
Learning of Non-Parametric Control Policies
with High-Dimensional State Features

Herke van Hoof‡ Jan Peters‡∗ Gerhard Neumann‡

‡TU Darmstadt, Computer Science Department. ∗MPI for Intelligent Systems.

Abstract

Learning complex control policies from high-
dimensional sensory input is a challenge for
reinforcement learning algorithms. Kernel
methods that approximate values functions
or transition models can address this prob-
lem. Yet, many current approaches rely on
instable greedy maximization. In this paper,
we develop a policy search algorithm that
integrates robust policy updates and kernel
embeddings. Our method can learn non-
parametric control policies for infinite hori-
zon continuous MDPs with high-dimensional
sensory representations. We show that our
method outperforms related approaches, and
that our algorithm can learn an underpow-
ered swing-up task task directly from high-
dimensional image data.

1 Introduction

Learning continuous valued control policies directly
from high-dimensional sensory input presents a ma-
jor obstacle to applying reinforcement learning (RL)
methods effectively in realistic settings. Current ap-
proaches for continuous domains typically rely on
human-designed features for value function approxi-
mations or specialized parametric policies [Baird and
Moore, 1999, Peters et al., 2010], which is impractical
for high dimensional sensory inputs.

Furthermore, many methods require a transition
model, which, in the general case, is unknown. A
recent approach [Grünewälder et al., 2012b] embeds
the transition distributions in a reproducing kernel
Hilbert space (RKHS). Rather than estimating den-
sities, this technique directly estimates expected val-
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ues efficiently [Song et al., 2013, Grünewälder et al.,
2012b]. RKHS have the additional benefit that they
implicitly define a (possibly infinite) features space,
reducing the effort of defining features.

Such RKHS embeddings have been successfully used
in value-function methods [Grünewälder et al., 2012b,
Nishiyama et al., 2012]. These methods update the
policy greedily with respect to the learned value func-
tion, which can cause instabilities in the learning
progress as the learned value function is only an ap-
proximation.

Such instabilities can be avoided by bounding the in-
formation loss between subsequent state-action distri-
butions [Peters et al., 2010]. In discrete finite horizon
problems, such a bound has been proven to have op-
timal regret in an adversarial MDP [Zimin and Neu,
2013]. Empirically, it yields good results in real-world
continuous MDPs [Kupcsik et al., 2013, Lioutikov
et al., 2014, Daniel et al., 2013]. However, methods
based on this insight have so far required linear ap-
proximation using hand-crafted features, and are not
applicable to general non-linear MDPs.

In this paper, we employ RKHS embeddings to find
bounded policy updates according to the information-
theoretic objective proposed in [Peters et al., 2010].
This method contributes a more stable, effective learn-
ing progress for non-parametric reinforcement learn-
ing. Simultaneously, it avoids the use of hand-crafted
features in non-linear continuous systems, by extend-
ing the problem formulation to infinite feature spaces.
Furthermore, our method allows using non-parametric
policies, which is not possible with most policy gradi-
ents updates.

The resulting robust RL method performs well in con-
tinuous state-action spaces with high-dimensional sen-
sory representations. In our experiments, we show that
our method outperforms relevant baselines on a reach-
ing task and an underpowered swing-up task. We also
show it is applicable to a task with high dimensional
pixel images state representation.
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1.1 Notation and Background

In a Markov decision process (MDP), an agent in
state s selects an action a ∼ π(a|s) according to
a (possibly stochastic) policy π and receives a re-
ward Ra

s ∈ R. We will assume continuous state-
action spaces: s ∈ S = RDs , a ∈ A = RDa . If
the Markov decision process is ergodic, for each pol-
icy π, there exists a stationary distribution µπ(s)
such that

´
S
´
A P

a
ss′π(a|s)µπ(s)dads = µπ(s′), where

Pa
ss′ = Pr(s′|a, s). The goal of a reinforcement learn-

ing agent is to choose a policy such that the joint state-
action distribution p(s,a) = µπ(s)π(a|s) maximizes
the average reward J(π) =

´
S
´
A π(a|s)µπ(s)Ra

sdads.

To avoid overly greedy optimization and instabilities
in the learning process, the Kullback-Leibler (KL) di-
vergence of a sampling distribution q(s,a) from the
state-action distribution p(s,a) can be bounded [Pe-
ters et al., 2010], leading to the optimization problem

max
π,µπ

J(π) = max
π,µπ

¨
S×A
π(a|s)µπ(s)Ra

sdads, (1)

s.t.

¨
S×A
π(a|s)µπ(s)dsda = 1, (2)

∀s′
¨
S×A
Pa
ss′π(a|s)µπ(s)dads = µπ(s′), (3)

KL(π(a|s)µπ(s)||q(s,a)) ≤ ε, (4)

where Eqs. (1-3) specify the general reinforcement
learning objective (1) with the constraints that
π(a|s)µπ(s) is a distribution (Eq. 2) and µπ is the
stationary distribution under π(a|s) (Eq. 3). Equa-
tion (4) specifies the additional bound on the KL di-
vergence, where

KL(p(x)||q(x)) =

ˆ
p(x) log(p(x)/q(x))dx.

Reference distribution q is usually set to the state-
action distribution induced by previous policies, with
the initial explorative policy a wide, uninformed dis-
tribution. As learning progresses, the policy typically
slowly converges towards a deterministic policy.

