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A salient feature of human motor skill learning is the ability to exploit similarities across
related tasks. In biological motor control, it has been hypothesized that muscle synergies,
coherent activations of groups of muscles, allow for exploiting shared knowledge. Recent
studies have shown that a rich set of complex motor skills can be generated by a
combination of a small number of muscle synergies. In robotics, dynamic movement
primitives are commonly used for motor skill learning. This machine learning approach
implements a stable attractor system that facilitates learning and it can be used in
high-dimensional continuous spaces. However, it does not allow for reusing shared
knowledge, i.e., for each task an individual set of parameters has to be learned. We
propose a novel movement primitive representation that employs parametrized basis
functions, which combines the benefits of muscle synergies and dynamic movement
primitives. For each task a superposition of synergies modulates a stable attractor system.
This approach leads to a compact representation of multiple motor skills and at the same
time enables efficient learning in high-dimensional continuous systems. The movement
representation supports discrete and rhythmic movements and in particular includes the
dynamic movement primitive approach as a special case. We demonstrate the feasibility
of the movement representation in three multi-task learning simulated scenarios. First, the
characteristics of the proposed representation are illustrated in a point-mass task. Second,
in complex humanoid walking experiments, multiple walking patterns with different step
heights are learned robustly and efficiently. Finally, in a multi-directional reaching task
simulated with a musculoskeletal model of the human arm, we show how the proposed
movement primitives can be used to learn appropriate muscle excitation patterns and to
generalize effectively to new reaching skills.

Keywords: dynamic movement primitives, muscle synergies, reinforcement learning, motor control,

musculoskeletal model

1. INTRODUCTION
Reinforcement Learning of motor skills in robotics is considered
to be very challenging due to the high-dimensional continuous
state and action spaces. In many studies it has been shown that
learning can be facilitated by the use of movement primitives
(Schaal et al., 2003; Rückert et al., 2013). Movement primitives are
parametrized representations of elementary movements, where
typically for each motor skill a small set of parameters is tuned or
learned. However, many motor control tasks are related and could
be learned more effectively by exploiting shared knowledge.

This is a well-known concept in motor neuroscience, where
muscle synergies or coherent activations of groups of muscles
(d’Avella et al., 2003; d’Avella and Bizzi, 2005; Bizzi et al., 2008)
have been proposed to simplify the control problem of complex
musculoskeletal systems. In analyzing muscle activation record-
ings it has been demonstrated that by combining only few mus-
cle activation patterns multiple task instances of natural motor
behaviors, e.g., fast reaching movements of humans (d’Avella

et al., 2006), primate grasping movements (Overduin et al., 2008),
or walking patterns of infants, toddlers, and adults (Dominici
et al., 2011) could be efficiently modeled. One important find-
ing of theses studies is that the dimensionality of the motor
control problem can be drastically reduced by reusing common
knowledge of related tasks, i.e., grasping objects at different loca-
tions using a linear combination of shared muscle synergies.
While this has been demonstrated in biological data analysis, only
few robotic applications exist that use this shared task knowl-
edge (Chhabra and Jacobs, 2006; Alessandro et al., 2012). These
methods demonstrate the advantages of shared synergies in learn-
ing robotic tasks. However, different procedures were applied to
obtain a parametric description of synergies, i.e., in Chhabra
and Jacobs (2006) a variant of non-negative matrix factorization
(d’Avella et al., 2003) was used given a set of pre-computed trajec-
tories and in Alessandro et al. (2012) the synergies were extracted
from dynamic responses of a robot system with random initializa-
tion. In contrast, we propose to learn the synergies representation
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in a reinforcement learning framework, where task-specific and
task-invariant parameters in a multi-task learning setting are
learned simultaneously.

In robotics the most widely used approach for motor skill
learning are Dynamic Movement Primitives (DMPs) (Schaal
et al., 2003; Ijspeert et al., 2013). This approach uses parametrized
dynamical systems to determine a movement trajectory and has
several benefits. First, as it is a model-free approach, there is no
need to learn the typically non-linear, high-dimensional dynamic
forward model of a robot (However, this is not the case when
inverse dynamics controller are used to compute the control com-
mands). Second, it provides a linear policy parametrization which
can be used for imitation learning and policy search (Kober and
Peters, 2011). The complexity of the trajectory can be scaled by
the number of parameters (Schaal et al., 2003) and one can adapt
meta-parameters of the movement such as the movement speed
or the goal state (Pastor et al., 2009; Kober et al., 2010). Finally,
the dynamical system is constructed such that the system is sta-
ble. This simplifies learning since even without modulating the
dynamical system the movement trajectory is always attracted by
a known (or learned) goal state. However, this parametrization
does not allow for reusing shared knowledge, as proposed by the
experimental findings studying complex musculoskeletal systems
(d’Avella et al., 2003; Bizzi et al., 2008; d’Avella and Pai, 2010).
Thus, typically for each motor task an individual movement
parametrization has to be learned.

In this paper we propose to use a superposition of learned basis
functions or synergies to modulate the stable attractor system
of DMPs. This allows for reusing shared knowledge for learning
multiple related tasks simultaneously while preserving the bene-
fits of the dynamical systems, i.e., the stability in learning complex
motor behavior. The synergies and their activation in time are
learned from scratch in a standard reinforcement learning setup.
Note that imitation learning could also be applied to implement
an initial guess for the synergies, e.g., by using decomposition
strategies discussed in d’Avella and Tresch (2001). However, this is
beyond the scope of this paper. Moreover, our approach is like the
DMPs applicable to discrete and rhythmic movements and allows
for modeling time-varying synergies (d’Avella et al., 2006). We
therefore denote our approach DMPSynergies. By using for each
task a combination of individual, temporally fixed, basis functions
DMPs can be modeled as special case of this approach. The benefit
of the common prior knowledge is even more drastic when gen-
eralizing to new motor tasks given the previously learned basis
functions. Thus, for simpler synergies only the weights for the
linear combination have to be acquired and for time-varying syn-
ergies additionally the time-shift parameters need to be learned.
This is demonstrated on a complex walking task and on reaching
task using an arm actuated by muscles.

As in previous studies on DMPs (Meier et al., 2011; Mülling
et al., 2013) we want to go beyond basic motor skills learning.
However, in contrast to those studies that use a library of prim-
itives for sequencing elementary movements (Meier et al., 2011)
or mixing basic skills (Mülling et al., 2013), we implement the
common shared knowledge among multiple tasks as prior in a
hierarchical structure. On the lower level task related parameters,
i.e., amplitude scaling weights or time-shift parameters are used

to modulate a linear superposition of learned basis functions, the
shared higher level knowledge. This has the promising feature
that by combining just a small number of synergies diverse motor
skills can be generated.

In the Materials and Methods, we will first briefly introduce
DMPs (Schaal et al., 2003; Ijspeert et al., 2013) as we build on
this approach. We then extend DMPs to allow for reusing shared
task knowledge in the form of parametrized synergies. The advan-
tage of the shared knowledge is evaluated in the Results on three
multi-task learning scenarios. First, a simple via-point task is used
to demonstrate the characteristics of the proposed representation.
Then, rhythmic movements are learned in a dynamic 5-link pla-
nar biped walker environment. Finally, a musculoskeletal model
of a human arm is used to evaluate our primitives on a muscle
actuated system learning discrete reaching movements to multiple
targets.

2. MATERIALS AND METHODS
2.1. DYNAMIC MOVEMENT PRIMITIVES
DMPs generate multi-dimensional trajectories by the use of
non-linear differential equations (simple damped spring models)
(Schaal et al., 2003). The basic idea is to use for each degree-of-
freedom (DoF), or more precisely for each actuator, a globally
stable, linear dynamical system of the form

τż = αz(βz(g − y∗) − z) + f , τẏ∗ = z, (1)

which is modulated by a learnable non-linear function f . The
final position of a movement is denoted by g and the variables
y∗ and ẏ∗ represent the desired state in i.e., joint angles and joint
velocities. The time constants α and β are usually pre-defined.
The temporal scaling factor τ can be used for de- or accelerating
the movement execution as needed. Finally z denotes an inter-
nal variable of the dynamical system. For each DoF an individual
function f is used which is different for discrete and rhythmic
movements.

