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Digital Twin of a Driver-in-the-Loop Race Car
Simulation with Contextual Reinforcement Learning

Siwei Ju 1,2, Peter van Vliet1, Oleg Arenz2, Jan Peters2

Abstract—In order to facilitate rapid prototyping and testing
in the advanced motorsport industry, we consider the problem
of imitating and outperforming professional race car drivers
based on demonstrations collected on a high-fidelity Driver-in-
the-Loop (DiL) hardware simulator. We formulate a contextual
reinforcement learning problem to learn a human-like and
stochastic policy with domain-informed choices for states, actions,
and reward functions. To leverage very limited training data
and build human-like diverse behavior, we fit a probabilistic
model to the expert demonstrations called the reference dis-
tribution, draw samples out of it, and use them as context
for the reinforcement learning agent with context-specific states
and rewards. In contrast to the non-human-like stochasticity
introduced by Gaussian noise, our method contributes to a
more effective exploration, better performance and a policy
with human-like variance in evaluation metrics. Compared to
previous work using a behavioral cloning agent, which is unable
to complete competitive laps robustly, our agent outperforms the
professional driver used to collect the demonstrations by around
0.4 seconds per lap on average, which is the first time known
to the authors that an autonomous agent has outperformed
a top-class professional race driver in a state-of-the-art, high-
fidelity simulation. Being robust and sensitive to vehicle setup
changes, our agent is able to predict plausible lap time and other
performance metrics. Furthermore, unlike traditional lap time
calculation methods, our agent indicates not only the gain in
performance but also the driveability when faced with modified
car balance, facilitating the digital twin of the DiL simulation.

Index Terms—reinforcement learning, imitation leaning, au-
tonomous agent, autonomous racing

I. INTRODUCTION

S IMULATION has become an indispensable tool in the
modern automotive industry. In addition to the various

techniques and applications used for vehicle simulation, incor-
porating a driver model has gained significant traction because
it is crucial to consider the impact of drivers during the
earliest stages of automotive development. Possible use cases
are, for instance, energy consumption prediction [1], user-
specific advanced driver assistant systems [2], personalized
route planner [3], and hardware-in-the-loop test benches [4].

The motorsport industry, which requires rapid development,
places even greater demands on high-quality driver models
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Figure 1: Our framework leverages the vehicle dynamics model used in the
DiL simulator to train and evaluate the agent while using the demonstrations
generated by professional race drivers to provide the agent with context infor-
mation during rollouts. These demonstrations are encoded into the reference
distribution, allowing unlimited samples to be drawn for each rollout, enabling
a probabilistic agent with human-like variance.

for realistic lap simulations during extensive setup tests and
tuning. Obtaining such models is particularly challenging due
to the increased complexity and precision required. To improve
performance, the race car and its driver need to be considered
as an entity and individual driving styles of professional race
drivers need to be considered. As testing on the real car
is expensive, only possible in the final development phase
and usually regulated and limited, Driver-in-the-Loop (DiL)
simulators as shown in Fig. 1 are widely used in top-class
motorsport teams [5]. However, DiL simulations are expensive,
time consuming, and therefore, limited in terms of the amount
of tests that can be executed within a certain time frame. In
order to efficiently scale up the number of tests, a full digital
twin that includes representative race driver models is highly
desirable.

Developing such driver model for race car driving is es-
pecially challenging for the following reasons: 1) the car
is being handled on its limits, which requires the driver
model to react to rapidly changing and unstable dynamics,
2) a human decision process is difficult to model due to
many influencing factors, including experience, multimodal
perception, psychological factors, and natural stochasticity,
3) imprecision of human drivers and changing properties of
the car and the environment are generating variance in the
trajectory of the car, and 4) It is usually expensive to get
adequate and high-quality demonstration data.

Research on driver models for urban driving and motorsport
scenarios has been ongoing for decades, with various ap-
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proaches such as vehicle dynamics analysis [6], control theory
[7], machine learning [8], and reinforcement learning [9][10].
However, so far no driver modeling approach was found that
addresses all of the challenges and serve as a digital twin for
DiL simulations.

Our work aims to address the listed challenges and develop
a driver model that can potentially facilitate the digital twin
of DiL simulations. Our contribution is formulating race car
driving as a contextual reinforcement learning problem, and
leveraging human demonstrations as context to enhance per-
formance and efficiency, while learning human-like behavior
and variance.