As we typically know Ra
s only for a sequence of sam-

ples {(s1,a1), . . . (sn,an)}, the expectations are ap-
proximated by the sample mean of their argument.
The solution to the optimization problem obtained
through Lagrangian optimization1 is given by

π(ai|si)µπ(si) ∝ q(si,ai) exp

(
δ(si,ai, V )

η

)
,with

δ(s,a, V ) = Ra
s + Es′ [V (s′)|s,a]− V (s) (5)

1The corresponding derivation is given in Appendix 1.

where V (s) and η denote Lagrangian multipliers, and
δ denotes the Bellman error [Peters et al., 2010]. These
multipliers are obtained through minimization of the
dual function

g(η, V ) = ηε+ η log

(
n∑
i=1

1

n
exp

(
δ(si,ai, V )

η

))
,

(si,ai) ∼ q(s,a) (6)

The Lagrangian multiplier V (s) is a function of s and
resembles a value function. To calculate the Bellman
error δ, the transition distribution is required. As this
distribution is generally not known, δ needs to be ap-
proximated. The dual function (6) depends implicitly
on reference distribution q through the samples.

1.2 Problem Statement

In this paper, we aim at developing a method ap-
plicable in continuous state-action MDPs with high-
dimensional state representations. We assume hand-
coded feature functions and parametric policies are not
available and the transition and reward models of the
MDP are unknown. Furthermore, we will concentrate
on infinite-horizon problems.

2 Using Conditional Embeddings to
solve Continuous MDPs

In this section, we explain the methods needed to sta-
bly learn non-parametric controllers. First, we show
how to use conditional embeddings to approximate the
expectated values in Eqs. (1)-(4) and we show how to
solve this optimization problem with respect to a non-
linear function V . After that, we discuss how to relax
the assumption of ergodicity of the MDP by transform-
ing the average reward MDP in a discounted reward
MDP. Solving the optimization problem results in a
new optimal policy that is, however, only defined on
the current set of samples. Therefore, we discuss how
the sample-based optimal policy can be generalized to
the entire state space. Finally, we will discuss how to
set the hyper-parameters of the different steps of our
method without manual tuning.

2.1 Solving the Dual Problem

To solve Eqs. (1)-(4), we need to minimize the dual
problem in (6): (µ∗, V ∗) = arg max g(η, V ). We will
assume that V ∗ ∈ F for some reproducing kernel
Hilbert space (RKHS) F with kernel ks, i.e., we as-
sume V ∗ is of the form

V ∗ =
∑
s̃∈S̃

αs̃ks(s̃, ·), (7)
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for some set S̃ and scalars α. The kernel ks implicitly
defines a (possibly infinite dimensional) feature map
φ(s) = ks(s, ·). The implicit definition has the advan-
tage that we do not need to explicitly specify a feature
vector for V ∗. Kernels are in general easier to define
than feature vectors as the complexity of V ∗ can grow
with the amount of training data.

Embedding the transition model. Since the
transition model Pa

ss′ is unknown, we need to approx-
imate Es′ [V (s′)|s,a]. To do so, we embed the condi-
tional Pa

ss′ in the RKHS F , i.e., we represent Pa
ss′ by

the expected implicit features µs′|s,a = Es′ [φ(s′)|s,a].
Using such embeddings avoids estimating the joint
density and leads to good results even for high-
dimensional data [Song et al., 2013]. They also ren-
der calculations of expected values over a function in
F straightfoward without numerical integration [Song
et al., 2013]. In order to learn the conditional oper-
ator, we will use a kernel over the state-action space
of the form ψ(s,a) = ks(s, ·)ka(a, ·). Given a sam-
ple {(s1,a1, s

′
1), . . . , (sn,an, s

′
n)}, the empirical condi-

tional embedding is defined as

µ̂S′|s,a = ĈS′|S,Aψ(s,a) =

n∑
i=1

βi(s,a)φ(s′i), (8)

ĈS′|S,A = Φ(Ksa + λI)−1ΨT , (9)

where ĈS′|S,A is a learned conditional operator
that allows the computation of embedding strengths
β(si,ai) = (Ksa + λI)−1ksa(si,ai) [Song et al., 2013,
Grünewälder et al., 2012a,b]. In this equation, Ψ =
[ψ(s1,a1), . . . ,ψ(sn,an)], Φ = [φ(s′1), . . . ,φ(s′n)],
Ksa = ΨTΨ and ksa(s,a) = ΨTψ(s,a).2

Functional form of V . Since ks is a reproducing
kernel and V ∈ F , the expected value of V can be
approximated using the embedded distribution [Song
et al., 2013, Grünewälder et al., 2012a,b], i.e.,

Es′ [V (s′)|s,a] =
〈
V, µ̂S′|s,a

〉
F

=

n∑
i=1

βi(s,a)V (s′i).

In the dual g (Eq. 6), V is now only evaluated at
sampled si and s′i. Since we assumed V ∈ F , the
generalized representer theorem [Schölkopf et al., 2001]
tells us that there is at least one optimum of the form
(7) with S̃ the set of sampled states3. Consequently,
Es′|s,a[V (s′)]− V (s) = αT K̃sβ(s,a)− αTks(s), where

K̃s is the Gram matrix with entries [K̃s]ji = ks(̃sj , s
′
i),

and [ks(s)]j = ks(s̃j , s).

