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Abstract— Humans make extensive use of haptic exploration
to map and identify the properties of the objects that we
touch. Also, in robotics, the use of active tactile perception
has emerged as an important research domain that comple-
ments vision for tasks such as object classification, shape
reconstruction, and manipulation. In this work, we introduce
TAP (Task-agnostic Active Perception) – a novel framework
that leverages reinforcement learning (RL) and transformer-
based architectures to address the challenges posed by partially
observable environments. TAP integrates Soft Actor-Critic (SAC)
and CrossQ algorithms within a unified optimization objective,
jointly training a perception module and decision-making policy.
By design, TAP is task-agnostic and can, in principle, generalize
to any active perception problem. We evaluate TAP across
diverse tasks, including toy examples and a realistic application
involving haptic exploration of 3D models of handwritten digits.
Experiments demonstrate the efficacy of TAP, achieving a
classification accuracy of 92% on Tactile MNIST. These findings
underscore the potential of TAP as a versatile and generalizable
framework for advancing active tactile perception in robotics.

I. INTRODUCTION

Tactile perception enhances robotic manipulation tasks by
complementing other sensing modalities to achieve classi-
fication, dexterous in-hand motions, and shape recognition.
Unlike vision, which provides global scene understanding,
tactile sensing is inherently local and requires active explo-
ration to gather meaningful information [1]. This motivates
the need for methods that can autonomously decide where
and how to touch an object to maximize information gain.

Recent works have explored active tactile perception using
heuristic-driven and supervised learning methods [2], [3].
However, many of these approaches are task-specific and
do not generalize to new scenarios. In contrast, humans
exhibit flexible exploration strategies, adapting their tactile
interactions based on the context [4].

To bridge this gap, we introduce TAP, a framework that
integrates reinforcement learning with a transformer-based
architecture to enable adaptive tactile exploration. TAP jointly
optimizes a policy for exploration and a perception model,
allowing for efficient information acquisition. Crucially, TAP
is fully task agnostic and could, in principle, be applied
to any task with a differentiable loss function. We evaluate

1Tim Schneider, Cristiana de Farias, and Jan Peters are
with the Department of Computer Science, TU Darmstadt,
Germany. {tim.schneider1, cristiana.farias,
jan.peters}@tu-darmstadt.de

2Roberto Calandra is with LASR Lab & CeTI, TU Dresden, Germany.
rcalandra@lasr.org

3Liming Chen is with LIRIS, CNRS UMR5205, Ecole Centrale de Lyon,
France. liming.chen@ec-lyon.fr

4Jan Peters is also with the German Research Center for AI (DFKI),
Hessian.AI, and the Centre for Cognitive Science, TU Darmstadt, Germany.

Fig. 1: Our method Task-agnostic Active Perception (TAP). TAP’s
objective is to infer properties, such as object classes, of its
environment based on limited per-step information. To do so, it
jointly optimizes an action policy to gather information and a
prediction model for inference. Both the action policy and the
prediction model use a shared transformer-based backbone to process
sequences of inputs. Illustrated on the top are three benchmark tasks
we use to evaluate TAP, though Circle-Square and Starstruck are
omitted in the remainder of this paper for brevity.

TAP on the Tactile MNIST benchmark, demonstrating its
ability to learn structured exploration policies and achieve
high classification accuracy of 92% on Tactile MNIST.

II. ACTIVE PERCEPTION

Formally, we define the problem of active perception as
a special case of a Partially Observable Markov Decision
Process (POMDP) with hidden state ht, action at, and
observation ot. In the active perception scenario, the agent’s
objective is to learn a particular property of the environment,
e.g., the class or pose of an object. We assume that the ground
truth value

∗
yt of this property at time t is part of the hidden

state ht and thus not directly accessible to the agent. To allow
the agent to make predictions, its action space contains not
only control actions at but also a current estimate yt of the
desired environment property. The resulting reward function
now consists of two parts: a differentiable prediction loss ℓ
and a regular RL reward r. The prediction loss could, for
example, be a cross-entropy loss in the case of a classification
task or the Euclidean distance in the case of a pose estimation
task. The RL reward could be any function; in this work, we
only use it to regularize the agent’s actions at.