For discrete movements the function f only depends on the
phase s, which is an abstraction of time and was introduced to
scale the movement duration (Schaal et al., 2003). The func-
tion f (s) is constructed of the weighted sum of N Gaussian basis
functions �n

f (s) =
∑N

n = 1 �n(s)wns∑N
n′ = 1 �n′(s)

, (2)

where for discrete movements these Gaussian basis functions are

�n(s) = exp

(
− 1

2h2
n

(s − μn)
2
)

, τṡ = −αss.

Only the weights wn are parameters of the primitive which can
modulate the shape of the movement. The centers or means μn ∈
[0, 1] specify at which phase of the movement the basis function
becomes active. They are typically equally spaced in the range of s
and not modified during learning. The bandwidth of the basis
functions is given by h2

n and is typically chosen such that the
Gaussians overlap.
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For rhythmic movements periodic activation functions are
used (Ijspeert et al., 2002). The non-linear function f reads

f (φ) =
∑N

n = 1 �n(φ)wn∑N
n′ = 1 �n′(φ)

, (3)

where the periodic phase angle is denoted by φ ∈ [0, 2π]. In
Ijspeert et al. (2002) additionally a scalar variable was used to scale
the amplitude of the oscillator, which was omitted for simplicity.
The basis functions are given by

�n(φ) = exp(hn(cos(φ − μn) − 1)), τφ̇ = 1,

which implement von Mises basis functions. Note that for the
periodic basis functions the trajectory in Equation 1 oscillates
around the attractor point or goal state g.

Integrating the dynamical systems in Equation 1 for each DoF
results into a desired trajectory 〈y∗

t , ẏ∗
t 〉 of the joint angles. To

follow this trajectory, in the most simple case a linear feedback
controller is subsequently used to generate appropriate control
commands denoted by ut :

ut = diag(kpos)(y∗
t − yt) + diag(kvel)(ẏ∗

t − ẏt). (4)

For each actuator the linear weights W = [w1, . . . , wD] as well
as the control gains kpos and kvel have to be specified, i.e., θ =
[W, kpos, kvel]. This results into ND + 2D parameters for the
movement representation, where D denotes the number of actu-
ators or muscles of a system. The simulated trajectory is denoted
by 〈yt, ẏt〉.

In multi-task learning we want to learn k = 1..K tasks simulta-
neously. For very simply tasks, such as the via-point experiments
described below, it could be sufficient to adapt the goal state g.
However, this is usually not the case for more complex motor
skill learning tasks in robotics. With DMPs typically for each
motor skill an individual movement parametrization θk has to
be learned. However, if we assume similarities among these tasks
the learning problem could potentially be simplified by reusing
shared knowledge. Inspired by experimental findings in biology
(d’Avella et al., 2003; Bizzi et al., 2008; d’Avella and Pai, 2010) we
extend these DMPs. Only the parametrization for the non-linear
function f (s) for discrete movements or f (φ) for rhythmic move-
ment changes. The dynamical system in Equation 1 and the linear
feedback controller in Equation 4 remains the same.

2.2. DYNAMIC MOVEMENT PRIMITIVES WITH SHARED SYNERGIES
(DMPSynergies)

For learning the kth task, we propose to use a linear combination
of temporal flexible basis functions or synergies to parametrize
the non-linear function f (s) in Equation 2 or for rhythmic move-
ments f (φ) in Equation 3:

f (s, k) = ∑M
m = 1 βm, k�

(
s, θm,�sm, k

)
s, (5)

f (φ, k) = ∑M
m = 1 βm, k�

(
φ, θm, �sm, k

)
, (6)

where s denotes the phase variable which is only used for discrete
movements. As with DMPs (�n in Equation 2) the functions �(.)

and �(.) are different for discrete and rhythmic movements.
All K tasks share m = 1..M synergies which are parametrized

via the vector θm. Solely the weights βm, k and the time-shift �sm, k

are individual parameters for each task. The basic concept of
the model is sketched in Figure 1 for a one-dimensional discrete
movement.

The complexity of each synergy is controlled by the number of
Gaussians for discrete movements or by the number of von Mises
basis functions for rhythmic patterns. We denote this number by
N, where we parametrize in both cases the amplitude, the mean
and the bandwidth. Thus, each synergy is represented by a param-
eter vector θm = [am, 1,μm, 1, hm, 1, . . . , am, N ,μm, N , hm, N ].

For discrete movements the function �(.) reads

�
(
s, θm,�sm, k

)=
N∑

n = 1

am, nexp

(
− 1

2hm, n
2

(
s − μm, n + �sm, k

)2
)
.

(7)

For rhythmic movements a superposition of von Mises basis
functions is used

�
(
φ, θm, �sm, k

)

=
N∑

n = 1

am, nexp
(
hm, ncos

(
φ − μm, n + �sm, k

) − 1
)
. (8)

FIGURE 1 | Conceptual idea of using shared synergies in dynamical

systems. (A) A synergy is constructed by a superposition of parametrized
Gaussians. The parameters are the amplitude am, n, the mean μm, n and the
bandwidth hm, n. In the example two Gaussians (n = 1..2) are used to
model the first m = 1 synergy. (B) For each task only the activation βm of a
synergy is learned. Time-varying synergies additionally implement a
time-shift �sm. The key concept is that multiple tasks share the same
parametrized synergies shown in (A), which represent task related
common knowledge. (C) For each task the non-linear function f (s) is given
by the weighted sum of the (time-shifted) synergies. Shown is a normalized
version of f (s) to illustrate the effects of the superposition also at the end
of the movement, which would usually converge toward zero. (D) Finally,
the non-linear function f (s) is used to modulate a dynamical system. The
unperturbed system with f (s) = 0 is denoted by the dashed line which is
attracted by the goal state that is indicated by the large dot.
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DMPs (Schaal et al., 2003) can be modeled as a special case of
this formulation. For DMPs using n = 1..N basis functions the
mean μm, n and the bandwidth hm, n of the basis functions are
fixed as discussed in Section 2.1. Solely the n = 1..N amplitudes
or weights am, n are learned. By fixing these parameters and by
modeling the non-linear function f (s) for discrete movements or
f (φ) for rhythmic movements using a single (M = 1) synergy our
representation can be used to implement DMPs.

2.2.1. Multi-dimensional systems
For multi-dimensional systems for each actuator d = 1..D an
individual dynamical system in Equation 1 and hence an individ-
ual function f (s, k) in Equation 5 or f (φ, k) in Equation 6 is used
(Schaal et al., 2003). The phase variable s or φ is shared among all
DoF (Note that k = 1..K denotes the task.).

Extending our notation for multi-dimensional systems the
non-linear function f (s, k) in Equation 5 can be written as

f (s, d, k)︸ ︷︷ ︸
1 × 1

=
M∑

m = 1

βm, k, d︸ ︷︷ ︸
1 × 1

�
(
s, θm, d,�sm, k, d

)
s︸ ︷︷ ︸

1 × 1

.

Depending on the dimension d different weights βm, k, d, policy
vectors θm,d and time-shift parameters �sm, k, d are used. Note
that the policy vector θm,d is task-independent. Interestingly,
when implementing additionally dimension-independent policy
vectors, i.e., θm anechoic mixing coefficients (Giese et al., 2009)
can be modeled.

Here, we only discuss discrete movement representations,
however, the reformulation procedure applies also for rhythmic
movement parametrizations. Let us also define a vector notation
of f(s, k)

f(s, k)︸ ︷︷ ︸
1 × D

=
M∑

m = 1

βm, k︸︷︷︸
1 × D

◦ wm
(
s, θm,1..D,�sm, k, d

)
︸ ︷︷ ︸

1 × D

, (9)

where the symbol ◦ denotes the Hadamard product, the element-
wise multiplication of vectors. The synergy vectors are speci-
fied by

wm
(
s, θm,1..D, �sm, k, d

) = [
�

(
s, θm, 1,�sm, k, 1

)
s,

�
(
s, θm, 2,�sm, k, 2

)
s, . . . ,

�
(
s, θm, D,�sm, k, D

)
s
]
.

This vector notation is used in the following to compare to
existing synergies representations (d’Avella et al., 2003, 2006).

2.3. MUSCULOSKELETAL MODELS AND MUSCLE SYNERGIES
We also use the proposed movement representation, the
DMPSynergies, to generate muscle excitation patters. These pat-
terns are applied as input in a forward simulation of a muscu-
loskeletal model. A schematic overview of such a simulation is
shown in Figure 2. We briefly discuss all processes involved.

