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Abstract— This paper investigates the use of policy gradi-
ent techniques to approximate the Pareto frontier in Multi-
Objective Markov Decision Processes (MOMDPs). Despite the
popularity of policy gradient algorithms and the fact that gra-
dient ascent algorithms have been already proposed to numer-
ically solve multi-objective optimization problems, especially
in combination with multi-objective evolutionary algorithms,
so far little attention has been paid to the use of gradient
information to face multi-objective sequential decision prob-
lems. Two different Multi-Objective Reinforcement-Learning
(MORL) approaches, called radial and Pareto following, that,
starting from an initial policy, perform gradient-based policy-
search procedures aimed at finding a set of non-dominated
policies are here presented. Both algorithms are empirically
evaluated and compared to state-of-the-art MORL algorithms
on three MORL benchmark problems.

I. INTRODUCTION

Many real-world control problems (e.g., economic sys-
tems, water resource problems, robotic systems, just to
mention a few) are characterized by the presence of multiple,
conflicting objectives. Such problems are often modeled
as Multi-Objective Markov Decision Processes (MOMDPs),
where the concept of optimality typical of MDPs is replaced
by the one of Pareto optimality, i.e., a set of policies provid-
ing a compromise among the different objectives. In the last
decades, Reinforcement Learning (RL) [1] has established
as an effective and theoretically-grounded framework that
allows to solve single-objective MDPs whenever either no (or
little) prior knowledge is available about system dynamics,
or the dimensionality of the system to be controlled is
too high for classical optimal control methods. Despite the
successful developments in RL theory and a high demand
for multi-objective control applications, Multi-Objective Re-
inforcement Learning (MORL) is still a relatively young and
unexplored research topic.

MORL approaches can be divided into two main cate-
gories, based on the number of policies they learn [2].
Single-policy algorithms aim at finding the best policy that
satisfies a preference among the objectives. The majority of
MORL approaches belong to this category and differ in the
way in which preferences are expressed.
Multiple-policy approaches aim at learning multiple policies
in order to approximate the Pareto frontier. Building the exact
frontier is generally impractical in real-world problems, the
goal is thus to compute an approximation of the frontier that
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includes solutions that are accurate, evenly distributed and
covering a range similar to the actual one [3].
There are many reasons behind the superiority of the
multiple-policy methods: they allow a posteriori selection
of the solution and encapsulate all the trade-offs among the
multiple objectives. In addition, a graphical representation
of the frontier can give better insight into the relationships
among the objectives, improving the understanding of the
problem and the selection of an appropriate solution.
Few examples of multiple-policy algorithms can be found in
literature [4, 5, 6]. The most of such approaches are limited
to deterministic policies that often result in scattered Pareto
frontiers, while considering stochastic policies gives a contin-
uous range of compromises among multiple objectives [7].
For a recent and complete survey of MORL, we refer the
reader to [2, 8, 7].

Shelton [4, Section 4.2.1] was the pioneer both for the
use of stochastic mixture policies and gradient approaches in
MORL. He solved two well-known problems: simultaneous
and conditional objectives maximization.
Consider the case of simultaneous objectives maximization,
the algorithm starts with a mixture of policies obtained
by applying standard RL techniques to each independent
objective. The policy is then improved following a convex
combination of the gradients in the policy space that are
non-negative w.r.t. all the objectives. An approximation of
the Pareto frontier is obtained by performing repeated search
with different weights of the reward gradients.
Despite the progresses made by policy-gradient algo-
rithms [9], their advantages in solving complex problems
(e.g., problems with continuous-action domains and partially
observable states) and the presence in the recent Multi-
Objective Optimization (MOO) literature of many techniques
exploiting gradient information, either standalone [10, 11]
or in combination with evolutionary multi-objective algo-
rithms [12], no further studies have followed [4] in applying
policy gradients to MORL problems.

In this paper, we propose two policy-gradient based
MORL approaches that, starting from some initial policies,
perform gradient ascent in the policy-parameter space in
order to determine a set of non-dominated policies.
In the first approach (called radial and described in Sec-
tion IV-A), given the number p of Pareto solutions that are
required for approximating the Pareto frontier, p gradient-
ascent searches are performed, each one following a differ-
ent (uniformly spaced) direction within the ascent simplex
defined by the convex combination of single-objective gra-
dients.