2This means [Ksa]ij = ks(si, sj)ka(ai,aj), [ksa(s,a)]i =
ks(si, s)ka(si,a).

3A sketch of the proof following [Schölkopf et al., 2001]
is given in Appendix 4.

Finding a numerical solution. The dual problem
can now be stated in terms of η and α, with

g(η,α) = ηε+η log

(
n∑
i=1

1

n
exp

(
δ(si,ai,α)

η

))
, (10)

δ(s,a,α) = Ra
s +αT

(
K̃sβ(s,a)− ks(s)

)
, (11)

This objective is convex in α. Since the analytic gra-
dient and Hessian for this objective are known4, we
employ second order optimization methods to find the
optimal η and α. We employ an iterative optimiza-
tion scheme similar to the one described by Lioutikov
et al. [2014], that is, we sequentially optimize for ei-
ther η or α until the constraints are fulfilled within an
acceptable tolerance.

If we choose kernels ks(si, sj) = φ̃(si)
T φ̃(sj) and

ksa((si,ai), (sj ,aj)) = I((si,ai) = (sj ,aj)), we obtain
the original REPS formulation by Peters et al. [2010]
as a special case. In these equations, I is the indicator
function and φ̃ is a set of hand-crafted features.

2.2 Ensuring a Stationary Distribution

The REPS formulation [Peters et al., 2010] assumes
the existence of a stationary distribution. However,
not all MDPs have a stationary distribution for every
policy π (e.g., random walks). Steady-state behavior
might not be realizable for real systems that need to
be started and stopped; and transient behavior, such
as the swing-up of a pendulum, might be of greater
interest than steady-state behavior.

We can ensure the system has a stationary distribution
that includes such transients by resetting the system
with a probability 1−γ at each time step. The system
is then set to a state from the initial state distribution
p1(s). In this case, the expected value of V at the next
time step is given by

E[V (s′)|s,a] =

ˆ
S
γPa

ss′V (s′) + (1− γ)p1(s′)V (s′)ds′

= γαT K̃sβ + (1− γ)µ̂S1, (12)

where µ̂S1 is the empirical (observed) embedding of
the initial state distribution and Pa

ss′ are the transition
probabilities of the original MDP.

This reset procedure enables learning by removing the
impracticable requirement of infinite rollout length. In
this way, we obtain a discounted setting similar to that
used in RL methods that employ discount factors.

4The dual and its partial derivatives and Hessians are
given in Appendix 2.
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2.3 Generalizing the Sample-Based Policy

The parameters resulting from the optimization, η
and α, can be inserted back in (10) to yield the
desired probabilities {p(s1,a1), . . . , p(sn,an)} at the
sampled (s,a) pairs. Conditioning on the current state
yields the policy to be followed in the next iteration.
However, since states and actions are continuous, we
need to generalize from these weighted samples to
nearby data points. To this end, we fit the param-
eters Ω of a generalizing stochastic policy π̃(a|s; Ω) by
minimizing the expected Kullback-Leibler divergence
Es [KL(π(a|s)||π̃(a|s))] of the generalizing policy from
the sample-based policy π(a|s)5. This minimization
results in a weighted maximum likelihood estimate of
Ω, with weights wi = p(si,ai)/q(si,ai).

The advantage of this reduction to a weighted maxi-
mum likelihood estimate is that many types of policies,
including non-parametric policies, can be fitted. Due
to its flexibility and its good performance on many
practical problems, we use Gaussian process (GP) poli-
cies π̃ in our experiments. We use the cost-sensitive
GPs introduced in the cost-regularized kernel regres-
sion (CrKR) algorithm [Kober et al., 2011]. CrKR
modulates the regularization parameter with the in-
verse of the desirability of each data point, which we
define to be the normalized weights wi/maxi wi ob-
tained for each sample. The new policy

π̃(a|s)=N (µ(s), σ2(s)), µ(s)=ks(s)T (Ks + λD)−1A,

σ2(s) = k + λ− ks(s)T (Ks + λD)−1ks(s),

where k = k(s, s), ks(s) = φ(s)TΦ, Ks = ΦTΦ,
A = [a1, . . . ,an]T , D is a diagonal matrix with Dii =
(wi/maxi wi)

−1, and λ is a regularization parameter
that is set with other free kernel parameters using
weighted maximum likelihood as discussed before. Al-
gorithm 1 shows how the different steps of our ap-
proach fit together.

2.4 Hyperparameter Optimization

The computation of the conditional operator has open
hyperparameters, i.e., the hyperparameters of the ker-
nels over s and a as well as the regularization param-
eter λ. We set λ and the hyperparameters of kernel
ka through minimizing the cross-validation objective∑n
i=1

∥∥φ(s̃i)
Tφ(s′i)− φ(s̃i)

TCψ(si,ai)
∥∥2 , which min-

imizes the difference between actual and predicted em-
bedding strengths. This objective is based on the
cross-validation objective proposed by [Grünewälder
et al., 2012a], but exploits the fact that the embed-
ding will only be evaluated at known functions φ(s̃).

5The optimization problem and its reduction to a max-
imum likelihood estimate are given in Appendix 3.

