
Master’s Thesis

Nonparametric

Off-Policy

Policy Gradient

João André Correia Carvalho

Examiners: Prof. Dr. Joschka Boedecker
Prof. Dr. Frank Hutter

Advisers: MSc. Samuele Tosatto
Prof. Dr. Jan Peters

Albert-Ludwigs-Universität Freiburg
Faculty of Engineering

Department of Computer Science
August 31th, 2019

Writing period
15. 04. 2019 – 31. 08. 2019

Examiners
Prof. Dr. Joschka Boedecker, Prof. Dr. Frank Hutter (Albert-Ludwigs-Universität Freiburg)

Advisers
MSc. Samuele Tosatto, Prof. Dr. Jan Peters (Technische Universität Darmstadt)

Declaration

I hereby declare, that I am the sole author and composer of my thesis and that no other sources or
learning aids, other than those listed, have been used. Furthermore, I declare that I have acknowledged
the work of others by providing detailed references of said work.
I hereby also declare, that my Thesis has not been prepared for another examination or assignment,
either wholly or excerpts thereof.

Place, Date Signature

i

Abstract

In the context of Reinforcement Learning, the Policy Gradient Theorem provides a principled way to
estimate the gradient of an objective function with respect to the parameters of a differentiable policy.
Computing this gradient includes an expectation over the state distribution induced by the current
policy, which is hard to obtain because it is a function of the generally unknown environment’s dynamics.
Therefore, one way to estimate the policy gradient is by direct interaction with the environment. The
need for constant interactions is one of the reasons for the high sample-complexity of policy gradient
algorithms, and why it hinders their direct application in robotics. Off-policy Reinforcement Learning
offers the promise to solve this problem by providing better exploration, higher sample efficiency, and
the ability to learn with demonstrations from other agents or humans. However, current state-of-the-art
approaches cannot cope with truly off-policy trajectories.
This work proposes a different path to improve the sample efficiency of off-policy algorithms by providing
a full off-policy gradient estimate. For that we construct a Nonparametric Bellman Equation with
explicit dependence on the policy parameters using kernel density estimation and regression to model
the transition dynamics and the reward function, respectively. From this equation we are able to
extract a value function and a gradient estimate computed in closed-form, leading to the Nonparametric
Off-Policy Policy Gradient (NOPG) algorithm. We provide empirical results to show that NOPG
achieves better sample-complexity than state-of-the-art techniques.

Zusammenfassung

Das Policy Gradient Theorem bietet eine Grundlage zur Lösung der Aufgabe des Reinforcement Learning
durch die gradientenbasierte Optimierung einer parametrisierten und differenzierbaren Policy im Bezug
auf eine Zielfunktion. Die Schätzung dieses Gradienten beinhaltet eine Erwartung über die durch
die aktuelle Policy induzierte Zustandsverteilung, was ein anspruchsvolles Problem darstellt, da es
eine Funktion der Dynamik der Umgebung ist. Im Allgemeinen ist diese nicht bekannt, weshalb eine
Möglichkeit darin besteht, den Policy Gradient durch direkte Interaktion mit der Umwelt zu schätzen.
Die Notwendigkeit ständiger Interaktionen ist einer der Gründe für die hohe Sample-Komplexität
von Policy Gradient-Algorhythmen und warum sie ihre direkte Anwendung in der Robotik behindert.
Off-Policy Reinforcement Learning adressiert dieses Problem, indem es bessere Exploration, höhere
Dateneffizienz und die Fähigkeit, von Demonstrationen von anderen Agenten oder Menschen zu lernen.
Diese Arbeit schlägt einen anderen Weg vor, um die Dateneffizienz von Off-Policy-Algorithmen zu
verbessern, indem sie eine vollständige Gradientenschätzung liefert. Dazu konstruieren wir eine
nichtparametrische Bellman Gleichung mit expliziter Abhängigkeit von den Policy Parametern mittels
Kernel Density Estimation und Regression, um die Systemdynamik und die Belohnungsfunktion zu
modellieren. Das Ergebnis ist ein Nonparametric Off-Policy Policy Gradient (NOPG) Algorithmus,
mit dem die Value Function und Policy Gradient in geschlossener Form berechnet werden können.
Wir liefern empirische Ergebnisse, die zeigen, dass NOPG eine bessere Dateneffizienz erreicht als der
aktuelle Stand der Technik.