The second approach (called Pareto-Following and described
in Section IV-B) starts by performing a single-objective
optimization and then it moves along the Pareto frontier using
a two-step iterative process: updating the policy parameters
following some other gradient-ascent direction, and then
applying a correction procedure to move the new solution
onto the Pareto frontier.
An extensive empirical analysis of the two proposed ap-
proaches, and a comparison with some state-of-the-art
MORL algorithms based on three multi-objective domains
presenting different challenges, is provided in Section V.

II. PRELIMINARIES

Multi-objective Markov Decision Processes (MOMDPs)
are an extension of the MDP model, where several pairs of
reward functions and discount factors are defined, one for
each objective.
Formally, a MOMDP is described by a tuple
〈S,A,P,R,γ, D〉, where S ⊆ Rn is the continuous
state space, A ⊆ Rm is the continuous action space, P is
a Markovian transition model where P(s′|s, a) defines the
transition density between state s and s′ under action a,
R = [R1, . . . ,Rq]T and γ = [γ1, . . . , γq]

T are q-dimensional
column vectors of reward functions Ri : S × A × S → R
and discount factors γi ∈ [0, 1), respectively, and D is the
initial state distribution from which the initial state is drawn.
In MOMDPs, any policy π is associated to q expected
returns Jπ =

[
Jπ1 , . . . , J

π
q

]
, where

Jπi = E

{
H∑
t=0

γtiri(t+ 1)|x0 ∼ D,π

}
,

being ri(t+ 1) = Ri(st, at, st+1) the i-th immediate reward
obtained when state st+1 is reached from state st and action
at, and H the finite or infinite horizon.

Despite what happens in classical MDPs, in MOMDPs a
single policy which dominates all the others usually does
not exist; in fact, when conflicting objectives are considered,
no policy can simultaneously maximize all the objectives.
For these reasons, in Multi-Objective Optimization (MOO)
a different dominance concept has been defined.

Definition 2.1: Policy π dominates policy π′, which is
denoted by π � π′, if:

∀i ∈ {1, . . . , q} , Jπi ≥ Jπ
′

i ∧ ∃i ∈ {1, . . . , q} , Jπi > Jπ
′

i .

Definition 2.2: If there is no policy π′ such that π′ � π,
the policy π is Pareto-optimal.

In general, there are multiple Pareto-optimal policies. Solving
a MOMDP is equivalent to determine the set of Pareto-
optimal policies Π∗ =

{
π |@π′, π′ � π

}
, which maps to

the so-called Pareto frontier J ∗ =
{
Jπ
∗ |π∗ ∈ Π∗

}
.1

1As done in [13], we suppose that local Pareto-optimal solutions that are
not Pareto-optimal do not exist.

III. MULTI-OBJECTIVE POLICY GRADIENT

Consider now the problem of determining a policy that
maximizes the expected discounted reward over a class of
parametrized policies Πθ =

{
πθ : θ ∈ Rd

}
, where πθ is a

compact notation for π(a|s,θ). In MOMDPs for each policy
parameter θ, q gradient directions are defined

∇θJi(θ) =

∫
T
∇θp(τ |θ)ri(τ)dτ = E{∇θ log p(τ |θ)ri(τ)},

where τ ∈ T (the space of all possible trajectories) is a
trajectory drawn from density distribution p(τ |θ) with reward
ri(τ) =

∑H
t=0 γ

t
irit+1 . Each direction ∇θJi is associated to

a particular discount factor-reward function pair < γi,Ri >.
In the following, we will see how to update the policy
parameters on the basis of the q gradient vectors to produce
an approximation of the Pareto frontier.

A. Ascent Directions

Given the q gradient vectors, we are interested in deter-
mining the directions that move the current solution toward
the Pareto frontier. As these directions can only be generated
as a convex combination of the gradient vectors, we focus
our attention on the ascent simplex:

S(λ,θ) =

q∑
i=1

λi∇θJi(θ) s.t.
q∑
i=1

λi = 1, ∀i, λi ≥ 0

Although any direction in the ascent simplex allows to
approach the Pareto frontier, only a subset of such directions
allows to simultaneously improve all the objectives.