Algorithm 1 REPS with RKHS embeddings

for i = 1, . . . ,max iteration do
generate rollouts according to π̃i−1
minimize kernel-based dual:
η∗,α∗ ← arg min g(η,α) Eq. 10

calculate kernel embedding strengths:
βj ← (Ksa + λI)−1ksa(sj ,aj) Sec. 2.1

calculate kernel-based Bellman errors:
δj ← Rj +α∗T

(
K̃sβj − ks(sj)

)
Eq. 11

calculate the sample weights:
wj ← exp(δj/η

∗) Sec. 2.3
fit a generalizing non-parametric policy:
π̃i(a|s) = N (µ(s; w), σ2(s; w)) Sec. 2.3

end for

The hyperparameters of ks, the kernel for the predicted
variable s′, cannot be tuned this way, since trivial so-
lutions exist with essentially constant φ(s′) by setting
the bandwidth is very high. Instead, we set the hyper-
parameters of ks through minimization of the mean
squared Bellman error in a cross-validation procedure.
We choose this objective since minimizing the (resid-
ual) Bellman error is a common objective for feature
selection [Parr et al., 2008] in reinforcement learning.

For the Gaussian process policy, we optimize the kernel
hyperparameters separately. The optimization objec-
tive is the weighted marginal likelihood, with weights
wi as discussed in Sec. 2.3. This objective is maxi-
mized in a two-fold cross-validation procedure.

3 Related Work

RKHS embeddings have been used to model transition
dynamics in observable [Grünewälder et al., 2012b]
and partially observable [Boots et al., 2013, Nishiyama
et al., 2012] domains. Subsequently, the learned tran-
sitions models have been used in reinforcement learn-
ing methods [Grünewälder et al., 2012b, Nishiyama
et al., 2012]. These methods consider only discrete ac-
tion sets and use greedy maximization with respect to
approximated value functions. Consequentially, these
methods do not attempt to find a policy that explores
the MDP in the next iteration.

Rawlik et al. [2013] presents a method that consid-
ers continuous-time systems with continuous actions.
This method assumes the environments injects observ-
able control noise and that the system is control-affine.
Another non-parametric method, proposed by Pazis
and Parr [2011], assumes the value function is Lip-
schitz. This method is model free and only works for
deterministic dynamics.

The actions chosen by these methods are deterministic,
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such that if exploration of the state space is required
heuristics such as ε-greedy or a softmax policy should
be used (in the work of Rawlik et al. [2013], a stochas-
tic environment provides explorative excitation). In
[Grünewälder et al., 2012b, Nishiyama et al., 2012] it
is assumed that the state-action space can be sampled
uniformly, which is unrealistic for real systems.

Policy-search methods can be applied to address these
shortcomings, by iteratively improving a policy. Bag-
nell and Schneider [2003] developed a policy gradient
method using RKHS embedding of a desirability func-
tion that defines a policy. However, their approach
is restricted to discrete actions, and as a model-free
method, it cannot exploit learnable system dynamics

Deisenroth and Rasmussen [2011] describe a model-
based iterative method. They explicitly marginalize
the uncertain model to avoid over-greedy optimization.
However, their method requires the reward function to
be known and to be of squared exponential form, and
does not address the exploration problem.

REPS is an alternative that has been shown to work
well on a variety of problems [Lioutikov et al., 2014,
Kupcsik et al., 2013, Peters et al., 2010, Daniel et al.,
2013]. These approaches assume the Lagrangian mul-
tiplier V is linear in manually-defined features. We
generalize this assumption by requiring V to be a
member of any RKHS, allowing implicit infinite fea-
ture representations. In contrast to these approaches,
our method can naturally handle non-parametric poli-
cies. Another alternative to manual feature design for
high-dimensional states is to learn features based on
a reconstruction objective, as was demonstrated by
[Mattner et al., 2012]. In that work, the additional
learning step made learning slower.

So far, work on learned transition models for REPS
has been limited. The transition dynamics have been
approximated by deterministic single-sample outcomes
[Daniel et al., 2013, Peters et al., 2010] which only
works well for deterministic environments, or by time-
dependent linear models [Lioutikov et al., 2014]. Gaus-
sian process models have been used in the bandit set-
ting [Kupcsik et al., 2013] to learn a simulator that
predicts the outcome of new rollouts.

In our experiments, we compare the proposed
method to model-free and feature-based variants of
REPS. Furthermore, we compare our method to the
non-parametric value-function methods proposed by
Grünewälder et al. [2012b] and Pazis and Parr [2011].

4 Experiments

We evaluate our contribution on a reaching task, as
well as two variations of the underpowered pendulum

swing-up task. First, we consider a standard version
of the task where the agent has access to the angle θ
and angular velocity θ̇ directly. In a second version the
robot has access only to rendered images, resulting in
a high-dimensional input space. In this section we will
first discuss elements of our set-up that are the same
across tasks, and then discuss implementation specifics
and results for each tasks separately.

4.1 Experiment Set-up

We do not consider it possible for our agent to explore
by choosing arbitrary state-action pairs. Instead, as
shown in Alg. 1, from an initial state distribution our
agent explores using its stochastic policy. After every
10 rollouts, the model learner and the policy of the
agents are updated. To bootstrap the model and the
policy, the agent is given 30 rollouts using a random
exploratory policy initially. To avoid excessive com-
putations, we include a simple forgetting mechanism
that only keeps the latest 30 rollouts at any time6.
As each roll-out contains 49 samples on expectation in
the larger tasks, most computations are performed on
approximately 1500× 1500 matrices.