iii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Structure of the Thesis . 2

2. Background 3
2.1. Reinforcement Learning . 3
2.2. Markov Decision Processes . 3
2.3. Value Function and State Distribution . 4
2.4. Value Methods and Policy Search . 5
2.5. Model-based and Model-free Reinforcement Learning 6
2.6. On-Policy and Off-Policy Reinforcement Learning . 7
2.7. Policy Gradient Theorem . 8
2.8. Policy Representations . 10
2.9. Kernel Density Estimation . 10
2.10. Kernel Regression . 12
2.11. Integral Equations of the Second Kind and the Galerkin Projection 13

3. Related Work 17
3.1. Pathwise Importance Sampling . 17
3.2. Off-Policy Semi-Gradient . 18
3.3. Model-based Policy Gradient . 19

4. Nonparametric Off-Policy Policy Gradient 21
4.1. Problem Definition . 21
4.2. Nonparametric Bellman Equation . 22
4.3. Policy Gradient . 26
4.4. Why Nonparametric Modelling . 27
4.5. Implementation Details . 27
4.6. Computational and Memory Complexity . 31

5. Experiments 35
5.1. Qualitative Gradient Comparison . 35
5.2. Learning with a Uniform Dataset . 36
5.3. Learning with a Random Behavioural Policy . 37
5.4. Learning from Suboptimal trajectories . 39

6. Conclusion and Future Research 45

Bibliography 47

Appendices 53

Appendix A. Proof of the Normalized State Distribution 53

Appendix B. Gradient Estimates with LQR, NOPG, DPG and PWIS 55

Appendix C. Experiments Configurations 57

v

List of Figures

1. Kernel density estimation with different bandwidths 12
2. Kernel regression with different bandwidths . 14

3. Example of a P̂πθ matrix . 29
4. Mean KL divergence between P̂πθ and P̂sparse

πθ for different levels of sparsification . . . 30

5. Comparison of gradient estimates in a LQR system . 36
6. Environment schematics . 37
7. Phase portrait of the value function and state distribution for the Pendulum environment 38
8. Returns in the Pendulum environment with randomly sampled data 39
9. Returns in the Cartpole stabilization environment with randomly sampled data 40
10. Evaluation of a policy optimized with NOPG-S in the real CartPole system 41
11. Returns in the MountainCar environment with varying number of trajectories 42
12. Phase portrait of the value function and state distribution for the MountainCar experiment 42
13. Trajectories in the state space of the MountainCar environment 43

List of Tables

1. Returns in the Pendulum environment with uniform sampling 37

C1. Pendulum uniform grid dataset configurations . 57
C2. NOPG configurations for the Pendulum uniform grid experiment 58
C3. Algorithms configurations for the Pendulum random data experiment 60
C4. Algorithms configurations for the CartPole random data experiment 62
C5. NOPG configurations for the MountainCar experiment 62