In single objective optimization problems, if the objective
is smooth, the level set associated to a particular parametriza-
tion θ divides the parameter space into dominated and
non-dominated areas. Locally, using a first order Taylor
approximation, this is represented by a line perpendicular
to the gradient (i.e., tangent to the level set) that defines
two half spaces (Figure 1). In multi-objectives problems, the
parameter space is partitioned into, at most, 2q mutually ex-
clusive directional cones. One cone simultaneously increases
all the objectives (ascent cone), another cone simultaneously
decreases all the objectives (descent cone), and 2q− 2 cones
decrease at least one objective, while increasing another (di-
versity cones) [10] (Figure 2). Ascent directions are defined
as the directions that lie in the ascent cone. Formally, a
direction l = [l1, . . . , ld]

T ∈ Rd is an ascent direction if

l · ∇θJi(θ) ≥ 0 ∀i = 1, . . . , q. (1)

The Pareto ascent cone is the intersection of the ascent
simplex with the ascent cone. When the solution θ is
sufficiently distant from the Pareto frontier, gradients are
likely to be highly correlated and the directions that lie in
the ascent simplex will also lie in the ascent cone (Figure 3).
However, as the solution approaches the Pareto frontier,
gradients become more and more conflicting and the width
of the ascent cone decreases (Figure 4). A degenerate case
is obtained when gradients are coplanar, in this case the
ascent cone cannot be defined and the corresponding θ is
a (eventually local) Pareto-optimal solution.
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Fig. 2. The set of cones defined by
θ in a 2–objectives problem. Signs
denote the change in the objectives
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Fig. 3. The ascent cone and simplex
in a 2–parameters, 2–objectives prob-
lem. The Pareto ascent cone equals
the ascent simplex. l2 and l3 domi-
nate l1 and l4.
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Fig. 4. The ascent cone and simplex
in a 2–parameters, 2–objectives prob-
lem. The Pareto ascent cone equals
the ascent cone. l represents a Pareto
ascent direction.

B. Choosing the Best Ascent Direction
Determining the best Pareto ascent direction is an ill-posed

problem, since multiple non-dominated solutions exist. The
problem can be made unique by searching for the direction
that maximizes the minimum improvement among all the
individual objective improvements [10].

Let R++ be the set of strictly positive real numbers and G
be the (q × d) Jacobian matrix with entries Gij = ∂Ji

∂θj
(θ).

If a solution θ is not locally Pareto-optimal then there exists
a direction l ∈ Rd such that

G · l ∈ Rq++,

i.e., l is a Pareto ascent direction for the objective function J.
The following minimization problem finds the smallest (L2-
norm) ascent directions l that maximizes the improvement
of the individual objectives

min
β,l

− β +
1

2
‖l‖22

s.t. (G · l)i ≥ β ∀i = 1, . . . , q
(2)

where the L2-norm is added as a regularization term. This
Quadratic Programming (QP) problem, in d + 1 variables
with q inequality constraints, always admits a unique solu-
tion [14]. If β = 0, the solution is locally Pareto-optimal.
On the other hand, by construction β ≥ 0, and when β is
strictly positive, l corresponds to a Pareto ascent direction.
Moreover, when all the constraints are active, the objectives
are improved by the same amount. In this case, assuming that
the objectives share the same range, the solution is projected
toward the Pareto front at 45◦ in objective space.

IV. MULTI-OBJECTIVE POLICY GRADIENT PARETO
APPROXIMATION

This Section introduces two algorithms, based on the
policy gradient method, to compute an approximate Pareto
frontier. In the first approach (called radial), given the num-
ber p of Pareto solutions required to approximate the Pareto
frontier, p gradient-ascent searches are performed, each one
following a different (uniformly spaced) direction within
the ascent simplex. The second approach (called Pareto-
Following), instead, performs a single-objective optimization
and then moves along the Pareto frontier using a two-
step iterative process: updating the policy parameters along
another gradient-ascent direction and applying a correction
to force the new solution onto the Pareto frontier.