The objective is now to find a policy π(at ∣ o0∶t) for which



Fig. 2: The simulated Tactile MNIST classification benchmark [5].
The objective of the Tactile MNIST task is to identify the numeric
value of the presented digit by touch only. The agent decides how
to move the finger and predicts the class label of the presented
MNIST digit. The haptic glance is computed via the Taxim [6]
tactile simulator.

the expected discounted return is maximized:

max
π

J(π) ∶= E
p(h,∗y,o,a,y)

[∞∑
t=0

γt (r(ht, at) − ℓ(∗yt, yt))] (1)

where γ ∈ [0,1) is the discount factor.
In this work, we assume that the policy π is parameterized

by parameters θ ∈ RM , which allows us to compute a
gradient of (1) and optimize the problem with gradient descent
algorithms.

Defining ℓπ(∗yt, o0∶t) ∶= Eπ(yt ∣o0∶t)[ℓ(∗yt, yt)] and comput-
ing the gradient of J(πθ) now yields

∂

∂θ
J(πθ) = E

pθ(h,
∗

y,o,a)
[ ∂
∂θ

lnπθ(a ∣o) ∞∑
t=0

γtr̂(ht,
∗
yt, at, yt)]
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prediction loss gradient

. (2)

As shown in (2), the gradient of the objective function
J(πθ) decomposes into a policy gradient and a negative
supervised prediction loss gradient.

We use RL-based techniques to estimate the policy gradient
in Eq. (2), focusing on two actor-critic methods: SAC [7]
and CrossQ [8]. To use SAC and CrossQ in the active
perception setting, we adjust three components:
1) The active perception setting is partially observed. Hence,

instead of a state st, the policy and the Q-networks receive
a trajectory of past observations o0∶t.

2) The presence of the prediction loss ℓπθ
must be consid-

ered during the training of the Q-networks, yielding

Lcritic = E
D

⎡⎢⎢⎢⎢⎣
1

2

⎛⎝Qθ(o0∶t, at) − ⎛⎝rt − ℓπθ
(∗yt, o0∶t)⤦

+ γ E
πθ

[Qθ̄(o0∶t+1, at+1)]⎞⎠⎞⎠
2⎤⎥⎥⎥⎥⎦ .

3) During the policy update, the policy gradient is aug-
mented by the prediction loss gradient.
For the remainder of this paper, we will refer to the
SAC variant as TAP-SAC and to the CrossQ variant as
TAP-CrossQ.
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Fig. 3: Final prediction accuracies over five runs for our methods
and the random baseline TAP-RND over the course of the training
on the Tactile MNIST benchmark. The metrics displayed here are
computed on the evaluation task, which contains objects unseen
during the training.

We assume that the sequence of past observations o0∶t
consists of images and scalar data. To efficiently process this
data in the policy and Q-networks, we use a Transformer on
top of a Vision Transformer to compute an embedding of the
observation sequence similar to [9]. We empirically found
that sharing these embeddings across Q-networks, action
policy, and prediction policy yields better results than training
individual representations for each of these components. An
overview of TAP is shown in Fig. 1.

III. EXPERIMENTS AND RESULTS

We evaluate TAP on the Tactile MNIST benchmark [5],
where an agent classifies 3D-printed digits by touch alone
(see Fig. 2). The agent explores a 12x12 cm plate using a
simulated GelSight sensor, taking up to 16 steps per episode.
Each step provides a new tactile observation, and the agent
predicts the digit’s label throughout the episode.

We compare TAP against a random exploration baseline
(TAP-RND), which moves the sensor randomly while training
the perception module. As a metric, we measure the final
prediction accuracy, which is the classification accuracy at the
final exploration step of each episode. As shown in Fig. 3, both
TAP methods achieve a final classification accuracy of 92%,
significantly outperforming TAP-RND (60%), highlighting
the importance of active exploration. Our RL-based approach
enables structured exploration, reducing the number of steps
required to make confident predictions.

IV. CONCLUSION AND FUTURE WORK

We presented TAP, a reinforcement learning-based ap-
proach to active tactile perception, leveraging transformer-
based architectures for joint policy and perception optimiza-
tion. Our experiments on the Tactile MNIST benchmark
demonstrate TAP’s ability to learn efficient exploration
strategies, achieving high classification accuracy.

Future work includes extending TAP to real-world ap-
plications, incorporating multi-modal sensor fusion (e.g.,
vision and touch), and improving sample efficiency through
pretraining techniques. Our results suggest that reinforcement
learning and transformer models hold promise for advancing
general-purpose active tactile perception in robotics.
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