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Abstract. Deep learning has proven to be beneficial for complex tasks
such as classifying images. However, this approach has been mostly ap-
plied to static datasets. The analysis of non-stationary (e.g., concept
drift) streams of data involves specific issues connected with the tempo-
ral and changing nature of the data. In this paper, we propose a proof-
of-concept method, called Adaptive Deep Belief Networks, of how deep
learning can be generalized to learn online from changing streams of
data. We do so by exploiting the generative properties of the model to
incrementally re-train the Deep Belief Network whenever new data are
collected. This approach eliminates the need to store past observations
and, therefore, requires only constant memory consumption. Hence, our
approach can be valuable for life-long learning from non-stationary data
streams.
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1 Introduction

Machine learning typically assumes that the underlying process generating the
data is stationary. Moreover the dataset must be sufficiently rich to represent this
process. These assumptions do not hold for non-stationary environments such as
time-variant streams of data (e.g., video). In different communities, a number of
approaches exist to deal with non-stationary streams of data: Adaptive Learning
[4], Evolving Systems [2], Concept Drift [15], Dataset Shift [12]. In all these
paradigms, incomplete knowledge of the environment is sufficient during the
training phase, since learning continues during run time.

Within the adaptive learning framework, there is a new set of issues to be
addressed when dealing with large amounts of continuous data online: limita-
tions on computational time and memory. In fast changing environments, even
a partially correct classification can be valuable.

Since its introduction [8, 3] Deep Learning has proven to be an effective
method to improve the accuracy of Multi-Layer Perceptrons (MLPs) [6]. In
particular, Deep Belief Networks (DBNs) have been well-established and can
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be considered the state of the art for artificial neural networks. To the best
of our knowledge, DBNs have not been used to incrementally learn from non-
stationary streams of data. Dealing with changing streams of data with classical
DBNs requires to store at least a subset of the previous observations, similar
to other non-linear approaches to incremental learning [10, 1]. However, storing
large amounts of data can be impractical.

The contributions of this paper are two-fold. Firstly, we study the generative
capabilities of DBNs as a way to extract and transfer learned beliefs to other
DBNs. Secondly, based on the possibility to transfer knowledge between DBNs,
we introduce a novel approach called Adaptive Deep Belief Networks (ADBN)
to cope with changing streams of data while requiring only constant memory
consumption. With the ADBN it is possible to use the DBN parameters to
generate observations that mimic the original data, thus reducing the memory
requirement to storing only the model parameters. Moreover, the data compres-
sion properties of DBNs already provide an automatic selector of the relevant
extracted beliefs. To the best of our knowledge, the proposed ADBN is the first
approach toward generalizing Deep Learning to incremental learning.

2 Deep Belief Networks

Deep Belief Networks are probabilistic models that are usually trained in an
unsupervised, greedy manner. DBNs have proven to be powerful and flexible
models [14]. Moreover, their capability of dealing with high-dimensional inputs
makes them ideal for tasks with an innate number of dimensions such as image
classification. The basic building block of a DBN is the Restricted Boltzmann
Machine (RBM) that defines a joint distribution over the inputs and binary
latent variables using undirected edges between them. A DBN is created by
repeatedly training RBMs stacked one on top of the previous one, such that the
latent variables of the previous RBM are used as data for the next one. The
resulting DBN includes both generative connections for modeling the inputs,
and recognition connections for classification (see [8] for details).

One possible use of DBNs is to initialize a classical MLP: While a DBN
works with activation probabilities of binary units, they can be re-interpreted as
continuous-valued signals in an equivalent MLP. This “pre-training” proves to
be better than random initialization and has been shown to lead to consistent
improvements in the final classification accuracy [7, 6]. A second use for DBNs is
dimensionality reduction. In this case, a classifier can be trained “on top” of the
DBN, which means that the input of the classifier is nothing else but the data in
the reduced space (i.e., the DBN output). This second configuration (from now
on referred as DBN/classifier) has the advantage that the generative capabilities
of the DBN are maintained.

DBNs typically require the presence of a static dataset. To deal with changing
streams, the usage of DBNs would require storing all the previous observations
to re-train the DBN. For infinite-lasting streams of data this would translate into
an infinite memory requirement and increasing computational time for training.
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Fig. 1: Regenerative Chaining: Alter-
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Fig. 2: ADBN: DBN+classifier are
trained from both the generated sam-
ples and newly incoming data.