A. Radial Algorithm (RA)

Following any Pareto ascent direction, a solution belong-
ing to the Pareto frontier can be determined. Though an ap-
proximation of the Pareto frontier can be computed adopting
an approach based on multiple starting points, solutions are
unlikely to be evenly distributed on the frontier.

Consider the ascent simplex S(λ,θ), following the ex-
treme directions (individual steepest ascent directions) one
converges to the solution that maximizes one objective,
neglecting the others. Any other direction in the ascent
simplex will simultaneously increase at least two objectives,
ignoring the others. As a consequence, a uniform sampling
of the ascent simplex results in evenly distributed directions
pointing to the Pareto frontier with the goal of generating
Pareto-optimal solutions as evenly distributed as possible.

Every direction in the ascent simplex intrinsically defines
a preference over the objectives through λ. Therefore, in
order to generate evenly distributed directions in the ascent
simplex, we need to uniformly sample the q-dimensional
space Rq associated to the vector λ.

Let p ≥ q be the granularity of the sampling. The
algorithm starts with computing the individual gradients at a
single point θ(0) and identifies the set {li}pi=1 that defines the
uniform partition of the ascent simplex. For every direction
li, a new candidate solution θ(1)i is generated according to
the following equation

θ
(1)
i = θ

(0)
+ αli, i = 1, . . . , p.

Since every direction li is specified by a preference vector
λi, any point θ(1)i can be associated to the preference vector
λi. At each iteration t > 0, each candidate solution θ(t)i
is associated to the preference vector λi, and the following
update rule is applied

θ
(t+1)
i = θ

(t)
i + αl

(t)
i , l

(t)
i = S

(
λi,θ

(t)
i

)
.

Note that, p points are created at the first iteration, and are
successively updated according to the associated preference
vectors until they reach the Pareto frontier, as shown in
Figure 5. The pseudo code is reported in Algorithm 1.



Algorithm 1 Radial Algorithm (RA)
Input: θ(0)

{λi}pi=1 ← uniform sampling of Rd

d
(0)
i ← S

(
λi,θ

(0)
)

for i = 1, . . . , p do
t = 1
while θ

(t−1)
i not Pareto-optimal do

θ
(t)
i ← θ

(t−1)
i + αd

(t−1)
i

d
(t)
i ← S

(
λi,θ

(t)
i

)
t← t+ 1

end while
end for

Algorithm 2 Pareto-Following Algorithm (PFA)
Input: the candidate solution θ, the index of the last gradient
followed i, the points of the Pareto frontier F

c← i
if θ is optimal w.r.t. the i-th objective then
c← i+ 1

end if
for k = c, . . . , q do

θ ← Γ (θ + α∇θJk (θ))
F ← Pareto-Following Algorithm

(
θ, k,F

)
end for
return F ∪ {θ}
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Fig. 5. Behaviour of the radial algorithm in a 2–objectives problem. Four
preferences λi are selected from the ascent simplex in θ(0). At every step
t the point θ(t)

i is updated according to the associated preference, until a
Pareto–optimal point is reached.

B. Pareto-Following Algorithm

As far as we know, the Pareto-Following Algorithm is the
first MORL algorithm that implements the idea of directed
optimization on Pareto frontier. Similar approaches have
been presented in MOO literature combined with genetic
algorithms [10] or user preferences [15].
The concept of directed optimization on Pareto frontier is
related to the ability of the search algorithm to reside on
a neighbourhood of the frontier throughout the optimization
process. Clearly, a first optimization stage that moves outside
the frontier is required in order to reach a Pareto-optimal
solution.