As shown in Fig. 1, we initialize the agent with behav-
ioral cloning, and use reinforcement learning to improve the
performance and robustness. Having only limited demonstra-
tions, we fit them into a prior probability distribution called
the reference distribution, and draw samples from it as the
context during explorations. Using context-aware states and
rewards informed by domain-knowledge, we train the policy
by optimizing the expected return over all instances of the
references, contributing to a more effective exploration and a
stochastic policy with human-like variance, compared to the
default step-based Gaussian noise for explorations.

In practice, the demonstrations are generated by professional
drivers in the DiL simulator in Fig. 1. During the demonstra-
tion and training, the setting of the car is the same as in the
professional races, without any driver assistance system such
as traction control or anti-lock braking system (ABS), making
it more challenging to control.

Being trained and evaluated in the same simulation en-
vironment as in the DiL simulator with a simplified track
model, our agent outperforms top-class professional race car
drivers by 0.4 secs on average on a real race track in
comparable scenarios. In addition, being optimized over the
reference distribution, the agent learns a stochastic policy,
exhibits realistic and human-like variance in terms of the
driving line, the speed profile and the lap time. The agent
is capable of completing laps even when faced with altered
vehicle characteristics such as changes in power, grip, or
balance, while predicting plausible lap time changes. The data
generated by the agent can be used to predict metrics such as
lap time, top speed, and driveability1.

Related Work

There has been considerable research conducted in various
fields that aim to address similar use cases, particularly in the
domain of autonomous vehicles and racing.

Lap Time Simulation. Lap time simulation is essential in
Motorsport for rapid tests and assessments of vehicle setups
without expensive real-track or DiL tests. One of the currently
widely used methods is Lap Time Calculation based on Quasi-
Steady-State analysis (LTC) [11]. Using the g-g-v2 diagram,
the lap time is estimated by calculating the speed profile based

1Driveability is a notion of a measure for how easy it is to drive a car at
the handling limits.

2The g-g-v diagram shows the acceleration potential of a car at a given
speed.

on the assumption of the full utilization of the steady-state
potential, with a predefined and discretized driving line. LTC
has three main limitations: a) the full dynamic vehicle model is
replaced by a simplified, steady-state model, b) consequently,
while generating the speed profile, it does not consider the
effects that a real driver can take advantage of in real-time,
dynamic forward simulation, and c) as the simulation is
assuming steady state conditions, it is challenging to assess
the notion of driveability.

(Learning-based) Control Theory. The problem of lap
time prediction has also been approached by control theory,
using optimal control [7] or model predictive control with an
analytical or a learned model [12]. Those methods require a
vehicle dynamics model, which is usually highly linearized
and/or simplified. Furthermore, while these approaches tackle
the first two limitations listed before, the third limitation of
missing indication of driveability remains unsolved [7].

Reinforcement Learning. Most recently, reinforcement
learning (RL) has been adopted for autonomous racing, on
model cars [13] or in simulation environments [14][15]. In
the video game Gran Turismo Sport, RL outperforms human
players [10][16]. The works presented in this field offer
valuable insights into the potential of RL. However, they have
certain limitations that may hinder their ability to serve as a
reliable digital twin for professional race car development. For
instance, the simplified vehicle dynamics simulation and the
use of driver assistance systems may not accurately capture the
complexities and nuances of real race driving conditions. Ad-
ditionally, the robustness and sensitivity towards vehicle setups
are not analyzed, which may lead to suboptimal performance
compared to that of professional race drivers. Furthermore, the
absence of analysis when the vehicle is pushed to its handling
limit can result in non-optimal behavior. It is also important
to note that current focus of RL research tends to be on
achieving deterministic super-human performance, rather than
simulating human-like diverse behavior, which is crucial for
understanding the driveability of the car. In summary, while
RL has been proved to have great potential in the field of race
car simulation, there are still several challenges that must be
overcome before it can be used as a reliable digital twin for
race car drivers.

