms instead of
SAC remains a question to be answered. Also, on-policy
methods can potentially be used in the ARL framework (for
pseudocode of on-policy ARL see Appendix V-A). Another
possible follow-up would be to investigate the possibility of
incorporating shared critic that evaluates both the actions
of the protagonist and the adversary. With this extension,
learning speed and data-efficiency might be further improved.
Finally, it would also be interesting to investigate whether our
approach is able to increase robustness against adversarial
attacks.
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APPENDIX

A. Pseudocode for on-policy ARL

Algorithm 2: On-policy adversarial reinforcement learn-
ing

Input: Arbitrary initial policies πA and πP,
Environment E,

for i← 0 to N do
for j← 0 to KA do

reset(E) ;
for t← 0 to HA do

(st ,a
(A)
t ,r(A)t ,st+1)← step(E, πA));

πA ← train(πA) ;

for t← 0 to HP do
(st ,a

(P)
t ,r(P)t ,st+1)← step(E, πP));

for j← 0 to KP do
reset(E) ;
for t← 0 to HA do

(st ,a
(A)
t ,r(A)t ,st+1)← step(E, πA));

for t← 0 to HP do
(st ,a

(P)
t ,r(P)t ,st+1)← step(E, πP));

πP ← train(πP) ;

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
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