Moving the solution over the Pareto frontier improves
some objectives and degrades other ones, according to the
followed path. The main problem of directed algorithms is
the choice of the search path. In the case of a 2-objective
problem, the Pareto frontier is a line in the objective space,
thus only two search directions exist. When q ≥ 3, the Pareto
frontier is represented by a multi-dimensional surface, and
there are infinite directions that lie on the surface and along
which a solution can be moved

The idea of the Pareto-Following Algorithm is to build a
uniform approximation of the Pareto frontier by optimizing
one objective at a time. In this way the choice of the

search path is made unique for every parametrization θ.
At every step, the Pareto-Following Algorithm accounts for
two problems: improving the value of an objective and
maintaining the point on the Pareto frontier.
Note that, starting from a solution on the Pareto frontier
and following the steepest ascent direction of some objective
may produce a dominated solution. To go straightly back
to the frontier, a Pareto ascent direction can be followed.
In particular, the minimal length projection, named also
correction, is obtained by repeatedly solving the QP problem
in (2). Figure 6 illustrates the procedure in a 2-objective
problem.

The Pareto-Following Algorithm starts searching for an
extreme point of the Pareto frontier, by optimizing the first
objective J1(θ). When such a Pareto-optimal solution is
reached, it starts optimizing all the other objectives.
Let θ[i] be a solution on the Pareto frontier obtained by
considering only the i-th objective in the last step

θ[i] = Γ (θ + α∇θJi(θ)) ,

where θ is a solution on the Pareto frontier and Γ(x) is a
function that given a candidate solution x returns a solution
on the Pareto frontier (e.g., Γ is the repeated solution of the
QP problem in (2)). Then, Pareto-Following Algorithm eval-
uates at most (q − i+ 1) ascent directions associated to the
i-th and to the other objectives (see Figure 7 for a 3-objective
example). This means that for any solution θ[i], the Pareto-
Following Algorithm generates (q−i+1) points

{
θ
[k]
}

such
that

θ
[k]

= Γ
(
θ[i] + α∇θJk

(
θ[i]
))

∀k = i, . . . , q. (3)

Then it recursively applies the same procedure to any solu-
tion θ

[k]
, neglecting solution θ[i] if it is optimal w.r.t. the i-th

objective. The pseudo code of the recursive Pareto-Following
Algorithm is reported in Algorithm 2.

V. EXPERIMENTS

In this section, results related to the numerical simula-
tions of the proposed algorithms, in continuous and discrete
domains, are presented. In particular, the performance are
compared against some existing algorithms [16, 17].
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The Section is organized as follows: the domains are first
described, then the numerical results are reported.

A. Domains

To illustrate the performance of the algorithms, we con-
sider the following MDPs.

1) LQG: The first case of study is a discrete-time Linear-
Quadratic Gaussian regulator (LQG) with multidimensional
and continuous state and action spaces [18]. The LQG
problem is defined by the following dynamics

st+1 = Ast +Bat, at ∼ N (K · st,Σ)

rt = −stTQst − atTRat

where st and at are n-dimensional column vector (n = m),
A,B,Q,R ∈ Rn×n, Q is a symmetric semidefinite matrix
and R is a symmetric positive definite matrix. Dynamics are
not coupled, that is, A and B are identity matrices. The policy
is Gaussian with parameters θ = vec(K), where K ∈ Rn×n.
Finally, a constant covariance matrix Σ = I has been chosen.

The LQG can be easily extended to account for multi-
conflicting objectives. In particular, the problem of minimiz-
ing the distance from the origin w.r.t. the i-th axis has been

taken into account, considering the cost of the action over
the other axes

Ri (s, a, s′) = −s2i −
∑
i 6=j

a2j .

Since the maximization of the i-th objective requires to have
null action on the other axes, objectives are conflicting.
As this reward formulation violates the positiveness of matrix
Ri, we change the reward adding an ξ-perturbation

Ri(s, a, s′) = −(1−ξ)

s2i +
∑
i6=j

a2j

−ξ
∑
j 6=i

s2j + ai

 ,

where ξ is sufficiently small.
The values of the parameters used for all the experiments

are the following ones: γ = 0.9,Σ = I, ξ = 0.1 and the
initial state s0 = [10, 10]