Muscle synergies for generating muscle excitation pat-
terns are used as input in forward dynamics simulations. In
our simulation experiments we evaluate time-varying synergies
(d’Avella et al., 2006), which are a particular instance of the
DMPSynergies, i.e., the weights βm, k and time-shift parameters
�sm, k in Equation 9 are independent of the dimension d. Thus,
for discrete movements in multi-dimensional systems f (s, k)
reads

f(s, k)︸ ︷︷ ︸
1 × D

=
M∑

m = 1

βm, k︸︷︷︸
1 × 1

wm
(
s + �sm, k, θm,1..D, 0

)
︸ ︷︷ ︸

1 × D

, (10)

where βm, k is a scalar and the time-shift parameter �sm, k is
directly added to the phase variable s. This allows for a compar-
ison to e.g., the formulation of time-varying synergies given in
d’Avella et al. (2006), where

x(t, k) =
M∑

m = 1

ak
mvm

(
t − tk

m

)
.

Shared synergies are represented by time-dependent vectors
vm(t − tk

m), where in contrast to the proposed DMPSynergies a
minor difference is the sign of the time-shift parameter tk

m.
In this formulation of time-varying synergies (d’Avella et al.,

2006) only the time-invariant combination coefficients ak
m are

task-dependent, whereas the vector vm is task-independent.
However, by using task, spatial or temporal (in)variant imple-
mentations of the mixing coefficients a or the basis vectors v other
representations of synergies (d’Avella et al., 2003; Ivanenko et al.,
2004; Giese et al., 2009) can be also implemented.

Activation dynamics model the effect of the delayed
force generating process in muscles, as they are not capa-
ble of generating force instantaneously. Typically, for
each muscle a first order differential equation is used, i.e.,
ȧ = (f (s, k)2 − f (s, k)a)/τrise + (f (s, k) − a)/τfall (Zajac, 1989).

FIGURE 2 | Forward simulation of musculoskeletal models. Muscle
excitation patterns are used as input, which result in a delayed muscle activity
response (activation dynamics). Muscle forces are the result of simulated
muscle tendon dynamics, which are typically approximated by a Hill-type

contractile element in series with tendon. These muscle forces are used to
compute moments of force considering the musculoskeletal geometry. A
physics engine is finally used to simulate multibody dynamics which are
numerically integrated to generate movement trajectories.
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Here, f (s, k) denotes the generated muscle excitation signal using
e.g., the proposed DMPSynergies. The actual muscle activation
is denoted by a, which is a function of the rise time constant
τrise and the fall time constant τfall. For our evaluations we
implemented τrise = 10 ms and τfall = 40 ms (Winters and Stark,
1985).

Muscle tendon dynamics describe the complex and non-linear
force generation properties of muscles. For an approximation a
variety of models exist (Zajac, 1989). In these models a mus-
cle is approximated by a number of musculotendinous units,
each of which is implemented by a Hill-type contractile ele-
ment in series with tendon. Characteristic properties of muscles
are the optimal fiber length LM

0 , the maximum isometric force
FM

0 , and the muscle pennation angle α, which are shown in
Table A5 in the appendix for the investigated model of a human
arm. The tendon dynamics in this musculoskeletal model were
approximated by the muscle model proposed in Schutte et al.
(1993).

Musculoskeletal geometry represents the path of a muscle
from its origin to its insertion that can be implemented as a series
of straight-line path segments, which pass through a series of via
points (Delp et al., 2007). To simulate how muscles wrap over
underlying bone and musculature wrapping surfaces i.e., cylin-
ders, spheres and ellipsoids are implemented, where this model is
based on the upper extremity model discussed in Holzbaur et al.
(2005). A detailed description of the implemented musculoskele-
tal geometry is given in the supplement (in form of a simulation
model file, .osim).

Multibody dynamics are simulated by the physics simu-
lation application OpenSim (Delp et al., 2007; Seth et al.,
2011). It is an open source software that already implements
a variety of muscle models (Zajac, 1989) and a large number
musculoskeletal models are freely available. In our experi-
ments the computational time needed to simulate a movement
with a duration of e.g., 500 ms takes between 10 and 20 s
(OpenSim implements numerical integrators with an adaptive

time step) on a standard computer (3 GHz and 4 GB mem-
ory). However, we exploited parallel computing techniques
for policy search, which resulted in a gain of factor 10.
Alternatively, the muscle dynamics could be approximated via
regression methods to speed-up the simulations (Chadwick et al.,
2009).

2.4. LEARNING WITH MOVEMENT PRIMITIVES
We denote the parametrization of a movement primitive by a
policy vector θ. A widely used approach in robotics to learn
these parameters is episodic reinforcement learning (Kober and
Peters, 2011), which is outlined in Figure 3A. A policy search
method is used to improve the movement primitive’s represen-
tation θ assuming a given objective or reward function C(τ) ∈
R

1. Throughout this manuscript C(τ) denotes a cost value that
is equivalent to the negative reward in classical reinforcement
learning (Sutton and Barto, 1998). It indicates the quality of an
executed movement. A trajectory τ = 〈y1:T, u1:T − 1〉 is specified
by the simulated joint angles y and the applied controls (torques)
u, where T denotes the number of time steps. We want to find a
movement primitive’s parameter vector θ∗ = argminθJ(θ) which
minimizes the expected costs J(θ) = E [C(τ)|θ]. We assume that
we can evaluate the expected costs J(θ) for a given parameter vec-
tor θ by performing roll-outs (samples) on the real or simulated
system. In other words each movement trajectory is quantified
by a single scalar reward C(τ), which can be used by an opti-
mization method to improve the best guess of the movement
policy θ.

For learning or optimizing the policy parameters θ a vari-
ety of policy search algorithms exist in the motor control lit-
erature. Examples are the REINFORCE (Williams, 1992), the
episodic Natural Actor Critic (Peters and Schaal, 2008), the
Power (Kober and Peters, 2011) or the PI2 (Theodorou et al.,
2010) algorithm, which are reviewed in Kober and Peters (2011).
Alternatively, standard optimization tools such as the 2nd order
stochastic search methods (Hansen et al., 2003; Wierstra et al.,

FIGURE 3 | Overview of the learning framework. (A) A parametrized policy
θ modulates the output of a movement primitive that is used to generate a
movement trajectory τ. The quality of the movement trajectory is indicated
by a sparse reward signal C(τ) which is used for policy search to improve the
parameters of the movement primitive. For a single iteration the

implemented policy search method - Covariance Matrix Adaptation (CMA)
(Hansen et al., 2003) is sketched in (B). The parameter space is approximated
using a multivariate Gaussian distribution denoted by the ellipses, which is
updated (from left to right) using second order statistics of roll-outs or
samples that are denoted by the large dots (see text for details).

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 138 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rückert and d’Avella Dynamic movement primitives with synergies

2008; Sehnke et al., 2010) can be used for policy search. These
machine learning tools make no assumptions on a specific
form of a policy and typically have just a single parame-
ter to tune, the initial exploration rate. We therefore use the
stochastic search method Covariance Matrix Adaptation (CMA)
(Hansen et al., 2003) for learning the policy parameters in our
experiments.

Roughly, CMA is an iterative procedure that locally approx-
imates the function C(τ(θ)) by a multivariate Gaussian dis-
tribution, which is denoted by the ellipse in the sketch in
Figure 3B. From left to right a single optimization step for a
two-dimensional policy vector θ = [w1, w2] is shown. The col-
ored regions denote the unknown optimization landscape, where
solid lines depict equal C(τ) values. From the current Gaussian
distribution, denoted by the ellipse in the left panel, CMA gen-
erates a number of samples, denoted by the black dots, eval-
uates the samples (the size of the dots in the center panel
is proportional to their C(τ) values), computes second order
statistics of those samples that reduced C(τ) and uses these
to update the Gaussian search distribution, which is shown in
right panel. For algorithmic details we refer to Hansen et al.
(2003).