Imitation Learning. To take human factors into consider-
ation, different imitation learning techniques such as behav-
ioral cloning ([8], [17]) and generative adversarial imitation
learning ([18]) have been used for either urban driving or
motorsport scenarios, to learn a policy based on demonstra-
tions. Among them, Probabilistic Modeling of Human Driver
Behavior (ProMoD) investigates the potential of behavioral
cloning in race car simulation, and it succeeds in learning
a stochastic policy with near-to-expert performance. However,
its limitations hinder it from being used in practice. First of all,
behavioral cloning lacks robustness due to the covariance shift
[19]. Adaptation needs to be done through post-processing and
is moreover limited in cases that it can handle[20]. Secondly,
the performance is worse than human demonstrations. Last but
not least, it requires a large amount of demonstration data up
to several hundreds of laps which are difficult and expensive
to acquire.
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Despite the research in different fields, there is not yet a
method, to the best of our knowledge, which can fulfill the
requirements that are necessary to be used as a digital twin
for professional race car simulations.

II. METHODOLOGY

Our objective is to learn a driving policy π: at = π(st),
where at represents the driver inputs given to the car, mapped
from the current state represented by the state vector st. In
this section, we first formulate the contextual reinforcement
learning problem, followed by the design of the action space
and the state space of the policy network. Subsequently,
we introduce the reference distribution which is fitted from
demonstration data collected from the DiL simulator and
provides the agent with context information.

A. Problem Formulation

We formulate this problem as a contextual reinforcement
learning problem [21]. The latent context is given by reference
τref, sampled at the beginning of each episode. It remains con-
stant during each episode while affecting the system dynamics,
the state space and the reward. The goal is to optimize the
policy π with respect to the expected return over all instances
of the reference driving lines (τref):

max
π

∫
τref

q(τref)

∫∫
sτref ,a

µπ(sτref , a)Rτref(sτref) dsτref da dτref,

(1)
where the reference distribution q(τref) is the probability den-
sity function over trajectories learned from human demonstra-
tions, and µπ(sτref , a) is the stationary distribution following
the policy π [22]. With the states s and the reward function R
being context-specific, the agent is able to leverage the context
information. Being optimized over the reference distribution,
the policy is robust towards different reference lines, learns
to optimize its performance based on them, and is able to
reproduce the variance presented by the reference distribution.

Reward The reward should reflect the learning objective,
which is to optimize the lap time. We did initially test such
sparse reward function, giving one reward only at the end of
each lap3. However, we were unable to learn a reasonable
behavior within our computational budget, despite the avail-
ability of expert demonstrations. Our initial policy, learned by
behavioral cloning, was not even able to make the first turn,
and thus the agent received no reward to help it improve its
performance. Therefore, we use a context-aware dense reward
to encourage better explorations. In addition, by punishing
certain unwanted situations, the learning process can be sped
up towards an expected driving behavior. The reward function
consists of the following terms with corresponding weighting
coefficients.

Rt = dref − coff-track1off-track − cslow1slow, (2)

3A lap is usually one to two minutes except for some long tracks, and in
our simulation, it is sampled at 100 Hz, resulting in a minimal episode length
of around seven thousand.

where the performance term dref, the safety margin
coff-track1off-track and speed margin cslow1slow are defined as
follows.

• The performance term dref is defined as the traveled
distance along the given reference driving line on the last
time step. Another way to understand it is as the velocity
component projected onto the direction of the reference
line. When optimizing the discounted sum of this term,
the policy aims to maximize the average speed, which
in turn minimizes the lap time. This reward encourages
progress along reference lines instead of the centerline.
Cooperating with the context-aware states, the agent
learns to use the context information presented by the
various references during the explorations, and optimize
the performance.

• We punish certain situations, such as off-track or the
speed lower than a predefined threshold are coff-track
and cslow, respectively. When the early termination (ET)
criteria are triggered, the exploration will be immediately
terminated and the corresponding punishment is given.
The ET criteria are defined by the indicator functions

1off-track/slow =

{
1 if off-track / vt < vthreshold

0 otherwise
(3)

Off-track means that the agent leaves the track area. The
speed threshold vthreshold is a track-dependent parameter.
This parameter is chosen small enough to allow for
optimal behavior and large enough to help exploration.

In our experiments, the coefficients coff-track = 10 and cslow =
100 are tuned to achieve a certain compromise between
performance and safety.

Based on the reward, we find that the agent needs to look
far ahead, for instance, to plan for the coming straight line
after one corner already from the corner entry. This can be
achieved by using a large discount coefficient (γ in Table I).