List of Algorithms

1. Nonparametric Off-Policy Policy Gradient (NOPG) . 32

vii

1. Introduction

1.1. Motivation

Designing controllers for robotic systems is a challenging task. Typically, one starts by describing
with detail the physical laws of the systems’ dynamics in the form of equations of motion, and after
devising a controller to solve a particular task with the system. This approach poses some fundamental
problems, such as not being able to encode a priori all the possible forces that will take place in real
world environments, and the inability of controllers to adapt to different but somewhat similar tasks.
For instance, in a grasping task it would be infeasible to model all the friction forces a robot encounters
when interacting with different surfaces. An undesired solution would be to consider only a subset of
objects that can be present in a scene and program the robot to grasp each distinct object. Ideally,
robotic autonomous agents would have the ability to adjust to different scenarios and autonomously
learn about their own dynamics and the surrounding environment with minimal human intervention
and supervision.
The field of Reinforcement Learning (RL) is a subclass of Machine Learning (ML) that deals with
learning controllers through direct experience collected by an agent when traversing an environment, and
thus suited to solve the described robot learning problem. RL algorithms for discrete and small state
and action spaces based on tabular representations are well studied and have guaranteed solutions [1].
In more complex environments however, the spaces may be countable but too large, or even continuous.
A telling example is the game of chess where the number of possible states is in the order of 10120 [2].
Building a tabular representation of such an environment is just not possible. Therefore, methods
that perform approximations are crucially sought after. However, contrary to tabular solutions, the
convergence guarantees of approximate algorithms are only devised for some special cases, such as
when a loss function is squared and the value function is a linear combination of features [3]. With the
resurgence of Neural Networks (NNs), in particular of Deep Learning (DL), the field of RL has received
in the recent years a great interest from the research community and the general public. Today, RL
algorithms are capable of astonishing results by solving difficult tasks such as playing table games like
Go [4] and Chess [5], or arcade and strategy computer video games like Atari [6] and Dota 2 [7]. Not
less important and of extreme interest are the results obtained in robotic applications, some of which
do not use recent DL techniques, including learning motor skills to play table tennis [8] or balancing an
unicycle [9], and also the ones leveraging the NNs revival, such as learning locomotion polices to walk,
run and jump from scratch in simulation [10], learning dexterity from simulation and transferring to a
real platform [11], enabling a quadrupedal robot to learn to walk in the real word within hours [12],
or even learning control policies from mapping images directly to actions using Convolution Neural
Networks (CNNs) as feature extractors [13].
Although the success of recent methods using Deep Neural Networks (DNNs) are undeniable, these
models may have millions (or even billions) of parameters and thus require massive amounts of data to
be trained effectively. Simulated environments, such as games, are a good setup to test and benchmark
new algorithms because data can be infinitely generated, but they are usually noise free and mostly
with discrete action spaces. In contrast, human-like robots need to cope with measurement errors
from noisy sensor readings and actions are typically continuous, for example the voltage applied to
motors to control joints. Collecting experience in simulated environments can be admissible, but in
real-world robotic applications there is the need for methods suited to work in low data regimes and
with explainable models, especially to ensure safe behaviours when robots are deployed to collaborate
with humans.
The major problem limiting the application of RL algorithms based on DL models, coined as Deep

1

Reinforcement Learning (DRL), in real robotic systems is their high sample complexity [14]. The
source of this sample inefficiency problem comes from many algorithms using one of the foundational
theorems in RL, the Policy Gradient Theorem. This theorem allows a RL agent to instead of finding a
controller using value-based methods, optimizing the parameters of a parameterized differentiable policy
via a gradient ascent technique, while computing the gradient estimate by directly sampling from the
environment. To understand how to obtain better sample efficiency we need to focus on understanding
the true source of the gradient estimation problem. The biggest issue comes from the Policy Gradient
Theorem dependence on the state distribution induced by the current policy. Such a construct implies
that each policy update changes the state visitation frequency, meaning that new rollouts are needed
after every iteration. Instead of using on-policy methods, off-policy algorithms promise to be more
sample efficient because they can reuse transitions collected from multiple policies, for instance stored
in a memory replay buffer [6].
Computing off-policy gradients is typically done with Importance Sampling (IS) methods, which are
unbiased but show large variance, or using the Off-Policy Policy Gradient Theorem introduced by
Degris et. al [15]. Further well known algorithms such as the Deterministic Policy Gradient (DPG) [16]
and the Deep Deterministic Policy Gradient (DDPG) are based on that work. These methods however
are better regarded as semi-gradient methods, as they do not follow a true gradient but a biased
approximation, and thus fail in trully off-policy settings. For instance, this inability is clear in the work
of Fujimoto et. al [17], where the authors give as an example where DDPG cannot learn a policy if it
only uses samples from a previously populated replay buffer.
We believe that given the advantages of off-policy methods are well fitted for robotics, it is of utmost
importance to keep exploring this subfield of RL. Therefore, in this thesis we emphasize the need for
off-policy algorithms and propose a novel model-based gradient estimate for deterministic and stochastic
policies that addresses some of the issues found in current approaches. Our work was inspired and
builds up on A Non-Parametric Approach to Dynamic Programming from Kroemer et. al [18]. Likewise,
we propose a policy gradient using a model-based approach with transition dynamics modelled with
kernel density estimation and reward function with kernel regression, which leads to a Nonparametric
Bellman Equation that we can solve in closed-form with explicit dependence on a parameterized policy.
This dependence allows the computation of a full gradient in closed-form, partially because the state
distribution can be computed without the need of sampling, thus improving on the biased semi-gradient
methods, and without resorting to importance sampling approaches. The advantages in comparison
to other methods are its higher sample-efficiency, which is essential in robotic applications, and the
capability of estimating the state distribution, which is of great interest in robotics, since it can predict
beforehand if the system will move to dangerous areas of the state space.
To attest our approach we provide empirical qualitative results on the policy gradient direction in a
simple 2-dimensional problem with linear dynamics and quadratic costs, and quantitative results in
OpenAI Gym and Quanser environments [19, 20], showing that it can work with offline and off-policy
datasets using carefully chosen or random behavioural policies.