3 Adaptive Deep Belief Networks

To address the limitations of DBNs for non-stationary streams of data (memory
consumption, training time), we propose a novel approach based on the gen-
erative capabilities of a DBN. Three novel contributions are presented in this
section in a logical sequence where each of them extend upon the previous. At
first, we investigate the possibility of using samples generated from a DBN to
transfer the learned beliefs (i.e., knowledge) to a second DBN. Then we show how
to extend this approach to transfer not only unsupervised but also supervised
knowledge (i.e., including labels). Finally, we present our novel approach called
Adaptive Deep Belief Networks (ADBN). This approach is based on transferring
supervised knowledge by means of generated samples and, jointly, learns new
knowledge from the novel observations.

Belief Regeneration An interesting feature of DBNs is the capability of gener-
ating samples. These samples can be considered a representation of the beliefs
learned during the training phase [8]. Under this assumption we can exploit
the generated samples as an approximation of the knowledge of the DBN. We
propose to train a second regenerated DBN from the samples generated from a
trained original DBN. From this procedure, which we call Belief Regeneration,
we theoretically obtain an equivalent model to the original DBN.

This procedure can be iterated by training an nth DBN from the samples
generated by the (n − 1)th regenerated DBN as shown in Fig. 1. We call this
procedure Regenerative Chaining, and a DBN generated from n repetitions of
Belief Regeneration is an nth-generation DBN.

Classifier Regeneration DBNs can generate unlabeled samples that mimic the
distribution of the training inputs. When making use of the DBN/classifier con-
figuration it is still possible to generate unlabeled samples with the generative
connections. Furthermore, these samples can be used as a standard input for the
recognition connections and, thus, be classified. Hence, this procedure allows the
generation of datasets of labeled samples. Similarly to Belief Regeneration, we
use this artificially generated dataset to train a second DBN/classifier,in what
we call Classifier Regeneration.Chaining the Classifier Regeneration process is
the building block for ADBNs.
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Adaptive Deep Belief Networks When dealing with non-stationary streams of
data, there is a need to consider two different aspects. While it is necessary
to retain past knowledge, new one must also be incorporated as well. We saw
how generated labeled samples can be used to repeatedly reconstruct both the
DBN and the classifier that approximate the original ones. The DBN/classifier
regeneration can effectively keep acquired knowledge in our model even when
discarding the past observations (i.e., the dataset). We propose to exploit this
belief transfer to generalize DBNs to an incremental learning paradigm. In order
to incorporate also new knowledge in the model, we can use both generated
samples and novel data from the stream, for the re-train of the DBN/classifier,
as shown in Fig. 2. The use of such training data allows the DBN/classifier
to incorporate new knowledge while retaining old one. Moreover, the memory
consumption is constant as after each training period all the previous data (both
artificially generated and real) are discarded.

4 Experiments

To evaluate the properties of our models we used the hand-written digit recog-
nition MNIST dataset [11] in our experiments. The MNIST dataset consists of a
training set of 60000 observations and a test set of 10000 observations where ev-
ery observation is an image of 28x28 binary pixels stored as a vector (no spatial
information was used).

To train the RBMs, we used the algorithm introduced by Cho et al. [5] that
makes use of Contrastive Divergence learning (CD-1). We used Gibbs sampling
to generate samples from a trained DBN. The reconstruction error over a dataset
is defined as

R(X) = 1
N

∑N

i=1

∑D

j=1
(Xij − X̂ij)

2 , (1)

where N is the number of observations, D the dimensionality of the input X,
and X̂ is the reconstructed input. For fine-tuning the neural network, we used
the Resilient Propagation (Rprop) algorithm [13]; and in particular the IRprop
variant [9]1. We used the Log-sigmoid as transfer function and the Mean Squared
Error as error function to train the network.

Belief Regeneration To experimentally evaluate the Belief Regeneration process,
a DBN with topology [784-600-500-400] was trained. Fig. 3 shows how the num-
ber of samples used to train the regenerated DBN influences the reconstruction
error in Eq. (1). A higher number of samples better approximates the original
DBN trained with the full dataset. However, it is also computationally expensive
to generate many samples. In our experiment, there seems to be a clear threshold
at 750 samples above which the original DBN can be considered well approxi-
mated. A further indication is given by the visual inspection of the generated

1 Our implementation is available at http://www.mathworks.com/matlabcentral/

fileexchange/32445-rprop
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Fig. 3: Reconstruction error of the
MNIST test set using a DBN re-
generated with a varying amounts of
generated samples.