Note that for most interesting robotic tasks the unknown
optimization landscape that is also sketched in Figure 3B is multi-
modal and policy search might converge to a local optimum.
Thus, the result of learning is sensitive to the initial policy param-
eters θ and for evaluating the convergence rate of different policy
search methods multiple initial configurations should be consid-
ered (Kober and Peters, 2011). However, in this manuscript we
evaluate the characteristics of movement primitive representa-
tions and put less emphasis on a particular policy search method.
As we will demonstrate in our experiments CMA is robust in
terms of converging to “good” solutions given the initial values
of the evaluated movement primitive representations listed in the
appendix.

In our experiments we compare single task learning
with DMPs to learning multiple tasks simultaneously with
DMPSynergies. With DMPs for each task k = 1..K an individ-
ual policy vector θk is learned, where the objective function
used in policy search takes the task index as additional argu-
ment, i.e., C(τ, k). For learning multiple tasks simultaneously
with DMPSynergies the policy vector θ encodes all K task specific
parameters βm, k and �sm, k, and all shared parameters denoted
by θm in Equation 5 or Equation 6. The objective function is
the sum of the individual task dependent costs C(τ) = ∑K

k = 1
C(τ, k).

3. RESULTS
We evaluated the proposed movement representation, the
DMPSynergies, with simulations using three multi-task learning
scenarios. A simple via-point task was used to illustrate the char-
acteristics of the proposed movement representation. A challeng-
ing robotic learning task was used to generate rhythmic walking
patterns for multiple step heights. Discrete reaching movements
were learned using a musculoskeletal model of a human arm with
eleven muscles.

3.1. VIA-POINT REACHING TASK WITH A SIMPLE TOY MODEL
The goal of this simple multi-task learning problem is to pass
through k = 1..5 via-points (vpk ∈ {0.2, 0.1, 0,−0.1,−0.2}),
denoted by the large dots in Figure 4A and navigate to the goal
state g at 1. We used a point mass system (1 kg), where the
state at time t is given by the position yt and the velocity ẏt .
The applied controls ut shown in Figure 4B are computed using
the linear feedback control law with kpos = 400 and kvel = 15
specified in Equation 4. The finite time horizon is given by
T = 50. For the dynamical system in Equation 1 we used the
parameters αz = 2, βz = 0.9 and τ = 0.1. Further parameter set-
tings used for policy search are summarized in Table A1 in the
appendix.

This task is specified by the objective function

C(k) = 105
(

ytvpk
− vpk

)2 + 104
(

ẏ2
T + 10

(
yT − g

)2
)

+ 5 · 10−4
T∑

t = 1

ut .

The first two terms punish deviations from the via-point vpk and
the goal state g, where ytvpk

denotes the position of the state at
the time index of the kth via-point. The last term punishes high
energy consumption, where ut denotes the applied acceleration.
Note that for simplicity we did not introduce the variable τ denot-
ing the movement trajectory in C(τ, k) in Subsection 2.4. We
always add a Gaussian noise term with a standard deviation of
σ = 0.5 to the control action to simulate motor noise.

We used a single synergy (M = 1) with N = 2 Gaussians
to model the shared prior knowledge. The learning curve is
shown in Figure 4C, where we compare to single-task learn-
ing using DMPs with N = 8 Gaussian basis functions. For the
via-point task 8 Gaussians were optimal with respect to the con-
vergence rate, where we evaluated representations using N =
2..20 Gaussians (not shown). Additionally, we compare to an
incremental learning setup (DMP inc.) in Figure 4C, where the
DMP representation is always initialized with the best learned
solution from the previous task. On the x-axis the number of
samples or trajectory evaluations on the point mass system is
plotted. As it can be seen the proposed approach can bene-
fit from the shared knowledge and has a faster overall learning
performance.

In this experiment, for each task we fixed the time-shift �sk =
0 and only learned the k = 1..5 weights βk in Equation 5 (Note
that the synergy index m was omitted as only a single synergy was
used). For each of the N = 2 Gaussians we learned the mean μ,
the bandwidth h and the amplitude a in Equation 7. Thus, in total
5 + 2 × 3 = 11 parameters were learned. In contrast with DMPs
8 Gaussian amplitudes were optimized.

The β values of the DMPSynergies representation for the five
via-points are shown in Figure 4D for 10 runs. New motor skills
can be generated without re-learning via a simple linear interpola-
tion. The resulting trajectories are shown in Figure 4E. However,
this is only the case in the simple via-point task. For more
complex tasks these β values have to be learned.
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FIGURE 4 | Results for the dynamic via-point task. The goal of this simple
multi-task learning problem is to pass through five via-points, denoted by the
large dots in (A) and navigate to the target state at 1. The corresponding
controls (accelerations) of this dynamical system are shown in (B). These five
trajectories are simultaneously learned using DMPSynergies with a single
synergy (M = 1) represented by N = 2 Gaussians. We compare to dynamic
movement primitives (DMPs) with N = 8 Gaussians and to an incremental

variant of DMPs in (C). For the DMP approaches each task (via-point) has to
be learned separately. Thus, the two learning curves have five peaks. In
contrast with DMPSynergies we could learn these five tasks at once, which
resulted in faster overall convergence. The plot in (D) illustrates the mean and
the standard deviation of the learned β values for the DMPSynergy approach.
Via interpolating β and by reusing the learned synergy new motor skills can be
generated without re-learning. This is illustrated in (E), where β ∈ [0.07, 0.34].

3.2. DYNAMIC BIPED WALKER TASK
To evaluate the DMPSynergies on a multi-dimensional
robotic task we learned multiple walking patterns using a 5
degree-of-freedom (DoF) dynamic biped robot model, which
is shown in Figure 5A. We demonstrate that by exploiting the
shared knowledge among multiple walking gaits, solutions could
be found more robustly and more efficiently in terms of learning
speed compared to single task learning. Further, the shared
synergies could be used to generalize new skills. The model
is only as complex as required to study difficulties like limb
coordination, effective underactuation, hybrid dynamics or static
instabilities. More details on the design and challenges can be
found in Westervelt et al. (2004).

The 10-dimensional state qt = [q1:5, q̇1:5] of the robot is given
by the hip angles (q1 and q2), the knee angles (q3 and q4), a
reference angle to the ground (q5), and the corresponding veloc-
ities q̇1:5. Only the hip and the knee angles are actuated. Thus, 4
dynamical systems in Equation 1 are used to generate desired tra-
jectories for the linear feedback controller in Equation 4. A phase
resetting strategy is implemented to facilitate learning (Nakanishi
et al., 2004). At each impact of the swing leg the phase φ in
Equation 8 is set to zero. This increases the stability of the robot
as the gait cycle duration is implicitly given by the impact time.

The initial state q1 ∈ R
10, the goal state g and the control gains

in Equation 4 were optimized in advance for a desired step height
of r∗ = 0.2 m to simplify learning. The resulting values are shown
in Table A2 in the appendix. For rhythmic movements the goal
state g ∈ R

5 models an attractor point which is only specified for
joint angles and not for velocities in Equation 1. As for the via-
point reaching task, Gaussian noise with σ = 1 is added to the

FIGURE 5 | Dynamic biped walker model. (A) For the walker model, only
the hip angles q1, q2 and the knee angles q3, q4 are actuated. The
reference angle to the flat ground is denoted by q5. In this multi-task
learning experiment we want to learn walking patterns for different step
heights. Examples for step heights of 0.15, 0.25, and 0.3 m for a single step
are shown in (B–D). These patterns were learned using the proposed
movement primitives with shared synergies (M = 2 and N = 3). The green
bars in (B–D) denote the true (maximum) step heights, which are
0.19, 0.24, and 0.31 m.

simulated controls. For Equation 1 we used the parameters αz =
2, βz = 0.5 and τ = 0.06. The initial parameter values and the
applied ranges used for policy search are shown in Table A3 in
the appendix.

In this multi-task learning experiment we want to learn
walking patterns for different desired step heights: r∗

k ∈
{0.15, 0.2, 0.25, 0.3} m. Example patterns for step heights of
0.15, 0.25 and 0.3 m are shown in Figures 5B–D, where the green

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 138 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rückert and d’Avella Dynamic movement primitives with synergies

FIGURE 6 | Learned non-linear functions f (φ, k) for the walker task.

