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Abstract—One key idea behind morphological computation is  AICO also provides us with a time-varying linear feedback
that many difficulties of a control problem can be absorbed by controller as policy. We will use the variance of the control
the morphology of the robot. The performance of the controled — 4aing as complexity of the controller. If the control gaire a
system naturally depends on the control architecture and on almost constant in time, the control law is close to linear
the morphology of the robot. Ideally, adapting the morpholagy ' ] '
of the plant and optimizing the control law interact such that and does not need much computation. However, if the control
finally, optimal physical properties of the system and optinal gains are highly varying, the controller needs to do a lot of

control laws emerge. As a first step towards this vision we pipose  computation and therefore, less computation is provided by
to use optimal control methods for investigating the power 6 the morphology in order to fulfill a task

morphological computation. We use probabilistic inferene for We will illustrate th f holoaical tati
motor control to acquire optimal control laws given the current € will lilustrate the power ol morphological computation

morph0|ogy_ By Changing the morph0|ogy of our robot, contrd combined with Optlmal control on a 2-link robot which has
problems can be simplified, resulting in controllers with higher to keep balance in the presence of external pushes. We will

performance and reduced complexity. show that by changing the morphology of a robot like the
Keywords—probabilistic motor planning, stochastic optimal joint friction, the resulting optimal controllers have rezkd
control, morphological computation complexity. As we will show there is an optimal value for this
physical property for a given control task.

I. INTRODUCTION
Il. PROBABILISTIC INFERENCE FORMOTOR PLANNING

The term 'Morphological Computation’ denotes the com- Stochastic Optimal Control (SOC) provides attractive meth
putation done by the morphology of a plant in contrast tods to build non-linear, noise robust optimal control laws f
the computation done by the controller of the plant. Despitégh dimensional robot control tasks [4], [5], [3]. We will
of the advancements for theoretical models of morpholdgiaase the Approximate Inference Control (AICO) [3] algorithm
computation [1], [2] it is often hard to quantify how muchwhich is a SOC method based on probabilistic inference for
computation is done by the morphology of a real robot andotor control. Most applications of AICO are in the kinengati
how much by the controller. For a given morphology, thelanning domain. Here, we want to apply AICO to fully
performance of the robot-controller loop heavily depends alynamic, torque controlled robot simulations. Therefore w
the used control architecture. Therefore, we will use optimhad to extend the AICO framework with control or torque
control methods to eliminate this dependency. For each mdmits, which will be explained in the next sections.
phology, _we will use its optimal cor_1tro| law. _ A Approximate Inference Control

As optimal control method, we will use Approximate Infer-
ence Control (AICO) [3], which is a state of the art planning We will briefly clarify the notation for our discussion. Let
method for stochastic optimal control tasks. AICO is basetidenote the state and the control vector. A trajectory is
on probabilistic inference for motor control. The beauty ofiefined as sequence of state control pairs; (qo:7, uo.7-1),
this approach is that there is no distinction between senddpere T is the length of the trajectory. Each trajectory has

and motor, perception and action. We can include a multitu@ésociated costs

of variables, some of which might represent some features of T

the state, some of which might represent goals, constramts L(7) == Z ce(qe, uy). 1)
motivations in the future and some of which might represent t=0

future actions or motor signals. AICO uses message passing in graphical models to infer the

As all other stochastic optimal control methods, AICptimal trajectoryr. In order to transform the minimization
minimizes a cost function, which is in our case given by thef L(7) into an inference problem, for each time step an
guadratic distance to a target state and the used energyinofividual binary random variable, is introduced. This ran-
the movement. In order to apply the AICO method to torqu#om variable indicates a reward event. Its probability isegi
constraint dynamical models we will briefly explain how tdy P(z: = 1|q:, ut, t) x exp(—ci(qs, ut)), wheree:(qe, ut)
extend the algorithm to systems with control limits. represents the cost function for a single time step. AICO now



assumes that a reward event = 1 is observed at every \
time step. Given that evidence, AICO calculates the pasteri A
distribution P(x1.7,u1.7|21.7 = 1) over trajectories.

We will use the simplest version of AICO, where an
extended Kalman smoothing approach is used to estimate t
posterior. Therefore, the non-linear system is approxaat @
by a Linear dynamics, Quadratic costs and Gaussian noi /
system (LQG) by Taylor expansions. For this LQG system ‘
simple message passing algorithm can be used, which usss =
only Gaussian messages. The messages are used to calculaf® Graphical model for planning (b) Balancing task
a new belief over the trajectories. This be_“ef IS again Ut_md Fig. 1. (a) Graphical Model for Probabilistic Planning. Tsiate variable
calculate a LQG system by Taylor expansions. For algorithmi, denotes the joint angles and joint velocities. Controlslabelled byu,.
details we refer to [3]. The time horizon is fixed td" time steps. The task variable expresses a

If we use AICO with a constant cost and dynamic model f(ffg?r%iggegcert';ems(ggz rﬁsﬁ:"ggeh?n%oglr)ﬁ(?alhgar%i?/gegg‘ghf"tg;?;:
each time step, the algorithm reduces to calculating a kingailance.