After each update, the learning progress is evaluated
by running the learned policy on 100 rollouts with a
fixed random seed. This data is not used for learning.

In our experiments, for every method, we performed 10
trials, each consisting of 20 iterations so that 220 roll-
outs were performed per trial (30 initial rollouts plus
10 per iteration). The model and policy are refined
incrementally in every iteration.

4.2 Comparative Methods

We compared multiple methods to learn the tasks. On
the one hand, we consider the non-parametric value-
function based methods introduced by Grünewälder
et al. [2012b] and Pazis and Parr [2011]. We also
compare to versions of REPS that use the sample-
based model approximation introduced by Daniel et al.
[2013], and one that uses a fixed feature set.

Sample based model. Since REPS only needs
Es′ [f(s′)|s, a] at observed state-action pairs (si, ai), if
the system is deterministic this expectation is simply
f(s′i) at the observed values for si. In other systems,
this sample-based method is used as approximation.

Feature based REPS Instead of the non-
parametric form of V assumed in this paper, we can
follow earlier work and define a fixed feature basis [Pe-

6This means the q distribution is a mixture of the pre-
vious three state-action distributions in our experiments.
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ters et al., 2010, Daniel et al., 2013]. We choose to use
a similar number of the same radial basis functions
used in the non-parametric method, but distributed
according to a grid over the state-action space.

Approximate value iteration. In this approach
by Grünewälder et al. [2012b], the value function
is assumed to be an element of the chosen RKHS.
The maximization of the Q function requires dis-
cretizing a, for which we choose 25 uniform bins in
the allowable range. A deterministic policy selects
a∗ = arg maxQ(si, ·), but this policy does not explore.
To obtain an exploration-exploitation trade-off we re-
place the maximum by the soft-max operator a∗ ∝
exp(c.Q(si, ·)/stdev(Q(si, ·))). The free parameter c
specifies the greediness of the exploration/exploitation
trade-off. In an on-policy scheme, the new policy is
used to obtain samples for the next iteration.

As a comparison to this on-policy scheme, we also com-
pare using a grid of state-action pairs as training data.
For a dense grid, this method has a richer input than
all other methods, as they start with uninformed roll-
outs from the initial-state distribution.

Non-parametric approximate linear program-
ming. Pazis and Parr [2011] introduce a non-
parametric method, NPALP, that assumes the value
function is Lipschitz. This allows the RL problem to
be formalized as a linear program. A greedy policy is
obtained that is optimal if all state-action pairs have
been visited. Since this is infeasible in practice, we
add exploration by adding Gaussian distributed noise
to the action in a fraction ε of selected actions.

4.3 Reaching Task Experiment

In the reaching task, we simulate a simple two-link
planar robot. We assume a perfect inverse dynam-
ics model, so the actions directly set accelerations
of the two joints. Each link is of unit length and
mass, and the system is completely deterministic. The
robot gets negative reinforcement according to the
square of the applied action and of the distance of its
end-effector to the Cartesian position xdes = [0.5, 0]:
r(s,a) = 10−4||a||22+||x−xdes||22. Note that actions are
two dimensional and states are four dimensional (joint
positions and velocities). The robot starts stretched-
out with the end-effector at [0, 2]. The maximum ap-
plied acceleration is 50ms2. We use γ = 0.96.

We use the commonly used exponential-squared
(or Gaussian) kernel for angular velocities
θ̇ and actions. This kernel is defined as
kes(xi,xj) = exp(−(xi − xj)

TD(xi − xj)) (with
D a diagonal matrix containing free parameters).
However, for the angles θ we need a kernel that

Figure 1: Learning progress of the different meth-
ods. Our relative entropy method using the RKHS-
embeddings outperforms the other learners. Error bars
show twice the standard error of the mean. The value-
iteration method does not depend on roll-outs, its per-
formance is shown for comparison.

represents its periodicity. We chose the kernel

kp(xi, xj) = exp(−
∑
d sin((x

(d)
i − x

(d)
j )/(2π))2/[l]2d),

with l free parameters. Consequently, our
complete kernel k((θi, θ̇i, ai), (θj , θ̇j , aj)) =

kp(θi,θj)kse(θ̇i, θ̇j)kse(ai, aj).

Feature-based REPS needs a grid over the complete
state-action space. Because of practical difficulties
with the six-dimensional state-action space, we omit-
ted this method. The exploration parameter ε of the
NPALP method was set to 0.1, with the standard de-
viation of Guassian noise added set to 30Nm2. The
Lipschitz constant was set to 1 with the velocity di-
mensions scaled by 1/5 for calculating distances. The
exploration parameter c of the value iteration method
was set to 1.5. These values were manually tuned. For
REPS, we use a KL-bound ε of 0.5 in our experiments.

Results of the reaching task The results of the
reaching task are shown in Figure 1. As this task is
deterministic, the sample-based model is optimal and
provides a upper bound to the performance we can
expect to get. Since REPS with RKHS embeddings
needs to iteratively learn the model, its convergence is
slower. After inspection of individual trials, the wide
variance seems to be caused by occasional failures to
find good hyperparameters for the state-action kernel.