B. Policy

We parameterize the policy π using a feed-forward neural
network with state vector st and actions at as follows:

Action. The action at consists of a combined acceleration
signal α and the steering wheel angle δ: at = [αt, δt]

T ,
where the acceleration signal is combined from acceleration
and brake, αt = accelerator pedal actuation - brake pedal
actuation. Combining both signals is motivated by the fact that
the driver usually doesn’t brake and accelerate simultaneously,
and it speeds up the exploration significantly, as those two
signals are closely related, and the transition from one to the
other is usually continuous.

States. The decision making process of human drivers
is based on many influencing factors, including the sense
of balance from a combination of visual, audio, and haptic
perception, prior knowledge gathered from previous laps, and
their intentions. Since we cannot simulate the multi-sensor
perception, it is critical to provide the agent with informative
features. Based on those considerations, informed by domain-
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Figure 2: Boundary points on a real race track. The x,y coordinates of
the points on the track borderlines are calculated in the current coordinate
framework of the car with the velocity as the positive x direction and positive
y direction pointing to the left.

knowledge and modified by experiments, we present a feature
set consisting of the following states:

st = [v, ax, ay, βF , βR, rF , rR,αposition, cpoly, αoffset, doffset],

which can be divided into three types:

• Vehicle states: absolute velocity (v), longitudinal acceler-
ation (ax), lateral acceleration (ay), average front/rear slip
ratio (rF , rR), average front/rear slip angle (βF , βR)4.
Compared with other existing works ([8], [10]), this part
is significantly expanded. Those signals contribute to the
sense of balance and capture of the vehicle dynamics,
which in reality comes from multi-sensor perception of
human beings.

• Position features: previous work uses rangefinder features
[10] to provide information about the track. However, we
propose the boundary point features as shown in Fig. 2. It
contains the relative position of a series of points on the
track borders, with distance markers relative to the current
position of the center of gravity of the car [5, 10, 20, 40,
80, 160, 320, 640] on both sides of the track boundaries.
We combine both visual perception on the track in the
short range and the prior knowledge of track layouts in
the long range in this single set of features, which can
be easily acquired in our setting, without time-consuming
computations.

• Path planning features: A polynomial fitting of a lo-
cal path cpoly, and the angular and distance offset
(αoffset, doffset) in a predefined preview time [8]. They
are computed based on the reference driving line used
for each roll-out. These features contain prior knowledge
and experiences of the driver embedded in the reference
trajectory, and the short-term path planning information
depending on the current states.

Using these states, the agent is able to get information about
the car, its position on the track, and its relative position to
the reference to be context-aware.

4Standard definitions as in [23] are adopted here.

C. Context: Reference Distribution

The context is given by the reference driving line and
reflected in the states and the reward function so that the agent
can take advantage of them during explorations, improve the
efficiency and performance, and in the end, show correspond-
ing variance in behavior.

The most straight-forward choice for the reference driv-
ing lines is to use the human demonstrations. However, it
has multiple limitations: a) it is expensive to get adequate
demonstration data for enough context instances, b) due to
the natural non-deterministic behavior of human, distractions
during simulator sessions and the limited amount of laps, the
raw demonstration data are usually sparsely distributed and
include outlier laps that are less representative.

In order to make use of limited expert data efficiently and
get rid of the influence of outliers, we first fit the demonstration
data into a probabilistic distribution called reference distribu-
tion using Probabilistic Movement Primitives (ProMP) [24].
To get a compact but informative representation, the spatial
information in the form of the x and y coordinates of the
driving line is projected into a low-dimension weight space of
a series of equally distributed radial basis functions with the
phase variable of track distance s. For each single trajectory in
the demonstrations, transformed from originally time-based to
distance-based, the weight coefficients w of the basis functions
are fitted using ridge regression. Then, we derive the reference
distribution by fitting weight vectors of all N demonstrations
to a Gaussian distribution N (µw,Σw), by µw = 1

N

∑N
i=1 wi

and Σw = 1
N

∑N
i=1 (wi − µw) (wi − µw)

T .
Now, the distribution of driving lines on each track is

described efficiently with this reference distribution, and sub-
sequently, by sampling weight vectors w∗ ∼ N (µw,Σw) and
transforming back to the distance space, an arbitrary number
of driving lines which are similar to the demonstrations can
be generated. Those samples are subsequently used as the
reference driving lines to present the agent with the context
for each roll-out during explorations and test runs.