Quadratic Regulator (LQR), which is often used in optimal

control. An LQR is the optimal linear feedback controller fo

a given linear system. In contrast, AICO uses time-varyir@jld @ mass a35kg. The ankle and the hip angle are actuated,
linear feedback controllers, the feedback controller may Kvhere the torques lie in the interval [+70, £500|Ns. The
different for each time step. We will also evaluate the benefinkle angle is limited to the rangfe-0.4,0.8] and the hip

of using AICO (time-varying linear feedback control) and agngle to the rang¢-1.6,0.1]. The trajectory was simulated

LQR (constant linear feedback control) in our experiments.With a time-step of0.5ms, for the AICO algorithm we used
a time step ofAt = 10ms andT = 2s, which resulted in a
B. Cost Function for Constrained Systems planning horizon oR00 time steps.
In order to apply the AICO algorithm to torque controlled We use a quadratic cost function given by
robots, we have to extend the framework to incorporate obntr
limits as the available motor torque is typically limitedhi$
is done by adding a control dependent punishment term to fhere H, = 10~°I is the control precision matrix ani, =
cost function if the current mode of the belief of the corgroldiag 2000, 20, 2000, 20) is the state precision matrix.
is outside the control limits. We have multiplied the controls by Gaussian zero mean
For example, if the current mode of the beliefufexceeds noise denoted by with a variance of).1, which corresponds
a given boundup, at timet, we add the following term to to 10% torque dependent noise. This noise affects the system
our cost functiore;: dynamicsx = f(x¢,u; + €) while simulating a trajectory,
wheree = N(0]0.1 - abguy)).

ci(ae,uy) = (a¢ — ar) " Re(ae — ar) + uf Hyuy,

™) = (u—up) Hg,(u - up).

As a consequence, the resulting Gaussian distributionshNhP' Complexity Measures

are used to represent the costschange. This distributions The experiments are performed for multiple forcEs=
have typically zero mean in the control space due to th&5,5,7.5]Ns and multiple initial states with the hip angles
typically used quadratic control costs. In the case of @intré2 = [0, —4, -7, —10]7/180. We evaluate the average values
limits the mean of the distribution ison-zero. Consequently, of the final costsL(7) (see Equation 1) and the total jerk
also the message passing update equations used for the Al®) = At Y1, al, of the trajectory (proportional to the
algorithm changes. For the exact message passing equati¥igared derivative of the torque). Different complexityane

of AICO with control limits we refer to [6]. sures would be possible, the chosen ones are plausible since
the complexity of controlling the pendulum is reflected bywho
IIl. EXPERIMENTS well the costsL(r) are optimized and by the complexity of

We investigate morphological computation combined withontrol signal. As the jerk of a movement tracks the denati
optimal control on a dynamic non-linear balancing task [#f the torques, the jerk seems to be a reliable complexity
where a robot gets pushed from behind with a specific forceeasure.
and has to move such that it maintains balance. The optimaln addition we also calculate the variance of the time-
strategy is a non-linear control law which returns the ralpot varying controller gains returned by the AICO approach.
the upright position, see Figure 1. We quantify morpholagiicThis measure quantifies the complexity of the control law in
computation by changing the joint friction. comparison to linear controllers (no variance).

A. Setting C. Friction induces Morphological Computation

In our experiments we model a humanoid with a 2-link In this experiment we evaluate the influence of the friction
pendulum. In the initial setting, both links have a lengthof coefficienty on the quality of the optimal controller. The



friction coefficient directly modulates the accelerationtioe
joints, i.e.¢, = —v¢.

Figure 2(a) shows the resulting costs for different frintio
coefficients. The most simple control law according to the
jerk criteria can be found at = 2 in Figure 2(b). We also
evaluated the performance of the LQR controller, which is a
constant linear feedback controller in contrast to the e
obtained by AICO, which uses a time-varying linear feedback
controller. The AICO controllers showed reduced costs as
well as a reduced jerk of the trajectory. In Figure 3, we can
see the variance of the time-varying controller gains, Wwhic
we use as complexity measure of the controllers. As we can
see, the complexity of the resulting controller could al® b
reduced by changing the friction coefficient. The minimum of
the complexity lies in the same range as the minimum of the
cost function. Thus, in this case a simpler controller resul

in better performance because the morphology (the fri¢tiopig.

of the robot has contributed to the control task.
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4. The plot shows the trajectories using the AICO apghofor the

friction coefficientsy = 0, v = 3 and~y = 10.
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Fig. 2. Influence of the friction coefficient on costs and jefkhe trajectory.
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Fig. 3. Influence of the friction coefficient on the complgxitf the planning

task. We characterize the complexity of the planning taskheyvariance of
the time-varying feedback controller gains which are negagr by AICO.

In Figure 4 we can see 3 joint and torque trajectories for

different friction coefficients.

IV. CONCLUSION AND FUTURE WORK

In this paper we have shown that optimal control and mor-
phological computation are two complementary approachﬁf
ma

which can benefit from each other. The search for an opti

In the future, we plan to investigate more complex and more
non-linear tasks. In this case the benefit of AICO in compar-
ison to LQR controllers should be even more prominent. In
the end we are planning to simultaneously evolve walking
controllers based on AICO and the morphology of bipedal
robots like a model of a planar walker.
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