Fig. 4: MNIST samples generated
from DBNs: first row from original
DBN, then from DBN regenerated
with 10000, 2500, 750, 500, and 100
generated samples, respectively.

samples from the regenerated DBN in Fig. 4. Above 750 samples there is little
difference between the samples generated from original and reconstructed DBN
(top row of Fig. 4), for a human observer. Fig. 5 shows that for chained regenera-
tions the reconstruction error gradually increases with the number of sequential
reconstructions. Similar conclusions are visually drawn from the generated sam-
ples in Fig. 6 where after 100 generations of regeneration (using 10000 samples
at each generation) there is a visible degradation in the quality of the gener-
ated samples. The reason of this degradation is the error propagation between
sequential regenerations.

However, fine-tuning a 100th generation DBN shows little decrease in terms
of classification accuracy compared to fine-tuning the original DBN, as shown
in Fig. 7. This result suggests that despite becoming humanly incomprehensible
(Fig. 6), the generated samples retain valuable features for training a DBN and
still prove to be useful during an eventual fine-tuning: Fine-tuning initialized
from a regenerated DBN led to a similar optimum as the original DBN.

Classifier Regeneration Using a DBN/classifier allows us to generate labeled
samples. Examples of the generated samples and respective labels are shown in
Fig. 8. These artificially generated datasets are used to train subsequent DBNs/
classifiers, as described in Sec. 3. Fig. 9 shows the classification accuracies of the
regenerated DBNs/classifiers after n generations. While the decrease in perfor-
mance is consistent, we are using samples generated from our model. Further-
more, the number of samples is only a fraction of the original dataset size.

Adaptive Deep Belief Networks We trained a DBN and classifier using 3 digits
(8,6,4) of the MNIST dataset. Every 50 fine-tuning iterations, we presented a
new batch of data containing samples from a novel digit to the ADBN. These
samples, together with the generated ones, were then used to re-train both the
DBN and the classifier, see Sec. 3. Fig. 10 shows the classification accuracy and
memory consumption of the ADBN on all 10 digits when adding new digits to the
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Fig. 5: Reconstruction error of the
MNIST test set using a DBN regen-
erated a varying amounts of times.
Despite the increase in reconstruc-
tion error, the classification accura-
cies of fine-tuning do not change (see
Fig. 7).

Fig. 6: MNIST samples generated
from DBNs: first row from the orig-
inal DBN, then for 1, 50 and 100th-
generation DBNs. Despite the degen-
eration, even after 100 generations
the samples retain useful features to
train a new DBN.

data set. The accuracy increases, which means that the ADBN can successfully
learn from new data while at the same time retaining the knowledge previously
acquired. In Fig. 10, we compare to a DBN that is trained on all the previous
observations which led to a higher classification accuracy but at the expense of
the memory consumption. While the DBN memory increase linearly (as we store
more and more observations), the amount of memory required by the ADBN is
constant: Only the model parameters need to be stored.

5 Conclusions and Discussion

In this paper, we presented the Adaptive Deep Belief Networks, a promising
approach that generalizes DBNs to deal with changing streams of data (e.g.,
number of classes and shift in distribution) while requiring only constant mem-
ory.

ADBNs can be incrementally trained by means of Belief Regeneration. Be-
lief Regeneration consists of iteratively transferring beliefs between DBNs by
training a second DBN using samples from the original DBN.

In ADBNs, new data can be integrated into the already acquired beliefs re-
training the DBN with both the novel and artificially generated samples. While
the classification accuracy suffers compared to fully trained DBNs, the ADBN
does not need to store past observations. Hence, the memory requirements are
constant since only the model parameters have to be stored. Moreover, unlike
other Adaptive Learning methods, the ADBN is a generative model and can deal
with high-dimensional data.

In our approach the generative capabilities and the sampling method adopted
are of great importance. Although the Contrastive divergence (CD) learning
(used in this work), produces good classifiers, it does not work as well as a
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Fig. 7: Classification accuracies on
the MNIST test set during the
fine-tuning. Using regenerated DBNs
does not substantially decrease the
classification accuracy compared to
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Fig. 8: MNIST samples generated
from DBNs, labeled and then used
for regeneration: every row corre-
sponds to labeled samples.

generative model. We therefore believe that the use of more appropriate training
and sampling scheme could be beneficial.

Many adaptive learning approaches make use of explicit mechanisms to forget
the past. To this regard, ADBNs present no explicit mechanism to forget selected
observations. Instead, the less representative observations are naturally forgotten
during the regeneration process. The choice of the number of samples to use for
each epoch of the ADBN training can be a sensitive parameter. In particular, the
ratio between generated samples and novel observations, can be used to modify
the stability/plasticity trade-off.

Finally, an interesting extension to our approach is the possibility to change
the topology of the network adaptively at running time in order to adapt the
capability to the complexity of the environment.
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