1.2. Structure of the Thesis

In Chapter 2 we give an introduction on how to model Reinforcement Learning problems with Markov
Decision Processes and the methods to solve them. We give particular emphasis to policy search
methods, especially to the Policy Gradient Theorem. Additionally we give a brief explanation of kernel
density estimation and regression. Then, we present in Chapter 3 a classification and overview of the
current techniques to perform policy search using off-policy trajectories. In Chapter 4 we introduce the
bulk of this thesis, a policy gradient estimator for offline and off-policy data. We empirically test our
algorithm in basic control tasks and present the results obtained in Chapter 5. Finally, in Chapter 6 we
summarize the main aspects found and conclude with possible future research paths.

2

2. Background

2.1. Reinforcement Learning

Reinforcement Learning (RL) is a field in Machine Learning (ML) that deals with solving decision
making problems in an optimal sense [21, 1]. Typically an agent (e.g., a robot, a player in a game, ...)
encounters itself in a state, from which it interacts with a (stochastic) environment by performing an
action, collecting an immediate reward and transitioning to a next state. Through multiple interactions,
RL algorithms aim to find a policy, a map from states to actions, whose goal is to maximize the
sum of the future (discounted) rewards collected by the agent. In a certain way RL is very similar
to Optimal Control, where often one wants to find a controller (a policy) that minimizes a given
cost function (a return). The main difference lies in the fact that often in Optimal Control one is
presented with a model of the environment [22], for instance the physics laws that govern a rigid body
motion dynamics, with which one can compute an optimal controller. In particular, if the system
is modelled in the Linear Quadratic Regulator (LQR) framework, the solution can even be found in
closed-form [23]. On the contrary, in RL problems the environment laws are assumed to be unknown
(expect in environments with human specified rules, such as games like Chess or Go) and finding a
controller cannot be performed in closed-form. While having a systems’ description can seem to be
advantageous, modelling its intricacies is also very tedious and not straightforward. For example, it does
not seem plausible to be able to model all kinds of friction forces a system is expected to be exposed to.
In RL the agent can learn about the dynamics’ details while it interacts with the environment, hence
possibly capturing a better description of the true dynamics.

2.2. Markov Decision Processes

Decision making problems such as the ones faced in RL are commonly modelled as Markov Decision
Processes (MDPs). Let a MDP [24] be defined for the general case as a tuple (S,A, R, P, µ0, γ), where
S is a state space s ∈ S, A is an action space a ∈ A, R is a reward function R : S ×A → R, P governs
transition probabilities P : S ×A× S → [0,∞), µ0 is the initial state distribution µ0 : S → [0,∞) and
γ ∈ [0, 1) is a discount factor. In the particular case of discrete state and action spaces, the distributions
change from probability densities to probability mass functions, and so the transition probabilities and
initial state distribution are bounded to 1.
MDPs share the Markov property, i.e., the current state st and action at contain all the information
necessary to determine the probability of transitioning to the next state st+1, P (st+1 | st,at) = P (st+1 |
st,at, st−1,at−1, . . . , s0,a0). The reward function R defines the problem at hand, since it guides the
agent towards a desired behaviour [25]. For instance, if an agent’s task is to reach a final position
sf , a reasonable reward function could measure the euclidean distance from the current state, e.g.,
R(s,a) = ‖s− sf‖2. An agent navigates in a MDP governed by a policy π : S → A that determines
which action to take in the current state. The mapping from states to actions can be of two types:
deterministic, in which case the action is picked deterministically, a = π(s); or stochastic, where
the action is chosen from a distribution conditioned on the current state a ∼ π(· | s), such that∫
A π(a | s) da = 1. For large state spaces it is common to use a policy parameterized by a set of
parameters θ.
By starting in an initial state s0 sampled from the initial state distribution and traversing a MDP with