III. EXPERIMENTS AND EVALUATION

We train our agent based on a demonstration data set
with six laps5 from one professional race driver on a real
race track as shown in Fig. 4. For reinforcement learning,
the implementation of Proximal Policy Optimization (PPO)
[25] from stable-baselines [26] is adopted, with default hyper-
parameters apart from the ones listed in Table I. We disabled
advantage normalization for a consistent reward tuning.

For intellectual property protection, all plots are shown
normalized or in relative value, omitting the unit.

Method evaluation Firstly, we investigate the impact of
context information and context awareness on the training
process and performance. Fig. 3 displays the average dis-
counted reward across training epochs for three experiments
that share the same settings, except for variations listed below.
Additionally, we include the results from the best behavioral
cloning experiment that we have conducted.

5Each lap is around 70 seconds and sampled in 100 Hz, resulting in a
demonstration data set of around 40,000 data points.
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Table I: Parameter and Configuration of the Experiment

component parameter value

reference distribution (ProMP)

sigma of basis functions 0.002
regularization factor 1−15

num basis function 700

PPO

num step 2048
num env 16

batch size 64
gamma γ 0.998

lam 0.98

Table II: Lap Time Performance - Experiment Settings

experiment A B C
best lap time 1.0000 1.0103 (+ 0.705 sec) 1.0320 (+2.212 sec)

• A: baseline setting on track 1, 2, and 3. The reward and
the states are context-aware.

• B: centerline reward. With the reward term d projected
on the track center line, the reward is not context-aware.

• C: no context. States relevant to the reference driving line
are removed and the states are not context-aware.

• D: behavioral cloning (BC). The agent is trained using
behavioral cloning and the return is calculated using
reward in Setting A for the rollouts between the training
epochs until it starts to overfit. 6

The rewards are calculated based on their own reward-
references to investigate the impact on the speed of con-
vergence. To analyze their performances, the best lap time
performance of each setting is listed in Table II in relative
to baseline setting A. Their driving lines and actions are in
Fig. 4 and Fig. 5 correspondingly, except for BC which is
not able to complete the laps under the same condition in our
experiments.

We summarize our main findings as follows:
• The introduction of context in the reward and states (A)

leads to more efficient learning and significantly better
lap times by enabling the agent to explore effectively,
compared to only PPO-default Gaussian noise (C).

• Using context-reward (A) instead of centerline reward
(B) enables the agent to better use various reference
trajectories, resulting in more effective exploration and
slightly better final lap time performance.

• The context provided by the references, which are sim-
ilar to human demonstrations, contributes to the agent’s
ability to imitate the driving line and actions. The agent’s
ability to imitate the demonstrations improves as it relies
more on the context information. (Utilization of context:
A (context in states and reward) > B (context in only
states) > C (no context), imitation of the driving line
and the actions: (A > B >> C)

Performance In addition to comparing different experiment
settings, we evaluate the performance of the agent against
that of a human driver. The driving lines of one agent lap

6We have conducted experiments for behavioral cloning with different
feature sets, neural network structures, hyperparameters, and amounts of data.
For clarity, we show here the best result that we have observed, using the
setting from [27]. We have concluded that significantly more demonstrations
are necessary for the BC agent to pass the first turn, and around 120 laps on
three tracks are used for the result shown in Fig. 3.
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Figure 3: Learning curves of different experiment settings A, B, and C,
with the baseline setting A on additional track 2 and 3 to demonstrate the
transferability of the method.
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Figure 4: The driving lines are plotted for one human driver lap with the
average lap time, and the average lap of the agents trained with the three
settings.

and one human lap, both with average lap time, are plotted
in Fig. 4. The corresponding actions, the speed profile, and
the time difference are plotted in Fig. 5. Our agent gains
the greatest advantage on T2/T3, where there is a successive
direction changing corners (a chicane) which is challenging
to handle. From the driving line plot on Fig. 4 it can be
clearly seen that the model uses the entire track to get the best
performance, similar to professional human driving styles. It
is also worth noting that the agent learns to apply also the
very subtle brake and accelerator pedal applications that the
human driver executes, at every part of the track, for instance
at track progress 0.15 and 0.55 on Fig.5.

Transferability Being trained on a single track, our agent
often struggles to complete laps when deployed on new tracks.
However, we observe that retraining the agent leads to a
significant improvement in performance. As demonstrated in
Figure 3, our experiments with the baseline setting A on two
additional tracks show that the agent converges efficiently to
competitive performance after being retrained.