T. For the estimation of the gradient
a total of 100 episodes of 50 steps are collected.

2) Deep Sea Treasure: The deep sea treasure problem was
first proposed in [19]. The environment is a 10 × 11 grid
where some cells are not accessible. The agents can move
in the four cardinal directions, with exception of the actions
against the boundary that are feasible but do not change the
position of the agent.
Unlike the LQG, this domain is episodic and each episode
ends when the agent finds a treasure. Multiple treasures with
varying values are placed on the grid, and there are two
objectives: to maximize the value of the treasure and to
minimize the time spent to reach it. For the first objective,
the agent gets an immediate reward that equals the value of
the cell it moves in (empty cells have 0 value), for the second
objective it receives a penalty of −1 at each step. The initial
state is always (1, 1) and the discount factor is set to 1.
Since the problem has discrete states and actions a Gibbs
policy is used

π(a|s) =
eτf(s,a)∑

a′∈A e
τf(s,a′)

,

where f(s, a) = φ(s, a)
T
θ is a preference function over

state-action pairs, and φ : S × A → Rd is the set of basis
functions.

For the estimation of the gradient and for the evaluation
of the policy a total of 500 episodes by 50 steps were used.

3) Water Reservoir: A water reservoir can be modelled as
a MOMDP with a continuous state variable s representing
the water volume stored in the reservoir, a continuous action
a that controls the water release, a state-transition model that
depends also on the stochastic reservoir inflow ε, and a set
of conflicting objectives. For a complete description of the
problem, the reader can refer to [17].

In this work we consider three objectives: flooding along
the lake shores, irrigation supply and hydropower supply. The
immediate rewards are defined by

R1(st, at, st+1) = −max(ht+1 − h̄, 0)

R2(st, at, st+1) = −max(ρ̄− ρt, 0)

R3(st, at, st+1) = −max(ēt − et+1, 0).



TABLE I
EXPERIMENTAL SETUPS

LQG Deep Water
ex. PFA PFA ex. RA RA PFA RA PFA RA

Step to reach the frontier 0.1 0.1 0.1 0.1 0.1 0.5 4 4
Step on the frontier 5 · 10−4t 5 · 10−4t - - 0.1 - 4 -
Step for correction 0.1 0.1 - - 0.1 - 4 -
N. of simplex directions - - 101 101 - 66 - 21

where ht+1 = st+1/S is the reservoir level (in the following
experiments S = 1), h̄ is the flooding threshold (h̄ = 50),
ρt = max(at,min(āt, at)) is the release from the reservoir,
ρ̄ is the water demand (ρ̄ = 50), ēt is the demand for
electricity (ēt = 4.36) and et+1 is the electricity production:

et+1 = ψ g η γH20 ρt ht+1,

where ψ = 10−6/3.6 is a dimensional conversion coefficient,
g = 9.81 the gravitational acceleration, η = 1 the turbine
efficiency and γH20 = 1, 000 the water density.
R1 denotes the negative of the cost due to the flooding excess
level, R2 is the negative of the deficit in the water supply and
R3 is the negative of the deficit in hydropower production.

Due to the fact that the transition function limits the action
in the range of admissible values (at ∈ [at, āt]), there are
infinite policies with equal performance that allow the agent
to release more than the reservoir level or less than zero. A
penalty term in the reward p = −max(at − āt, at − at) is
thus introduced, in order to prevent such infeasible actions.
Moreover, in order to be able to compare the results with the
original work, the penalty is considered only in the learning
phase and not in the evaluation of the policy.

Like in the original work, the discount factor is set to 1
for all the objectives. However, different settings are used for
learning and evaluation. In the learning phase 1, 000 episodes
by 10 steps with initial state s0 ∼ Unif(0, 160) are used,
while the evaluation phase exploits 100 episodes by 100 steps
with initial state drawn from a finite set.

Since the problem is continuous we exploit a Gaussian
policy model

π(a|s,θ) = N
(
φ(s)

T
κ, σ

)
,

where φ : S → Rd−1 are the basis functions. In or-
der to prevent the variance from becoming negative, the
parametrization presented by [20] is presented, where σ is
represented by a logistic function parametrized by ω

σ =
τ

1 + e−ω
,

where τ is the maximum variance allowed (in the experi-
ments τ = 50) and ω ∈ R. Unlike the LQG, the variance σ
is variable and will be learned by the agent, leading to an
overall set of parameters θ = [κ, ω]

T.
Since the optimal policies for the objectives are not linear

in the state variable, a radial basis approximation is used:
φ(s) =

[
e−

∥∥s − ci∥∥22/wi]d−1
i=1

, where the centres ci are placed
at 0, 50, 120 and 160, and the widths are 50, 20, 40 and 50.