The learned non-linear functions f (φ, k) are illustrated in the first four rows.
The four task instances, i.e., the desired step heights are shown from left
to right. For each actuator (left hip, right hip, left knee, and right knee) an
individual function f (φ, k) is used that is generated by combining two
learned synergies shown in the last two rows. These synergies are shared
among multiple task instances and can be scaled and shifted in time (via
βm, k and �sm, k ). This is indicated by the enclosing rectangles, where the
color of the synergies is used to distinguish the four actuators of the walker
model.

bars denote the maximum step heights during a single step
(0.19, 0.24 and 0.31 m).

The objective function for a single walking task is given by the
distance travelled in the sagittal plane, the duration of the simula-
tion and deviations from the desired step height r∗

k with k = 1..4:

C(k) = −0.6(xT − x1) + 0.2(5 − T · �t) + 50
S∑

i = 1

(ri − r∗
k )2,

(11)
where x denotes the x-coordinate of the hip, S the number of steps
and ri the maximal step height during the ith step. We used a time
step �t = 2 ms. The time horizon T ∈ [1, 5000] is given by the
last valid state of the robot, where the biped does not violate the
joint angle constraints specified by qmin and qmax in Table A2 in
the appendix.

With the proposed DMPSynergies the non-linear function
f (φ, k) in Equation 6 is generated by combining a set of learned
synergies that are shared among multiple task instances, i.e., the
four (k = 1..4) desired step heights. This combination mecha-
nism is illustrated for a representation using M = 2 synergies
modeled by N = 3 Gaussians in Figure 6. For each actuator (left
hip, right hip, left knee, and right knee) an individual function
f (φ, k) is generated, which is subsequently used to modulate an
attractor system shown in Equation 1 to compute the desired
movement trajectories. The shared synergies shown in the last
two rows in Figure 6 can be scaled and shifted in time. This is
indicated by the enclosing rectangles. Note that the color of the
synergies is used to distinguish the four actuators of the walker
model.

We evaluated different movement primitive representations
with increasing complexity compared to single-task learning
using DMPs with N = 4 and N = 8 Gaussians. The average final

Table 1 | Achieved costs for the walker task, where the standard

deviation is denoted by the symbol ±.

Setup � Cmean Best learned r [m] #

M = 2 0 −20.3 ± 1.2 0.21, 0.21, 0.27, 0.27 56

N = 2 1 −20.8 ± 0.9 0.19, 0.23, 0.28, 0.26 88

M = 2 0 −21.4 ± 0.4 0.22, 0.24, 0.23, 0.26 80

N = 3 1 −20.5 ± 1.4 0.22, 0.22, 0.26, 0.28 112

M = 3 0 −19.0 ± 2.3 0.17, 0.19, 0.2, 0.26 84

N = 2 1 −19.6 ± 1.9 0.19, 0.22, 0.19, 0.2 132

DMPN = 4 −13.1 ± 0.8 0.17, 0.17, 0.23, 0.28 64

DMPN = 8 −14.8 ± 1.4 0.15, 0.2, 0.23, 0.29 128

DMP inc.N = 4 −19.2 ± 0.6 0.15, 0.20, 0.22, 0.3 64

DMP inc.N = 8 −18.8 ± 0.5 0.18, 0.19, 0.31, 0.26 128

In the second column the symbol � denotes if additionally 16 M time-shift vari-

ables �s are learned. The total number of parameters is denoted by the symbol

#, where e.g., for the representation in the 1st row 4 M = 8 task related weights

and 3 · M · N · 4 = 48 shared parameters were optimized. The best results with

the lowest costs denoted by Cmean are highlighted in gray shading.

costs Cmean after learning over 10 runs are shown in Table 1. In
the most simple representation we used M = 2 synergies modeled
by N = 2 Gaussians. More complex representations implement-
ing time-varying synergies are denoted by the symbol � = 1 in
Table 1. Here, additionally the time-shifts �s1:M were learned
for all synergies and all actuators. However, the final learning
performance did not outperform the representation with fixed
time-shifts (i.e., M = 2, N = 3 and � = 0: −21.4 ± 0.4 com-
pared to M = 2, N = 3 and � = 1: −20.5 ± 1.4). This can be
also seen in Figure 7, where we plot the learning curve for syner-
gies with �s1:M = 0 in Figure 7A and the results for time-varying
synergies in Figure 7B.

The average final cost value of the DMP representation
is higher (i.e., DMPN = 8: −14.8 ± 1.4) compared to the best
costs achieved with shared synergies (M = 2, N = 3 and � = 0:
−21.4 ± 0.4). This holds also for an incremental learning setup
(e.g., DMP inc.N = 4: −19.2 ± 0.6), where DMPs were initialized
with the best result from the previous task.

The joint angle trajectories of the left hip and knee joint for
the DMPSynergy representation using M = 2 synergies mod-
eled by N = 3 Gaussians and � = 1 are illustrated in Figure 8.
The average step heights were r ∈ {0.22, 0.22, 0.26, 0.28}, which
do not match the desired step heights r∗ ∈ {0.15, 0.2, 0.25, 0.3}.
The reason for this is that the objective function in Equation
11 is designed to prefer correct multi-step walking move-
ments over exact matches of the step heights since learning
to walk is already a complex learning problem (approxi-
mately 90% of the costs are determined by the travelled dis-
tance and only 5% are caused by the distance to the desired
step heights). However, for the different desired step heights
the shape of the trajectories as well as the moment of the
impact vary. The moments of impact are denoted by arrows in
Figure 8.
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FIGURE 7 | Learning curves for the biped walker task. This figure
illustrates the learning performance over 10 runs of the proposed
approach using M = 2 synergies with N = 3 Gaussian basis functions.
In (A) the time-shift variables �s are not learned and set to zero.
Whereas, in (B) also these �s variables are adapted during learning.
We compare to the dynamic movement primitives (DMP) with N = 4
Gaussians in (A) and to DMPs with N = 8 Gaussians in (B). DMP inc.

denotes an incremental learning setup, where DMPs were initialized
with the best result from the previous task. Generalizing to a new step
height (r∗ = 0.1 m) is shown in (C), where we applied the best learned
policy for DMPSynergies from (B) and only optimized the weights β1:2
for the two (fixed) synergies. The corresponding average step height
over all steps is shown in (D). We compare to DMPs with N = 8
Gaussians.

FIGURE 8 | Results for the biped walker task. This figure illustrates
the (initially) left hip angle denoted by q1 and the left knee angle (q3)
for the multi-task learning scenario. Shown are the best learned
trajectories using the proposed approach (with M = 2, N = 3 and
� = 1) for the desired step heights of r∗ ∈ {0.15, 0.2, 0.25, 0.3}. The

true step heights of the learned walking patterns are
0.22 ± 0.07, 0.22 ± 0.08, 0.26 ± 0.08, 0.28 ± 0.08. The points in time of
the ground contacts are denoted by large arrows for desired step
heights of 0.25 m and 0.3 m. For the later additionally the duration of
the stance and the swing phases are illustrated by large boxes.

While generalizing to new motor skills was straightforward for
the simple via-point task, for the walking tasks a linear interpo-
lation turns out to be ineffective. We therefore demonstrate in
Figures 7C,D how a new walking pattern for a desired step height
of r∗ = 0.1 m can be learned be reusing the previously learned
prior knowledge (taking the best solution for r∗ = 0.25 m) for
M = 2 synergies modeled by N = 3 Gaussians and � = 1. Only
the weights β1:M are optimized in this experiment, keeping the
learned time-shifts fixed. The costs in Figure 7C and the average
step height r in Figure 7D demonstrate the advantage of using a
fixed prior, where we compare to DMPs with N = 8 Gaussians.

3.3. MULTI-DIRECTIONAL REACHING TASK WITH A
MUSCULOSKELETAL MODEL OF THE HUMAN ARM

A simplified model of a human arm based on the model by
Holzbaur et al. (2005) was used to learn six reaching tasks simul-
taneously. The shoulder and the elbow joint were modeled by
hinge joints. Thus, only movements in the sagittal plane were
possible. The initial arm configuration and the six target loca-
tions (with a distance of 15cm to a marker placed on the radial
stylion) are shown in Figure 9A. A learned example movement is
illustrated in Figure 9B, where the cylinders, the spheres and the
ellipsoids denote wrapping surfaces discussed in Subsection 2.3.