Distribution and variance Apart from the competitive
performance, as the agent is optimized over the reference
distribution, it is able to generate realistic and human-like
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Figure 5: Detailed comparison of laps. The speed profile, the actions (in
normalized values) for the four laps are shown in corresponding to Fig. 4. In
addition, the profile of ∆t, which is the time difference of the two laps when
the track progress on the x-axis is reached, between the human driver lap and
the baseline agent lap (setting A) is plotted in black. A positive value means
that the agent lap in red is faster.

Table III: Lap Time Performance - Agent vs Human

fastest average
human 0.9990 1.0000
agent 0.9932 0.9941

variance in driving line, speed profile and lap time, using
different references. It achieves better performance compared
to the human demonstrations in terms of the fastest and the
average lap time as listed in in Table III. The numbers are
shown as a ratio relative to the average lap time of the human
driver. The driving lines driven by the agent have comparable
diversity to the references as shown in in Fig. 6. Globally
analyzed, the ability of the agent to reproduce the variance
presented in the reference distribution is elaborated by Fig. 7
by the standard deviation along the track. The agent is able to
generate similar level of variance on both the speed profile and
the driving line throughout the entire lap, while significantly
optimizing the lap time, as shown in Fig. 8. Since only driving
lines are provided as the context, the agent learns to get the
best performance out of each reference, and presents a lap
time distribution with less variance as it optimizes the lap
time performance. In contrast, the laps generated by the agent
under Gaussian noise show noisy signals and the lap times are
around 0.2 percent worse.

Robustness and setup sensitivity To be used for setup
analysis as a digital twin of the DiL simulator, the agent
needs to be robust towards setup changes in power, global grip
and the car balance which we can modify by, for instance,
changing front lateral grip. We train the agent on a given
baseline setup and subsequently test it by directly deploying it
on tuned car setups without retraining. The slip angles and slip
ratios in the states contributes to the robustness because the
agent learns the limit of the car through explorations, avoids
pushing it over the limit, and completes the laps given that

Figure 6: Driving line distribution zoomed in for T6. The track is shown by
the blue track borderlines. Twenty reference driving lines and twenty agent
laps are plotted in black and red, respectively. The laps are counterclockwise.
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Figure 7: Standard deviation of the speed profile and the driving line along
the track, calculated based on the twenty reference and agent laps shown in
Fig. 8.

the setup is tuned within a predefined range where the limit
of the car does not change dramatically.

In Fig. 9, the result of power sensitivity analysis is taken
as an example and shown in detail, compared with LTC
results. The agent succeeds in staying within a small range
around the LTC line, meaning that it is able to use the full
potential of a given setup, even if it deviates from the setup
that it is trained on. Since the power influences mainly the
acceleration behavior of the car, the agent only needs to
brake with the correct combination of brake point and speed,
using the information provided by the boundary points feature.
This brake behavior is consistent with what it learns during

0.994 0.996 0.998 1 1.002
laptime

human driver laps
reference driving lines

agent laps
Gaussian randomness

Figure 8: Distributions of lap times shown in box-plot for the demonstration
data set with six laps, 20 reference trajectories, 20 agent laps following the
references, and 20 agent laps with the Gaussian randomness in actions. The
top and bottom edges of the box indicate the 25th and 75th percentiles.

Table IV: Sensitivity Analysis

setup item sensitivity agent LTC

lap time
power −4.47 · 10−4 −4.67 · 10−4

global grip −3.54 · 10−3 −3.76 · 10−3

longitudinal grip −1.41 · 10−3 −1.87 · 10−3
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Figure 9: Power sensitivity analysis. The red circle shows the baseline, on
which the agent is trained. The agent is then tested on cars with power in the
range of [-15 kW, 15 kW]. It manages to complete the laps in all the tests,
and the resulting lap time and top speed are shown with ’x’ in black and
blue, respectively. Sensitivities based on LTC are shown with solid lines in
the same color. The LTC results and the agent laps are normalized with their
lap times with respect to the baseline (relative power = 0 kw).
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Figure 10: Front lateral grip analysis. The agent, trained on the baseline setup,
is represented by the red circle and its roll-outs on varying front lateral grip
level are plotted with the black ’x’s. The balance metric in yellow is calculated
by taking the difference between the front and the rear slip angle. A positive
value indicates that the performance is limited by the available grip on the
front wheels.

exploration. Furthermore, the lap time sensitivity and top
speed sensitivity for global grip, longitudinal grip, and lateral
grip, aggregated in Table IV. The values result from dividing
the normalized lap time difference by the setup parameter
change. They are very similar to the sensitivities calculated by
the steady-state lap time calculations (LTC)[11]. In all setup
sensitivity analysis that we have done, the agent shows reliable
robustness and reasonable sensitivities.