The complete set of parameters used in the learning is
shown in Table I.

B. Numerical results

For each of the previous domains, simulation results are
reported here, comparing them with the results obtained
using other algorithms. The gradient is estimated as in [18].

1) LQG: The LQG problem is useful because the exact
gradient is known and the precision of the proposed algo-
rithms can be analysed using both the exact and the estimated
gradient. Further, since the Pareto frontier is convex, a
weighted sum method can be exploited in order to obtain
a reference frontier used to compare the two approaches.

In order to obtain a robust solution of the problem (2),
gradients are normalized in the correction phase. Normaliza-
tion of the objectives is not necessary since the initial state
s0 ensures they have the same order of magnitude.

Figure 8(c) shows the approximated front obtained with
the Pareto-Following algorithm. It can be noticed that the
approximation is not completely uniform as it lacks solutions
near the optimum θ∗2 for the second objective (bottom right
corner) and it is more dense near the optimum θ∗1 for the
first objective (top left corner). This is explained by the fact
that the algorithm first optimizes J2 and then J1. Starting
from θ∗2, i.e., the optimum w.r.t. to J2, the magnitude of the
gradient ∇θJ1(θ) w.r.t. the single objective J1 decreases as
the solution approaches the optimum θ∗1, and this produces
smaller steps. Better approximations can be obtained adapt-
ing the learning rate with time [21], but this does not ensure
to get a uniform approximation of the frontier.

Figure 8(a) shows the approximated Pareto frontier ob-
tained with the Radial Algorithm. Compared with the previ-
ous one, this is more uniformly distributed and more precise,
but has more solutions concentrated near the knee of the
front. Radial Algorithm proved to be faster since it can use
a higher learning rate and still obtain a uniform front. It is
interesting that, even starting near to the center of the front,
Radial Algorithm is still able to reach its extremity.

Figure 8(b) and 8(d) show the same algorithms using the
estimated version of the gradient [18]. The former figure
reports the frontier obtained with the Radial Algorithm.
Compared to the previous frontier, solutions are more sparse.

Concerning computational costs, the exact version in
significantly faster (e.g., for the PFA 23s versus 3, 078s)
than the approximate version because it does not require to
perform sampling in order to compute the gradient.

2) Deep Sea Treasure: This problem is interesting be-
cause the Pareto frontier obtained using deterministic policies
is concave [19]. Thus, methods that exploits weighted sum,
e.g., [17], are not able to correctly approximate the frontier.
However, using stochastic policies, e.g., mixture policies, all
the deterministic policies, except the extrema, are dominated.
The real Pareto frontier is obtained as convex combination
of the optimal policies of the single objectives. Since the
proposed algorithms are able to exploit stochastic policies,
they are able to correctly approximate the real frontier.

Figure 9 shows the frontiers obtained by the Pareto-
Following algorithm using different approximations of the
preference function f(s, a). The algorithm begins with a
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Fig. 8. Approximate Pareto frontier obtained by RA and PFA in the LQG problem. Figures (a) and (b) represents the RA approximation in the exact and
approximate scenario. Initial parametrization are θ0 = [−0.5, 0, 0,−0.5]T and θ0 = [−0.17, 0, 0,−0.17]T, respectively. PFA approximation is reported
in figures (c) and (d).
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Fig. 9. Comparison between frontiers obtained with different features using
FPA and RA. Since the environment is a grid the state is represented by
two variables x (rows) and y (columns).

completely random policy (θ = 0) and the first objective
to be optimized is the time. Exploiting gradient ascent
a deterministic policy is found, that forces the agent to
immediately perform a step down in order to reach the first
treasure. Then, the treasure value is optimized starting from
such policy. Since the policy is deterministic a randomization
is necessary for the correct estimation of the gradient. The
randomization is performed by reducing the temperature τ of
the Gibbs policy proportionally to its entropy H (evaluated
during the sampling): τnew = τold ·H . This explains why the
algorithm finds few solutions near the optimal deterministic
policy for the first objective (bottom right corner). We faced
the same problem starting from the inverse ordering of the
objectives because the optimal policy for the treasure value
is also deterministic (at least in cell (1, 1) in order to avoid
the choice of the worse treasure).