We focused on fast reaching movements of 500 ms dura-
tion (T = 500 and �t = 1 ms) that can be implemented in an

open-loop control scheme. Note that with our approach also
closed-loop systems with feedback could be implemented, as dis-
cussed below. Thus, the learnable non-linear function f(s, k) in
Equation 10 is directly used as input to the system in form of
muscle excitation patterns. The parameter settings for learning
are shown in Table A4 in the appendix.

For learning the reaching tasks we evaluated the Euclidean dis-
tance of a marker vk(t) placed on the radial stylion to a given
target gk, where k = 1..6 denotes the task index. Additionally,
large muscle excitations signals are punished:

C(k) =
6∑

k = 1

3 · 1

T

T∑
t = 1

‖gk − vk(t)‖ + 10−3
∫ 1

s = 0
f(s, k)T f(s, k)ds,

(12)

where ‖.‖ denotes the Euclidean distance between the marker
vk(t) and the target gk at time t.

We evaluated five movement representations, defined in
Equation 10, with an increasing number of shared synergies, i.e.,
M = {1, 2, 3, 4, 5}. Each synergy is represented by a single (N =
1) Gaussian. For each target and for each synergy the task-specific
parameters βk,m and �sk,m are learned. The number of task-
specific and the number of task-invariant or shared parameters
is shown in Table 2.
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FIGURE 9 | Musculoskeletal model for learning reaching tasks. A
model of a human arm with eleven muscles shown in Table A5 in the
appendix was used to learn six reaching skills in the sagittal plane (A).
As reward signal we encoded the distance to a marker placed on the
radial stylion (denoted by the plus symbol) and punished large muscle

excitation signals. Targets are denoted by large dots. We focused on fast
reaching skills of 500 ms duration, where an example movement is
shown in (B). To simulate how muscles wrap over underlying bone and
musculature wrapping surfaces are implemented as cylinders, spheres
and ellipsoids (Holzbaur et al., 2005).

Table 2 | Details of the evaluated parametrizations and achieved costs

for the reaching task.

No. of synergies Cmean #K #M Total

M = 1 2.38 ± 0.05 12 33 45
M = 2 1.52 ± 0.12 24 66 90
M = 3 1.15 ± 0.12 36 99 135
M = 4 1.15 ± 0.05 48 132 180
M = 5 1.17 ± 0.05 60 165 225

M denotes the number of implemented synergies, Cmean the final cost values,

and the symbol ± the standard deviation. We use #K to denote the number of

task-specific parameters (6 · M) and #M to denote the number of task-invariant

or shared parameters (3 · 11 · M).

We hypothesized that a muscle excitation signal can be gen-
erated by combining a small number of learned synergies. An
example for the anterior deltoid muscle (DeltA) is shown in
Figure 10 for two movement directions. Here, DMPSynergies
with M = 4 synergies were used to generate the muscle excita-
tion patterns. The muscle excitation patterns for all six movement
directions and all eleven muscles are shown in Figure 11. Two
observations can be made: first, as our objective function in
Equation 12 punishes large muscle excitation signals a sparse rep-
resentation of multiple motor skills is learned. Second, the learned
muscle patterns partially show the typical triphasic behavior of
human movement (Angel, 1975; Hallett et al., 1975; Berardelli
et al., 1996; Chiovetto et al., 2010), where individual muscles
(e.g., DeltA, PectClav and BRA in the first column in Figure 11)
become activated at the onset of the movement, shortly before
the velocity peak to decelerate, and finally, multiple muscles co-
contract at the target location. These three events are denoted by
the labels 1, 2, and 3 in the last row in Figure 11, where a thresh-
old of 2 cm s−1 was used to determine the movement onset and
the termination of the movement.

Comparing all five movement representations (M =
{1, 2, 3, 4, 5}), we found that at least three synergies were
necessary to accomplish all reaching tasks. This is shown in
Figure 12A, where with only one (M = 1) or two synergies
(M = 2) not all targets can be reached. Shown are the marker
trajectories of three independent learning sessions (out of ten

FIGURE 10 | Synergy combination mechanism. We hypothesize that a
muscle excitation signal can be generated by combining a small number of
learned synergies. Here, we illustrate this combination process for the
deltoid anterior (DeltA) with four synergies for two movement directions.
For the two movement directions different combination coefficients βm, k

and different time-shift parameters �sm, k were learned. The synergies are
represented by a single parametrized Gaussian, where the corresponding
basis function for DeltA is denoted by a bold line in the enclosing
rectangles.

runs). Note that similar findings were obtained in analyzing
human arm reaching movements, where four to five synergies
were observed (d’Avella et al., 2006). The corresponding learning
curves for all five movement representations are shown in
Figure 12B, where the parametrizations with M = 3..5 synergies
perform equal. This is also reflected in the final costs shown
in Table 2 (rows 3..5). As an example the marker trajectories
and the tangential velocity profiles for the representation using
M = 4 synergies are illustrated in Figure 12C. As we evaluated
an open-loop control scheme these marker trajectories did not
exactly terminate at the target location (after the limited number
of episodes for learning). However, by increasing the number of
episodes or by adding feedback the terminal accuracy could be
improved.

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 138 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rückert and d’Avella Dynamic movement primitives with synergies

FIGURE 11 | Learned muscle excitation patterns. Shown are the muscle excitation patterns for all six targets (from left to right) and for all muscles
(rows one to eleven). In the last row the tangential velocity profiles of the marker placed on the radial stylion is illustrated (see text for details).

For testing the generalization ability of DMPSynergies we
rotated all six targets by 30 degrees and only re-learned the
task-specific coefficients, i.e., the mixing coefficients βm, k and
the time-shift parameters �sm, k. Interim solutions with a move-
ment representation implementing M = 4 synergies are shown in
Figure 13A. Note that, as we evaluated an open-loop controller,
the rotated targets were unknown to the controller. Solely the
objective function in Equation 12 quantifies deviations from the
targets. After 15 episodes a first trend toward the new targets was
visible, however, most of the trajectories (three learned solutions
are illustrated) ended at the original targets. The corresponding
learning curves for DMPSynergies with three (M = 3) and four
(M = 4) synergies are shown in Figure 13B. The learning curve
for the unperturbed scenario from the previous experiment is
denoted by the dashed line (M = 4 orig.). Note that in both -
the unperturbed and the perturbed experiments K = 6 reach-
ing movements were learned, which demonstrates the benefit of
the shared learned knowledge when generalizing new skills. For
a comparison the blue line denoted by DMP N = 4 illustrates

the convergence rate of single task learning with DMPs, where
DMPSynergies (M = 4 orig.) can compete in terms of learning
speed.

4. DISCUSSION
We proposed a movement representation based on learned
parametrized synergies (DMPSynergies) that can be linearly com-
bined and shifted in time. These learned synergies are shared
among multiple task instances significantly facilitating learning
of motor control policies. This was demonstrated on simulated
robotic and on musculoskeletal systems. Below we discuss the
significance and the implication of our findings with respect to
robotics and biological motor control.

4.1. EXPLOITING SHARED SYNERGIES FOR MOTOR SKILL LEARNING IN
ROBOTICS

For motor skill learning in robotics a common strategy is to
use parametrized elementary movements or movement prim-
itives (Kober and Peters, 2011). In this paper we proposed
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FIGURE 12 | Learning multi-directional reaching movements. We
evaluated five movement representations with an increasing number of
shared synergies, i.e., M = {1, 2, 3, 4, 5}. The resulting trajectories of the
marker placed on the radial stylion are shown in (A,C), where with less
than three synergies not all targets can be reached. Illustrated are three
independent learning results. In (B) we illustrate the average learning
curves over 10 runs for these movement representations. For the
representation using M = 4 synergies shown in (C) additionally the
tangential velocity profiles are illustrated.

