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Abstract—One key idea behind morphological computation is
that many difficulties of a control problem can be absorbed by
the morphology of the robot. The performance of the controlled
system naturally depends on the control architecture and on
the morphology of the robot. Ideally, adapting the morphology
of the plant and optimizing the control law interact such that
finally, optimal physical properties of the system and optimal
control laws emerge. As a first step towards this vision we propose
to use optimal control methods for investigating the power of
morphological computation. We use probabilistic inference for
motor control to acquire optimal control laws given the current
morphology. By changing the morphology of our robot, control
problems can be simplified, resulting in controllers with higher
performance and reduced complexity.
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I. I NTRODUCTION

The term ’Morphological Computation’ denotes the com-
putation done by the morphology of a plant in contrast to
the computation done by the controller of the plant. Despite
of the advancements for theoretical models of morphological
computation [1], [2] it is often hard to quantify how much
computation is done by the morphology of a real robot and
how much by the controller. For a given morphology, the
performance of the robot-controller loop heavily depends on
the used control architecture. Therefore, we will use optimal
control methods to eliminate this dependency. For each mor-
phology, we will use its optimal control law.

As optimal control method, we will use Approximate Infer-
ence Control (AICO) [3], which is a state of the art planning
method for stochastic optimal control tasks. AICO is based
on probabilistic inference for motor control. The beauty of
this approach is that there is no distinction between sensor
and motor, perception and action. We can include a multitude
of variables, some of which might represent some features of
the state, some of which might represent goals, constraintsor
motivations in the future and some of which might represent
future actions or motor signals.

As all other stochastic optimal control methods, AICO
minimizes a cost function, which is in our case given by the
quadratic distance to a target state and the used energy of
the movement. In order to apply the AICO method to torque
constraint dynamical models we will briefly explain how to
extend the algorithm to systems with control limits.

AICO also provides us with a time-varying linear feedback
controller as policy. We will use the variance of the control
gains as complexity of the controller. If the control gains are
almost constant in time, the control law is close to linear
and does not need much computation. However, if the control
gains are highly varying, the controller needs to do a lot of
computation and therefore, less computation is provided by
the morphology in order to fulfill a task.

We will illustrate the power of morphological computation
combined with optimal control on a 2-link robot which has
to keep balance in the presence of external pushes. We will
show that by changing the morphology of a robot like the
joint friction, the resulting optimal controllers have reduced
complexity. As we will show there is an optimal value for this
physical property for a given control task.

II. PROBABILISTIC INFERENCE FORMOTOR PLANNING

Stochastic Optimal Control (SOC) provides attractive meth-
ods to build non-linear, noise robust optimal control laws for
high dimensional robot control tasks [4], [5], [3]. We will
use the Approximate Inference Control (AICO) [3] algorithm,
which is a SOC method based on probabilistic inference for
motor control. Most applications of AICO are in the kinematic
planning domain. Here, we want to apply AICO to fully
dynamic, torque controlled robot simulations. Therefore we
had to extend the AICO framework with control or torque
limits, which will be explained in the next sections.

A. Approximate Inference Control

We will briefly clarify the notation for our discussion. Let
q denote the state andu the control vector. A trajectoryτ is
defined as sequence of state control pairs,τ = 〈q0:T ,u0:T−1〉,
where T is the length of the trajectory. Each trajectory has
associated costs

L(τ) :=

T∑

t=0

ct(qt,ut). (1)

AICO uses message passing in graphical models to infer the
optimal trajectoryτ . In order to transform the minimization
of L(τ) into an inference problem, for each time step an
individual binary random variablezt is introduced. This ran-
dom variable indicates a reward event. Its probability is given
by P (zt = 1|qt,ut, t) ∝ exp(−ct(qt,ut)), wherect(qt,ut)
represents the cost function for a single time step. AICO now



assumes that a reward eventzt = 1 is observed at every
time step. Given that evidence, AICO calculates the posterior
distributionP (x1:T ,u1:T |z1:T = 1) over trajectories.

We will use the simplest version of AICO, where an
extended Kalman smoothing approach is used to estimate the
posterior. Therefore, the non-linear system is approximated
by a Linear dynamics, Quadratic costs and Gaussian noise
system (LQG) by Taylor expansions. For this LQG system a
simple message passing algorithm can be used, which uses
only Gaussian messages. The messages are used to calculate
a new belief over the trajectories. This belief is again usedto
calculate a LQG system by Taylor expansions. For algorithmic
details we refer to [3].

If we use AICO with a constant cost and dynamic model for
each time step, the algorithm reduces to calculating a Linear
Quadratic Regulator (LQR), which is often used in optimal
control. An LQR is the optimal linear feedback controller for
a given linear system. In contrast, AICO uses time-varying
linear feedback controllers, the feedback controller may be
different for each time step. We will also evaluate the benefit
of using AICO (time-varying linear feedback control) and an
LQR (constant linear feedback control) in our experiments.

B. Cost Function for Constrained Systems

In order to apply the AICO algorithm to torque controlled
robots, we have to extend the framework to incorporate control
limits as the available motor torque is typically limited. This
is done by adding a control dependent punishment term to the
cost function if the current mode of the belief of the controls
is outside the control limits.

For example, if the current mode of the belief ofut exceeds
a given bounduBt

at time t, we add the following term to
our cost functionct:

clim
t (ut) = (ut − uB)T HBt

(ut − uB).

As a consequence, the resulting Gaussian distributions which
are used to represent the costsct change. This distributions
have typically zero mean in the control space due to the
typically used quadratic control costs. In the case of control
limits the mean of the distribution isnon-zero. Consequently,
also the message passing update equations used for the AICO
algorithm changes. For the exact message passing equations
of AICO with control limits we refer to [6].