The baseline methods NPALP and value iteration us-
ing RKHS embeddings obtain good performance after
the couple of iterations, but are not suitable for iter-
ative learning as they stop improving after that. The
grid based value iteration scheme fails in this case: due
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Figure 2: Learning progress of the different meth-
ods. Our relative entropy method using the RKHS-
embedding of the transition model outperforms the
other model learners we considered. Error bars show
twice the standard error of the mean.

to memory limitations the maximum grid size we could
use was [5 × 5 × 5 × 5 × 2 × 2] in the 6-dimensional
space, which seems to be insufficient to learn the task.

4.4 Low-Dimensional Swing-up Experiment

In this experiment, we simulate a pendulum with a
length of l = 0.5m and a mass m = 10kg distributed
along its length. A torque a can be applied at the
pivot. The pendulum is modeled by the dynamics
equation θ̈ = (glm sin θ + a − kθ̇)/(ml2/3), where
k = 0.25Ns is a friction coefficient and g = 9.81 is
the gravitational constant. The control frequency is 20
Hz: every 0.05s the agent gets a reward and chooses a
new action. The maximum torque that can be applied
is 30Nm, which prevents a direct swing-up from the
downwards position. Additive noise is applied to the
controls with a variance of 1/dt, resulting in a standard
deviation of about 4.5Nm per time step. The reward
function we use is r(s, a) = −10θ2 − 0.1θ̇2 − 10−3a2,
where θ is mapped to [−0.5π, 1.5π) to differentiate the
rewards of clockwise and counterclockwise swing-ups.
We use a reset probability of 0.02 (γ = 0.98).

The algorithms are given the angle θ and the angu-
lar velocity θ̇ directly, so that the state s = [θ, θ̇]T .
The kernels used are the same as in the reaching task
experiment (Sec. 4.3). The NPALP method was not
designed for stochastic systems and is consequently
omitted. We set the grid size for feature-based REPS
to [10× 10× 10] and for the value-iteration method to
[19×11×11]. The greediness parameter c for on-policy
value-iteration was set to 2 after manual tuning.

0 π 2π 3π 4π

−10

−5

0

5

10

15

angle

a
n
g
u
la

r 
v
e
lo

c
it
y

 

 

−30

−20

−10

0

10

20

30

Figure 3: Mean of the learned stochastic policy. Over-
layed are 15 trajectories starting at the x-axis between
0 and 2π. Most rollouts reach the desired inverted
pose, possibly after one swing back and forth. One
rollout overshoots and makes a full rotation before sta-
bilizing the pendulum.

Results of the low-dimension swing-up. A com-
parison between the methods we implemented is shown
in Fig. 2. The value iteration methods starts out
competitively, but fails to keep improving the policy.
Large variance indicates the learning process is un-
stable. The bounded policy update in REPS makes
learning progress smooth by limiting information loss,
and trades off exploration and exploitation.

The sample-based model learner performs consider-
ably worse in this experiment, as it cannot account for
stochastic transitions. The variant with fixed features
performs well initially, but in later iterations the non-
parametric method focuses its representative power on
frequently visited parts of the state-space, thus per-
forming better.

The grid-based value iteration method works well. The
policy learned by our method, shown in Fig. 3, some-
times overshoots the inverted position, which the grid
based value iteration avoids. However, providing the
grid is only possible in simulation, as without an ex-
isting controller it is generally not possible to start the
dynamical system with arbitrary position and velocity.

4.5 High-Dimensional Swing-up Experiment

In a more challenging version of the swing-up, the
agent only has access to images of the pendulum. We
render an image of the pendulum in its current state,
as well as a difference image between visual represen-
tations of the pendulum in its current- and previous
state (to provide a notion of angular velocity).

The rendered images are blurred with a Gaussian filter
with a standard deviation of 20% of the image width
to enhance the generalizability. Subsequently, both
images are resized to 20 × 20 pixels, to obtain a 800
dimensional representation, as illustrated in Fig. 4.
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Figure 4: Illustration of high-dimensional features.
First row: Low-resolution images of the pendulum are
rendered to yield the first 400 dimensions of the fea-
ture vector. Second row: the difference images form
the next 400 dimensions of the feature vector.

For many reinforcement learning algorithms such high-
dimensional continuous state-spaces would be infeasi-
ble, as using generic features [Lagoudakis and Parr,
2003] yields impracticable feature dimensions on 800-
dimensional observations. For example, there are 8002

second-degree polynomials, or 2800 radial basis func-
tions on the smallest possible grid. All comparative
methods that performed reasonably rely on a grid, so
we will compare our method only to our solution from
the previous experiment.

We choose squared-exponential kernels for all dimen-
sions. To reduce the number of hyperparameters, we
constrain the bandwidth on all pixels per image to
be the same. So, the number of automatically tuned
model parameters is 4 (including one for the kernel on
actions, which is again a squared exponential).

Results for the high-dimensional swing-up.
The results of the evaluation of our approach, together
with the sample-based baseline method, are shown in
Fig. 5. We see that the learning progress is a bit slower
than progress on the low-dimensional task. However,
the final solution is equally good.

Generally, given a kernel that yields appropriate sim-
ilarity values, many different representations could be
used: in the end, the algorithm only performs opera-
tions based on those simililarity values. Some pixels
will never change their value. This is not problematic,
as stationary kernels such as the squared exponential
are not influenced by these features.