FIGURE 13 | Generalization to new reaching directions. For testing the
generalization ability of the proposed DMPSynergies we fix the learned
shared synergies and only adapt the task-specific parameters, i.e., the
mixing coefficients βm, k and the time-shift parameters �sm, k . The K = 6
targets were rotated by 30 degrees, where in (A) the marker trajectories
after 15, 50, 200, and 1000 episodes for a movement representation with
M = 4 synergies are shown. In (B) we show the averaged learning curves
for DMPSynergies with three and four synergies over 10 runs (M = 3 and
M = 4). The learning curve for the unperturbed scenario from the previous
experiment is denoted by the dashed line (M = 4 orig.). For a comparison
the blue line denoted by DMP N = 4 illustrates the convergence rate of
single task learning.

a generalization of the most widely used movement primi-
tive representation in robotics, dynamic movement primitives
(DMPs) (Schaal et al., 2003; Ijspeert et al., 2013). DMPs eval-
uate parametrized dynamical systems to generate trajectories.
The dynamical system is constructed such that the system is

stable. This movement representation has many advantages. It
is a model-free approach, partially explaining its popularity
in robotics as model learning in high-dimensional stochastic
robotics systems is challenging. Further, its stable attractor sys-
tem facilitates learning and DMPs can represent both rhythmic
and discrete movements. Meta parameters can be used for adapt-
ing the movement speed or the goal state. Finally, the movement
representation depends linearly on the policy parametrization,
i.e., the learnable function f depends linearly on the parame-
ters θ of the movement primitive: f (s) = �(s)Tθ, where s is the
time or phase variable. As a result, imitation learning for DMPs is
straightforward, as this can simply be done by performing linear
regression (Schaal et al., 2003). However, for each task k an indi-
vidual set of parameters θk has to be learned, which unnecessarily
complicates learning of a large number of related motor skills.
In contrast we proposed a generalization that allows for reusing
shared knowledge among multiple related motor skills, i.e., the
parameter vector θ is task-invariant.

In particular, we replaced the non-linear modulation func-
tion f (.) in DMPs by a hierarchical function approximator.
On the lower level task related parameters (amplitude scaling
weights and time-shift parameters) are used to modulate a lin-
ear superposition of basis functions. These basis functions encode
shared higher level knowledge and are modeled by a mixture
of Gaussians. With the proposed DMPSynergies representation
discrete and rhythmic movements can be generated. By using
Gaussians at the higher level DMPs can be implemented as spe-
cial case. However, the DMPSynergies can compete with DMPs in
terms of learning efficiency while allowing for learning multiple
motor skills simultaneously.

This was demonstrated in two robotic multi-task learning sce-
narios, where we showed that, with the DMPSynergies, good
policies could be found more reliably, i.e., local minima with
high cost values were more often avoided, more efficiently (fewer
samples were needed), and new skills could be generalized by
exploiting the previously learned shared knowledge. A simple
via-point task was used to demonstrate the characteristics of the
approach, where the proposed movement representation could
be used to generalize new movement trajectories by applying
a linear interpolation on the synergy’s weights β. In a second
robotic task, a biped walker task, the hierarchical represen-
tation was used to learn walking patterns with multiple step
heights. In this complex reinforcement learning task, it was
shown that better solutions were found more reliably by exploit-
ing the learned shared knowledge, which is a strong feature of
a movement representation. While also with the classical DMP
approach high quality movement gaits were learned, on aver-
age the achieved costs were higher compared to the proposed
hierarchical synergies representation, i.e., −19.2 ± 0.6 for DMPs
with 4 Gaussians (and with incremental learning) compared to
−21.4 ± 0.4 when using M = 2 synergies with N = 3 Gaussians
(where the time-shift parameters were fixed and set to zero, � =
0). In this experiment 10, 000 samples were needed to learn 4
walking gaits simultaneously, where the DMPSynergies approach
can compete with DMPs (15, 000 samples). Additionally, we
demonstrated in a generalization experiment that walking pat-
terns for an unknown step height (r∗ = 0.1 m) could be learned
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with 100 samples by exploiting the previously learned prior
knowledge.

While DMPs (Schaal et al., 2003; Ijspeert et al., 2013) are most
closely related to our shared synergies approach, there exist a few
other approaches (Chhabra and Jacobs, 2006; Alessandro et al.,
2012) also implement shared knowledge. In Chhabra and Jacobs
(2006) a variant of non-negative matrix factorization (d’Avella
et al., 2003) was used to compute the synergies given a set of tra-
jectories created by applying stochastic optimal control methods
(Li and Todorov, 2004). In Alessandro et al. (2012) an explo-
ration phase was introduced to compute the dynamic responses
of a robot system with random initialization. After a reduction
phase, where a small number of proto-tasks were executed, a
reduced set of dynamic responses was used to compute the syner-
gies matrix by solving a linear system of equations. We proposed
an alternative for learning the synergies and their combination
parameters, where all unknowns are learned in a reinforcement
learning setting from a single sparse reward signal. Moreover,
for robotic tasks we embed the synergies approach in stable
dynamical systems like in DMPs. This combines the benefits of
DMPs and muscle synergies, namely the efficient learning abil-
ity of DMPs in high-dimensional systems and the hierarchical
representation of movements that can be used for multi-task
learning.

As with DMPs the complexity of the DMPSynergies repre-
sentation can be scaled by the number of combined synergies
or the number of implemented Gaussians modeling these syner-
gies. However, as the trajectories generated with our representa-
tion depend non-linearly on the policy parameters (in contrast
to DMPs) more sophisticated decomposition strategies like for
example d’Avella and Tresch (2001); Chiovetto et al. (2013)
are needed for imitation learning. With such approaches the
extracted synergies could be implemented as initial solutions in
our learning framework.

4.2. LEARNED SHARED SYNERGIES FOR BIOLOGICAL MOVEMENT
GENERATION

The idea of reusing shared knowledge for movement genera-
tion is a well-known concept in biological motor control. Muscle
activation patterns recorded during multiple task instances of nat-
ural motor behavior, i.e., fast reaching movements of humans
(d’Avella et al., 2006), primate grasping movements (Overduin
et al., 2008), or walking patterns (Dominici et al., 2011), could be
efficiently modeled by combining only few muscle activation pat-
terns. In particular, time-varying muscle synergies (d’Avella et al.,
2003; Bizzi et al., 2008) were proposed to be a compact represen-
tation of muscle activation patterns. The key idea of this approach
is that muscle activation patterns are linear sums of simpler, ele-
mental functions or synergies. Each muscle synergy can be shifted
in time and scaled with a linear factor to construct a large variety
of activation patterns. In this manuscript we proposed a genera-
tive model to represent and learn time-varying synergies (d’Avella
et al., 2006).

The proposed framework allows for studying the concept of
muscle synergies from a generative perspective in contrast to
the analytical approach, where muscle synergies are identified
from observed data. Applying such a generative approach to

a musculoskeletal model, we could provide a proof-of-concept
of the feasibility of a low-dimensional controller based on
shared synergies and a demonstration of its learning efficiency.
Moreover, we could ask different question, i.e., how does perfor-
mance scale with the complexity of the movement representation,
how sparse is the encoding of the muscle patterns to solve particu-
lar tasks, and how well does the learned representation generalize
to new movements? We addressed these questions in a multi-
directional reaching task, where we investigated a musculoskeletal
model of the upper limb with 11 muscles. Motor skills for 6
reaching directions were learned within 3000 episodes and by
exploiting the learned shared synergies movements for rotated
target directions can be generalized 3 times faster (Figure 13).
We found that a minimum of three synergies were necessary to
solve the task (Figure 12B). In our objective function large mus-
cle excitation signals were punished, which resulted in a sparse
representation of muscle excitation patterns. This sparse repre-
sentation illustrated in Figure 11 shows similarities to observed
electromyographic activity recorded in related human reaching
tasks (d’Avella et al., 2006), i.e., triphasic muscle patterns, where
some of the muscles contributed at the movement onset, some
at point of the maximum tangential velocity, and some at the
end of the movement to co-contract. However, sensor feedback
might be an important modulation signal to make this effect more
pronounced.

The model was designed to capture salient features of human
musculoskeletal system, such as muscle activation dynamics, Hill-
type musculotendinous units, realistic geometry. However, to
reduce the computational effort needed to simulate a movement
we made a few simplifying assumptions. First, a limited number
of muscles (11) were implemented, where simplified wrapping
objects and muscle paths were modeled. Further, we implemented
the shoulder and the elbow joint as hinge joints. Thus, only
reaching movements in the sagittal plane could be performed.
Finally, we focused on fast reaching movements in an open-loop
control scheme. This was a valid assumption for comparing to
human data for fast reaching movements (d’Avella et al., 2006).
However, our proposed learning and control framework also
allows for implementing closed-loop controllers, i.e., when intro-
ducing an inverse kinematics model � ∈ R

Dx3 in Equation 1, i.e.,
τż = �(αz(βz(g − y∗) − z)) + f, where D denotes the number of
actuators and we assumed that the goal state g lives in a three-
dimensional Cartesian space. The inverse kinematics model �

maps the feedback error signal into the muscle pattern space and
modulates the learned muscle excitation basis f ∈ R

D. With such
closed-loop systems we might better understand the contribution
of feedback to muscle control in biological movement generation
(Lockhart and Ting, 2007).