Driveability and adaptation In addition to the well known
and rather straightforward sensitivity analysis shown before,
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Figure 11: Driveability analysis of shifted car balance. The lap time distribu-
tions of the trained baseline agent with 50 samples of reference driving lines
on cars with tuned front lateral grip in a range 0.955 to 1.045, symmetric
around the baseline setup 1.0, are plotted, using the same annotation as in
Fig. 8. Using linear regression, the number of completed laps is fitted into
three stages.

the balance7 of the car and how it influences the performance
is more complicated to investigate.

Our agent indicates not only the performance but also the
driveability of certain setups. We evaluate the sensitivity of
the agent to the front lateral tire grip, which can be directly
tuned in simulation and strongly influences the car balance,
as depicted in Fig. 10. The roll-outs of the agent present a
’U’ shape in terms of the lap time, with the optimum around
1.02, while LTC predicts linear sensitivity. On the left hand
side of the graph, where the car is more limited by the front
axle, the lap time decreases with the increasing of the front
lateral grip. While the front lateral grip keeps increasing and
the car starts to get limited by the rear axle, as indicated by the
balance metric, the agent starts to make mistakes, struggling
with oversteers, and the lap time cannot be improved further.

Same tendency is also shown in Fig. 11 by the lap dis-
tributions. The trained agent runs 50 roll-outs with different
reference samples on each front lateral grip value to both
sides until no laps can be completed and we plot the lap time
distribution of the completed laps. Then we are able to use
linear regression to identify three stages. During stage I and
III, the number of completed laps experiences a significant
drop with a similar slope to the left and the right. This could
be attributed to the combination of decreased driveability and
the agent operating out-of-distribution. But on stage II, to
the left of the baseline setup, the number of completed laps
increases and throughout stage II, the number of completed
laps decreases, with an improvement in lap time across the
distribution. But there is a clear increase in variance.

The observations, especially during stage II, indicate that
that increasing the front lateral grip may decrease the drive-
ability of the setup, while potentially improving lap time
performance, if it is tuned within a range around the baseline.

IV. CONCLUSION

In this paper, we develop a contextual reinforcement learn-
ing framework to train a race car driving policy for profes-
sional high-fidelity race car simulation. By fitting demonstra-
tion data collected from the human driver-in-the-loop simula-
tor into a probabilistic model, our approach requires only a few
demonstrations. Samples from the reference distribution are
used as reference driving lines during exploration, and provide
context information to the reinforcement learning agent. We
investigate different actions, states and reward functions based
on domain-knowledge and experiments. This agent is robust
and competitive with realistic variance as present in the
demonstrations and outperforms professional race car drivers
in terms of the fastest lap time. It shows not only human-
like diverse driving lines and speed profiles, and also the
ability to predict reasonable lap time and driveability when
faced with setup changes. Therefore, it can be potentially used
as a digital twin of the DiL simulator, for carrying out large

7The balance indicates if the car is front-limited (it has more grip on the
front tires than the rear), neutral, or rear-limited. The balance can be tuned
by varying the lateral grip of the front tires. With more grip available on the
front tires, the car is less front-limited and more difficult to handle. However,
talented and well-trained drivers are able to gain better performance with it
up to a certain amount.
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numbers of high-quality tests, facilitating rapid development
in the motorsport industry.

For future work, we would like to integrate a more realistic
track model into the simulation, so that details such as curbs or
local grip can be taken into consideration. Methodologically,
developing a track- and setup-universal agent that can operate
on various tracks and setups and reach the optimums without
retrain is a compelling idea. However, to achieve this goal, it
necessitates additional setup and position features and training
on multiple tracks. Furthermore, more research on imitating
individual driving styles of human drivers is of great interest
to provide human-like driveability predictions.
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