3

a policy π, the agent computes a return as the expected sum of discounted rewards

Jπ = E

[
T∑
t=0

γtR(st,at)
∣∣∣ s0 ∼ µ0(s),at ∼ π(a | st), st+1 ∼ P (s′|st,at)

]
. (1)

The goal of a RL algorithm is to compute an optimal policy, i.e., a policy that maximizes the return.
In Equation (1), a finite T encodes episodic problems, while T =∞ represents infinite horizon problems.
The discount factor γ controls the view of the agent towards the rewards. With γ → 1 the agent regards
immediate and late rewards as equally good. Whereas γ → 0 provides a more myopic view, since the
agent values more immediate rewards. For the infinite horizon setting we require γ < 1 to prevent the
return from growing to infinity.

2.3. Value Function and State Distribution

There are two interesting quantities one can extract from a MDP, the value function and the state
distribution. The state value function (or just value function) Vπ(s) encodes the expected return from a
state s when following the policy π, and can be expressed in a recursive fashion known as the Bellman
equation

Vπ(s) = E

[
T∑
t=0

γtR(si,ai)
∣∣∣ s0 = s,at ∼ π(a | st), st+1 ∼ P (s′|st,at)

]
(2)

=

∫
A
π(a | s)R(s,a) da+ γ

∫
A

∫
S
π(a | s)P (s′ | s,a)Vπ(s′) ds′ da ∀s ∈ S, (3)

which admits a unique fixed-point solution [1]. Notice that a value function is always defined assuming
an underlying policy.
A state-action value function (or just Q-function) Qπ(s,a) represents the expected return of being
in state s, taking action a and following the policy thereafter. Vπ and Qπ are related by Vπ(s) =
Ea∼π(·|s) [Qπ(s,a)]. A nice property of the Q-function is that an optimal policy can be extracted by
acting greedily in every state, i.e., by choosing the action as arg maxaQπ(s,a) ∀s ∈ S. The value
function for an optimal policy can be written as Vπ(s) = maxaQπ(s,a) ∀s ∈ S.
The discounted expected state visitation is also dependent on the policy and can be seen as the expected
number of times a state is visited after infinitely transitioning the MDP following the policy π

µπ(s) = µ0(s) + γ

∫
S

∫
A
µπ(s′)π(a | s′)P (s | s′,a) dads′ ∀s ∈ S. (4)

Notice that µπ(s) is not a proper distribution because it is not normalized. Although, we refer to it as
the discounted state distribution, because to get a valid distribution one can simply normalize it for
every state with µπ(s)← µπ(s)/

∫
S µπ(z) dz, or more simply as µπ(s)← (1− γ)µπ(s). A proof for the

latter is given in Appendix A.
Comparing Equation (3) and Equation (4) one can see the similarities between the value function the
and state distribution. In fact, when expressing the RL problem as a Linear Programming (LP) problem,
the value function does not appear in the dual formulation, but instead the state distribution does.
Therefore, the state distribution is often coined as the dual of the value function [26]. There is however
a gigantic difference between the two. The second term of the sum on right hand side of Equation (3)
is an expectation of the value function over the next state distribution. Hence, the value function can
be computed by transitioning the MDP according to s′ ∼ P (· | s,a). On the contrary, computing the
state distribution is not as simple. One cannot solve it just by sampling, because sampling s′ from
P (s | s′,a) is not possible, since it is not a valid probability distribution. For this reason computing
the value function is often preferred to estimating the state distribution.