Musculoskeletal models have been used before to investigate
movement generation with muscle synergies (Berniker et al.,
2009; Neptune et al., 2009; McKay and Ting, 2012). Berniker
and colleagues used model-order reduction techniques to iden-
tify synergies as a low-dimensional representation of a non-linear
system’s input/output dynamics and optimal control to find the
activations of these synergies necessary to produce a range of
movements. They found that such a set of synergies was capa-
ble of producing effective control of reaching movements with
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a musculoskeletal model of a frog limb and that it was possible
to build a relatively simple controller whose overall performance
was close to that of the system’s full-dimensional non-linear
controller. Neptune and colleagues generated muscle-actuated
forward dynamics simulations of normal walking using muscle
synergies identified from human experimental data using non-
negative matrix factorization as the muscle control inputs. The
simulation indicated that a simple neural control strategy involv-
ing five muscle synergies was sufficient to perform the basic
sub-tasks of walking. McKay and Ting, studying an unrestrained
balance task in cats, used a static quadrupedal musculoskeletal
model of standing balance to identify patterns of muscle activity
that produced forces and moments at the center of mass (CoM)
necessary to maintain balance in response to postural perturba-
tions. CoM control could be accomplished with a small number
of muscle synergies identified from experimental data, suggesting
that muscle synergies can achieve similar kinetics to the optimal
solution, but with increased control effort compared to individ-
ual muscle control. In line with these simulation studies, we also
found that a small number of muscle synergies was sufficient
to perform multiple reaching tasks in a forward dynamic sim-
ulation of a musculoskeletal model. However, we did not use
experimental data or model-order reduction techniques to iden-
tify muscle synergies. In our framework, both synergy structural
parameters and synergy combination parameters were found with
reinforcement learning, supporting the generality of the solutions
identified. Moreover, we were able to test the generalization abil-
ity of the synergies in the same framework by optimizing only the
task-specific synergy combination parameters.

The proposed reinforcement learning framework with move-
ment primitives relates to optimal control approaches in the
biological motor control literature (Delp et al., 2007; Erdemir
et al., 2007). In these simulation studies muscle patterns are
parametrized by e.g., bang-bang (on-off) controls, constant con-
trol values, or control vectors approximated with polynomials
[see Table 2 in Erdemir et al. (2007) for an overview of differ-
ent control strategies]. However, to the best of our knowledge
non of these approaches implemented shared synergies as con-
trol signal representation for learning multiple task instances
simultaneously. Even with complex representations, e.g., with
M = 5 synergies learning 225 parameters converged within 3000
episodes, which is a promising feature of the proposed approach
for studies on more complex musculoskeletal models.

In this manuscript we demonstrated how time-varying syner-
gies (d’Avella et al., 2006) can be implemented and learned from

scratch. Interestingly, by adding an additional constraint on the
movement representation, i.e., by using a single policy vector for
all actuators anechoic mixing coefficients (Giese et al., 2009) can
be implemented. However, in general any synergy representation
such as synchronous synergies (Ivanenko et al., 2004; Dominici
et al., 2011) used for locomotion can be learned. Thus, we do not
argue for a particular synergy representation. Our representation
was motivated to extend the widely used DMPs (Schaal et al.,
2003) for exploiting shared task-invariant knowledge for motor
skill learning in robotics.

5. CONCLUSION
We proposed a movement primitive representation implement-
ing shared knowledge in form of learned synergies. The repre-
sentation competes with the state-of-the-art, it can implement
DMPs (Schaal et al., 2003) as a special case, and it allows for an
efficient generalization to new skills. Importantly, shared knowl-
edge simplifies policy search in high-dimensional spaces, which
was demonstrated in a dynamic biped walking task. Further,
the proposed learned synergies are a compact representation
of high-dimensional muscle excitation patterns, which allows
us to implement reinforcement learning in musculoskeletal sys-
tems. In such frameworks muscle patterns are learned from
scratch using a sparse reward signal, where we could investi-
gate how muscles and muscle synergies contribute to a specific
task, how complex a task-invariant representation must be, and
how well the learned synergies generalize to changes in the envi-
ronment. In a multi-directional arm reaching experiment we
provided first insights to these questions. In future research the
proposed movement generation and learning framework will be
used to study feedback signals and feedback delays, imitation
learning from biological data and the effect of simulated muscle
surgeries.
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APPENDIX
For the via-point task the parameter settings for learning are
shown in Table A1. Initial parameter values and parameter set-
tings for policy search for the biped walker task are shown in
Table A2 and in Table A3. In Table A4 we list the learning settings
for the multi-directional reaching task using a musculoskeletal
model of a human arm. The implemented muscles and their
characteristic parameters are shown in Table A5.

Table A1 | Parameter settings for the discrete via-point task.

Parameter Range Initial value

a, (w) ∈ [−5, 5] a0 = 0

μ, (μ) ∈ [0, 1] μ0 spaced

linearly in [0, 1]
h, (h) ∈ [0.01, 1] h0 = 0.1

β ∈ [0, 100] β0 = 1

In brackets are the variable names for the dynamic movement primitives, which

are used for comparison.

Table A2 | Biped walker setting of pre-optimized quantities.

Variable Value

q1 [3.5, 4.4, −0.07, −0.5, −0.7,

−1.5, −0.6, −1.0, 0.3, −0.4]
g [2.8, 4.5, −0.3, −1.8]
kpos [632.5, 885.6, 463.4, 643.7]
kvel [14.5, 13.2, 38.6, 40.6]
qmin [2.8, 2.8, −2.6, −2.6, −1.04]
qmax [4.7, 4.7, 0, 0, 1.0]

Table A3 | Policy search parameter settings for the rhythmic walking

task.

Parameter Range Initial value

a, (w) ∈ [−2, 2] a0 = 0

μ, (μ) ∈ [0.8μ0, 1.2μ0] μ0 spaced

linearly in [0, 2π]
h, (h) ∈ [0.1, 10] h0 = 1

β ∈ [0, 2] β0 = 1

�s ∈ [0, 0.5] �s0 = 0

In brackets are the variable names for the dynamic movement primitives.

Table A4 | Parameter settings for the multi-directional reaching task.

Parameter Range Initial value

a ∈ [−1, 1] a0 = 0.5

μ ∈ [0.3, 0.7] μ0 spaced

linearly in [0.3, 0.7]
h ∈ 8[10−5, 10−3] h0 = 8 · 10−4

β ∈ [0, 1] β0 = 1

�s ∈ [−0.2, 0.2] �s0 = 0
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Table A5 | Characteristic muscle parameters of an upper limb model taken from Garner and Pandy (2001).

LM
0 [cm] LT

s [cm] F M
0 [N] α [rad]

Anterior deltoid (DeltA) 14.68 9.3 (1.64) 277.48 0

Posterior deltoid (DeltP) 17.02 5.93 567.15 0

Latissimus dorsi-thoracic (LatDors) 34.87 14.75 173.43 0

Pectoralis major-clav (PectClav) 22.65 0.45 342.46 0

Triceps brachii-long (TrLong) 15.24 25.05 (19.05) 629.21 0.26

Triceps brachii-lateral (TrLat) 6.17 19.64 1268.87 0.26

Triceps brachii-medial (TrMed) 4.9 18.19 (12.19) 619.67 0.26

Biceps-long (BicLong) 15.36 32.93 (22.93) 392.91 0.17

Biceps-short (BicShort) 13.07 26.98 (22.98) 461.76 0.17

Brachialis (BRA) 10.28 9.75 (1.75) 853 0.17

Brachioradialis (BrRad) 27.03 6.04 101.58 0.08

The tendon slack length is denoted by LT
s , the maximum isometric force by FM

0 , the optimal fiber length by LM
0 , and the muscle pennation angle by α. To increase

the reachable space, we adapted the tendon slack length LT
s of a small number of muscles (bold numbers vs. the original values in brackets).
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