5 Discussion and Future Work

In this paper, we have developed a policy search
method with smooth, robust updates to solve continu-
ous MDPs. This method uses learned non-parametric

Figure 5: Learning progress of our method on the
underpowered pendulum swing-up directly from joint
values and from rendered images. Shaded area is twice
the standard error of the mean.

models and allows the use of non-parametric policies,
avoiding hand-crafted features. By embedding the
conditional transition distribution, expectations over
functions of the next state can be calculated without
density estimation. The resulting predictions are ro-
bust even in high-dimensional state spaces.

Many tasks concerning sensory data hava a high
extrinsic dimensionality, but are intrinsically low-
dimensional. Kernel-based algorithms perform all op-
erations on kernel values, so they are invariant to the
extrinsic dimensionality. Our kernel-based RL algo-
rithm can be thus be applied to such tasks without
the separate dimension reduction step used in [Mat-
tner et al., 2012].

We show the resulting algorithm to be able to outper-
form other algorithms on a reaching task and a pendu-
lum swing-up task with control noise. Our algorithm
does this using only on-policy samples, i.e., without
the need to sample arbitrary state-action pairs. We
also show the algorithm is able to solve the task using
only rendered images, with an 800-dimensional repre-
sentation of the state space.

In future work, we want to investigate long-term plan-
ning using RKHS embeddings and investigate syner-
gies between the optimization problem and the gen-
eralizing policy. We will also adress hyperparameter
optimization in systems with multi-dimensional con-
trols, that currently does not always yield desired re-
sults. We plan to apply our algorithm on real-world
robotic tasks, and investigate how to exploit structural
knowledge about dynamical systems in such tasks.
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Appendix

Herke van Hoof‡ Jan Peters‡∗ Gerhard Neumann‡
‡TU Darmstadt, Computer Science Department. ∗MPI for Intelligent Systems.

1 Derivation of REPS Solution

We start out with the constrained optimization prob-
lem

max
π,µπ

J(π) = max
π,µπ

¨
A×S
π(a|s)µπ(s)Ra

sdads (1)

s.t.

¨
A×S
π(a|s)µπ(s)dads = 1 (2)

∀s′
¨
A×S
π(a|s)µπ(s)Pa

ss′dads = µπ(s
′)(3)

¨
A×S
π(a|s)µπ(s) log

π(a|s)µπ(s)
q(s,a)

dads ≤ ε. (4)

For every constraint, we introduce a Lagrangian mul-
tiplier. Because (3) represents a continuum of con-
straints, we integrate over the value of this constraint
multiplied by a state-dependent Lagrangian multiplier
V (s). We will write p(s,a) = π(a|s)µπ(s) to keep the
exposition brief. Therefore, the Lagrangian

L(p, η, V, λ) =

¨
A×S
p(s,a)Ra

sdads

+ λ

(
1−
¨
A×S
p(s,a)dads

)
+

ˆ
S

V (s′)

(¨
A×S
p(s,a)Pa

ss′dads− µπ(s
′)

)
ds′

+ η

(
ε−
¨
A×S
p(s,a) log

p(s,a)

q(s,a)
dads

)
.

The Lagrangian can be re-shaped, using µπ(s) =´
A
p(s,a)da, in the more convenient form

L(p, η, V, λ) = λ− Ep(s,a) [V (s)] + ηε

+Ep(s,a)
[
Ra

s − λ+

ˆ
S

V (s′)Pa
ss′ds

′ − η log p(s,a)
q(s,a)

]
.

To find the optimal p, we take the derivative of L w.r.t.
p and set it to zero

0 =
∂L

∂p(s,a)

=Ra
s − λ+

ˆ
S

V (s′)Pa
ss′ds

′ − η log p(s,a)
q(s,a)

− η − V (s)

therefore,

η log
p(s,a)

q(s,a)
= Ra

s − λ+

ˆ
S

V (s′)Pa
ss′ds

′ − η − V (s)

p(s,a) =q(s,a) exp

(Ra
s −
´
S
V (s′)Pa

ss′
ds′ − V (s)

η

)
· exp

(
−λ− η
η

)
∝q(s,a) exp

(Ra
s −
´
S
V (s′)Pa

ss′
ds′ − V (s)

η

)
.

The function V (s) resembles a value function, so that
δ(s,a, V ) = Ra

s −
´
S
V (s′)Pa

ss′
ds′ − V (s) can be identi-

fied as a Bellman error. Since p(s,a) is a probability
distribution we can identify exp (−λ/η − 1) to be a
normalization factor

Z−1 =

(¨
A×S

q(s,a) exp (δ(s,a, V )/η) dads
)−1

=
(
Eq(s,a) exp (δ(s,a, V )/η)

)−1
.
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2 The Dual and its Derivatives

We can re-insert the state-action probabilities in the
Lagrangian to obtain the dual

g(η, V, λ) =λ+ ηε

+ Ep(s,a)
[
δ(s,a, V )− λ− η log p(s,a)

q(s,a)

]
=λ+ ηε+ Ep(s,a) [−λ+ λ]

+ Ep(s,a) [δ(s,a, V )− δ(s,a, V ) + η]

=λ+ ηε+ Ep(s,a)η dads
=λ+ ηε+ η = ηε+ η log(Z)

=ηε+ η log
(
Eq(s,a) exp (δ(s,a, V )/η)

)
,

where we used the identity

exp (−λ/η − 1) = Z−1

λ+ η = η log(Z).