Figure 9 also shows a front obtained with the Radial
Algorithm (solid bullet line) with only one set of features
(first cell, first row without first and last cell and last column),
since with the other ones the agent was not able to learn,
or solutions were concentrated only near the optimal single
objective solutions. Unlike for the LQG experiment, the front
is not uniformly distributed, even if directions were chosen
uniformly in the simplex of the gradients. Furthermore, even
if we are able to use a higher learning rate, the algorithm
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Fig. 10. Approximate Pareto frontier for the 2-objectives water reservoir.

performs significantly slower than the Pareto-Following al-
gorithm and obtains less solutions (dominated solutions are
removed in post processing). Since the randomization of the
policy is not necessary, solutions are not sparse near the
single objective optimums.

3) Water Reservoir: To evaluate the effectiveness of the
proposed algorithms we have analysed their performances
against the solution found by Stochastic Dynamic Program-
ming (SDP) using the weighted sum method [17], multi-
objective FQI [17] (using 20, 000 samples with a dataset
of 200, 000 tuples) and the standard FQI. Both MOFQI
and FQI have been trained using 10, 000 samples with a
dataset of 50, 000 tuples for the 2–objectives problem and
20, 000 samples with a dataset of 500, 000 tuples for the
3–objectives problem. FQI exploits a scalarization of the
objectives according to the SDP weights. Since the objectives
J have different magnitude, they have been normalized.

Figure 10 shows a graphical representation of the Pareto
points obtained by the algorithms when only the first two
objectives are considered. While a graphical comparison is
meaningful in 2-objectives problem, such representation is
meaningless or infeasible when q > 2.

For the comparison of the algorithms, we consider an
extension of a previously defined metric [17] that measures
the loss of an approximation of the Pareto frontier and



TABLE II
WATER RESERVOIR: ALGORITHM COMPARISON

Algorithm Loss (2-obj.) Loss (3-obj.)
Radial 0.0945± 0.0049 0.0123± 0.0011
Pareto following 0.0811± 0.0072 0.0162± 0.0021
MOFQI [17] 0.1870± 0.0090 0.0540± 0.0061
FQI [16] 0.1910± 0.0100 0.0292± 0.0010

TABLE III
WATER RESERVOIR: COMPUTATIONAL COSTS

Water 2-obj. Water 3-obj.
PFA RA PFA RA

Time 408± 52s 2, 789± 204s 13, 128± 286s 9, 414± 1040s
#Iterations 347.5± 46.2 974.5± 42.7 2, 096± 330.2 2, 441± 125.9
#Solutions 16.9± 1.5 10.4± 0.5 154.3± 10.5 54.4± 0.8

the frontier itself. Since the optimal Pareto frontier J ∗
is not available, we exploit the solution of the SDP as
reference frontier and the loss function is approximated
using the discrete set of weights exploited to compute the
SDP frontier [17]. Furthermore, given that it is not possible
to associate weights with policies found by the gradient
algorithms, for each weight of the SDP, the policy that
minimizes the loss function is selected.

Table II reports the loss achieved by the algorithms w.r.t.
the SDP approximation. Gradient algorithms result to be
more effective when the number of objectives increases.
Numerical results are reported in Table III. All the results
are averaged over 10 runs.

VI. CONCLUSIONS

Multi-objective problem are relevant in many real world
applications. However, few attention has been posed on
MOMDPs in the field of RL. This paper has investigated
multi-objectives policy gradients methods that are able to
overcome limitations of weighted sum methods. The key is-
sue is how to compute the update in an appropriate ascent or
diversity direction. The Radial Algorithm defines directions
in the ascent simplex and computes p solutions according
to them. The Pareto-Following algorithm, instead, is able to
navigate through nearly Pareto-optimal solutions.

Subjects for further investigation include assessing how it
is possible to guarantee a uniform covering of the Pareto
frontier and how close are the solutions to the real frontier.
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