III. EXPERIMENTS

We investigate morphological computation combined with
optimal control on a dynamic non-linear balancing task [7]
where a robot gets pushed from behind with a specific force
and has to move such that it maintains balance. The optimal
strategy is a non-linear control law which returns the robotto
the upright position, see Figure 1. We quantify morphological
computation by changing the joint friction.

A. Setting

In our experiments we model a humanoid with a 2-link
pendulum. In the initial setting, both links have a length of1m

(a) Graphical model for planning (b) Balancing task

Fig. 1. (a) Graphical Model for Probabilistic Planning. Thestate variable
qt denotes the joint angles and joint velocities. Controls arelabelled byut.
The time horizon is fixed toT time steps. The task variablezt expresses a
performance criteria (like reaching a goal). (b) The agent modelling a human
(2m, 70kg) gets pushed from behind and has to move such that itkeeps
balance.

and a mass of35kg. The ankle and the hip angle are actuated,
where the torquesu lie in the interval [±70,±500]Ns. The
ankle angle is limited to the range[−0.4, 0.8] and the hip
angle to the range[−1.6, 0.1]. The trajectory was simulated
with a time-step of0.5ms, for the AICO algorithm we used
a time step of∆t = 10ms andT = 2s, which resulted in a
planning horizon of200 time steps.

We use a quadratic cost function given by

ct(qt,ut) = (qt − qT )T R̂t(qt − qT ) + uT
t Ĥtut,

whereĤt = 10−5I is the control precision matrix and̂Rt =
diag(2000, 20, 2000, 20) is the state precision matrix.

We have multiplied the controls by Gaussian zero mean
noise denoted byǫ with a variance of0.1, which corresponds
to 10% torque dependent noise. This noise affects the system
dynamicsẋ = f(xt,ut + ǫ) while simulating a trajectory,
whereǫ = N (0|0.1 · abs(ut)).

B. Complexity Measures

The experiments are performed for multiple forcesF =
[2.5, 5, 7.5]Ns and multiple initial states with the hip angles
φ2 = [0,−4,−7,−10]π/180. We evaluate the average values
of the final costsL(τ) (see Equation 1) and the total jerk
J(τ) = ∆t

∑T

t=0
u̇T

t u̇t of the trajectory (proportional to the
squared derivative of the torque). Different complexity mea-
sures would be possible, the chosen ones are plausible since
the complexity of controlling the pendulum is reflected by how
well the costsL(τ) are optimized and by the complexity of
control signal. As the jerk of a movement tracks the derivative
of the torques, the jerk seems to be a reliable complexity
measure.

In addition we also calculate the variance of the time-
varying controller gains returned by the AICO approach.
This measure quantifies the complexity of the control law in
comparison to linear controllers (no variance).

C. Friction induces Morphological Computation

In this experiment we evaluate the influence of the friction
coefficient γ on the quality of the optimal controller. The



friction coefficient directly modulates the acceleration of the
joints, i.e. φ̈γ = −γφ̇.

Figure 2(a) shows the resulting costs for different friction
coefficients. The most simple control law according to the
jerk criteria can be found atγ = 2 in Figure 2(b). We also
evaluated the performance of the LQR controller, which is a
constant linear feedback controller in contrast to the controller
obtained by AICO, which uses a time-varying linear feedback
controller. The AICO controllers showed reduced costs as
well as a reduced jerk of the trajectory. In Figure 3, we can
see the variance of the time-varying controller gains, which
we use as complexity measure of the controllers. As we can
see, the complexity of the resulting controller could also be
reduced by changing the friction coefficient. The minimum of
the complexity lies in the same range as the minimum of the
cost function. Thus, in this case a simpler controller resulted
in better performance because the morphology (the friction)
of the robot has contributed to the control task.
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(a) Friction vs. Final Costs
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(b) Friction vs. Jerk

Fig. 2. Influence of the friction coefficient on costs and jerkof the trajectory.
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(a) Friction vs Controller Vari-
ance

Fig. 3. Influence of the friction coefficient on the complexity of the planning
task. We characterize the complexity of the planning task bythe variance of
the time-varying feedback controller gains which are returned by AICO.

In Figure 4 we can see 3 joint and torque trajectories for
different friction coefficients.

IV. CONCLUSION AND FUTURE WORK

In this paper we have shown that optimal control and mor-
phological computation are two complementary approaches
which can benefit from each other. The search for an optimal
morphology is simplified if we can calculate an optimal
controller for a given morphology. This calculation can be
done by new approaches from probabilistic inference for
motor control, i.e. the AICO algorithm. By the use of optimal
control methods, we have shown that for a simple, but non-
linear balancing task, an appropriate setting of the friction can
simplify the control task.
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(a) γ = 0

0 0.5 1 1.5 2
−0.2

−0.1

0

Jo
in

ts

 

 

φ
1

φ
2

0 0.5 1 1.5 2

0

100

200

Time

T
or

qu
e

 

 

u
1

u
2

(b) γ = 3
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(c) γ = 10

Fig. 4. The plot shows the trajectories using the AICO approach for the
friction coefficientsγ = 0, γ = 3 andγ = 10.

In the future, we plan to investigate more complex and more
non-linear tasks. In this case the benefit of AICO in compar-
ison to LQR controllers should be even more prominent. In
the end we are planning to simultaneously evolve walking
controllers based on AICO and the morphology of bipedal
robots like a model of a planar walker.
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