The expected value over q can straightforwardly be ap-
proximated by taking the average of samples 1, . . . , n
taken from q. Note that λ and q do not appear in the
final expression.

g(η, V ) = ηε+ η log

(
1

n

n∑
i=1

exp (δ(si,ai, V )/η)

)
.

When employing the kernel embedding, the Bellman
error is written as

δ(si,ai,α) = Rai
si +αT (Kβ(si,ai)− ks(si)).

We define

wi =
exp (δ(si,ai,α)/η)∑n
i=j exp (δ(sj ,aj ,α)/η)

to keep equations brief and readable. The partial
derivatives can be written as:

∂g(η,α)

∂η
= −1

η

n∑
i=1

wiδ(si,ai,α) + ε

+ log

(
1

n

n∑
i=1

exp (δ(si,ai,α)/η)

)
,

∂g(η,α)

∂α
=

n∑
i=1

wi (Kβ(si,ai)− ks(si)) ,

and furthermore, for the Hessian we obtain

∂2g(η,α)

∂η∂η
=

1

η

n∑
i=1

wi (δ(si,ai,α))
2

− 1

η

(
n∑
i=1

wiδ(si,ai,α)

)2

∂2g(η,α)

∂α∂αT
= −1

η

n∑
i=1

wi (Kβ(si,ai)− ks(si))

·
n∑
i=1

wi (Kβ(si,ai)− ks(si))
T
+

n∑
i=1

wi
η

(Kβ(si,ai)−ks(si)) (Kβ(si,ai)−ks(si))
T
,

∂2g(η,α)

∂η∂α
= −1

η

n∑
i=1

wi (Kβ(si,ai)− ks(si))

+

n∑
i=1

wi
η
δ(si,ai,α)

n∑
i=1

wi (Kβ(si,ai)− ks(si))

+
1

η

n∑
i=1

wi (Kβ(si,ai)− ks(si))

− 1

η

n∑
i=1

wiδ(si,ai,α) (Kβ(si,ai)− ks(si))

.
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3 Fitting a Generalizing Policy to
State-Action Samples

To fit a generalizing policy π̃(a|s;θ) to the samples-
based policy p(si,ai) = π(ai|si)µπ(si) (defined only
on samples i ∈ {1, . . . , n}), we minize the expected
Kullback-Leibler divergence

θ∗ = argmin
θ

Eµπ(s) KL(π(a|s)||π̃(a|s))

=

ˆ
S

µπ(s)

ˆ
A

π(a|s) log π(a|s)
π̃(a|s;θ)

dads.

This is a standard objective for matching two distribu-
tions. Note that the alternative Kullback-Leibler di-
vergence KL(π̃(a|s)||π(a|s)) is undefined since π(a|s)
is 0 at most places. Since the contribution to the in-
tegral is 0 for any (s,a) /∈ {(s1,a1), . . . , (sn,an)}, we
can equivalently write:

θ∗ = argmin
θ

n∑
i=1

µπ(si)π(ai|si) log
π(ai|si)
π̃(ai|si;θ)

= argmin
θ

n∑
i=1

µπ(si)π(ai|si) log
1

π̃(ai|si;θ)

+

n∑
i=1

µ(si)π(ai|si) log(π(ai|si))

= argmax
θ

n∑
i=1

µπ(si)π(ai|si) log π̃(ai|si;θ)

where we used the fact that we can subtract terms
constant in θ and apply monotonously increasing func-
tions to the terms to be minimized without changing
the location of the minimum. Note that the final result
is simply a weighted maximum-likelyhood estimate of
θ. This result can be used to fit a parametric policy,
or, as we demonstrate in the main material, a non-
parametric policy to the weighted samples.

4 Optimization with Respect to V

In order to show that we can minimize the dual func-
tion g, we need to show that the optimal solution of
the value function has the following form

V ∗ =
∑
s̃∈S̃

αs̃ks(s̃, ·) (5)

We follow some steps in the proof of Schölkopf et al.
[2001]. They consider arbitrary functions c mapping
to R ∪ {∞} of the form

c((s1, y1, V (s1)), . . . , (sm, ym, V (sm))), (6)

which typically defines an error function of function
V (s) on the samples si with desired output yi. In our
case, we do not have desired output values yi for our
objective function. This is inconsequential as c can be
arbitrary, and so can be independent of all y values.

Any function V can be written as V =∑
s̃∈S̃ αs̃ks(s̃, ·) + v(s), where v(s) is an addi-

tional bias term. If V is constrained to be in the
Hilbert space defined by k, Schölkopf et al. [2001]
show that c is independent of the bias term v(s).
This means that for any optimal V ′ that is not of the
proposed form, there is a V ∗ of the proposed form
that has the same objective value which is obtained
by subtracting v(s) from V ′.

As the dual function g satisfies the conditions to cost
function c, for us this means that there is at least
one V ∗ optimizing g of the proposed form. Note
that it is inconsequential that the dual g also de-
pends on Langrangian parameter η. For any opti-
mum (η∗, V ′∗), if V ′∗ is not of the proposed form,
the projection V ∗ of V ′∗ on the proposed basis sat-
isfies g(η∗, V ′∗) = g(η∗, V ∗), so (η∗, V ∗) must be an
optimum as well.