4

For MDPs with finite sets of state and action spaces, known transition dynamics, and for simplicity
using a deterministic policy, the value function and state distribution can be seen as a finite set of a
linear system of equations and thus computed in closed-form

Vπ = Rπ + γPπVπ

⇔ Vπ = (I− γPπ)−1Rπ (5)

µπ = µ0 + γP>πµπ

⇔ µπ =
(
I− γP>π

)−1
µ0, (6)

where Vπ ∈ R|S| is a vector with the value function of each state, Rπ ∈ R|S| is the vector of reward per
state, Pπ ∈ R|S|×|S| is the transition probability matrix, µπ ∈ R|S| is a vector with the (unnormalized)
state distribution and µ0 ∈ R|S| the vector with the initial distribution per state. Computing Vπ and
µπ with Equation (5) and Equation (6) involves the inversion of a |S|×|S| matrix. Hence, environments
with small state spaces are trivially solved, but for larger ones this method is definitely prohibitive. For
instance, a lower bound for the game of Chess places the number of states around 10120 [2]. Even if
we could solve such large problems through matrix inversion, most problems in the real world do not
appear in discrete but rather in continuous domains. For instance, in robotics one encounters more
often continuous state and action spaces, for which we can no longer solve using discrete methods,
without performing some kind of discretization of the space.

2.4. Value Methods and Policy Search

To find optimal policies there are two main approaches: methods based on value functions; and methods
based on policy search [27].
Value function methods rely on estimating the value function (or the state-action value function) for
each state. As already mentioned in Section 2.3, if a Q-function is available, an optimal policy can
be extracted at each state by greedily picking the action that maximizes Q. For large but discrete
state spaces, if the transition probability matrix is known, a practical way to estimate Vπ (or Qπ) is to
recognize that the Bellman equation (Equation (3)) can be solved by Dynamic Programming (DP) [28],
thus avoiding the matrix inversion as in Equation (5). When the transition dynamics are unknown
there are two main methods to estimate the value function, namely Monte Carlo (MC) and Temporal
Difference (TD) methods. MC methods rely on computing the return for each state by sampling and
averaging over full trajectory runs on the environment. Albeit unbiased, they suffer from high variance
estimates. TD learning methods use bootstrapping to learn the value function, i.e., instead of updating
states’ values only after the end of an episode, like in MC, states’ values are continuously updated
with the Bellman error provided by the current best estimates of all states. In comparison to MC, TD
algorithms have less variance and seem to work better in practice, but their convergence to the true
value function is only guaranteed in certain cases, such as the tabular setting or with linear function
approximation [21].
RL methods that keep a value function entry for all states are coined as tabular methods. For large
state and action spaces one needs to represent the value function using a function approximator, because
recording all states’ values is physically impossible. In the case of parametric methods, it is common
to approximate the value function with a linear combination of features [21] or a Neural Network [6].
Typically, one formulates the problem as a supervised learning task and minimizes the mean squared
error between the prediction and the true value, for instance using a gradient descent technique.
Choosing which loss function to optimize is already a source of approximation error, which does not
happen in DP methods. Besides parametric methods, value functions can also be approximated using
nonparametric models such as kernel density estimation and regression [18] or Gaussian Processes [29].
The drawback of approximate methods in contrast to DP or MC methods is that they are only

5

sure to converge under certain conditions and for certain function approximators. For instance, TD
learning with a linear function approximation has convergence guarantees [21], but not with nonlinear
approximators [30]. However, even without theoretical guarantees, nonlinear function approximators
have shown surprising positive empirical results. One example is the application of Deep Neural
Networks to the traditional Q-learning algorithm to learn the Q-function [31], giving rise to the Deep
Q-Network (DQN) [6].
Policy search (PS) methods extract a policy differently from value methods. They assume a policy
is parameterized by a set of parameters θ ∈ Θ and search directly in the parameter space, thus not
necessarily needing to keep an explicit value function. Parameterized policies allow to shrink the search
space to a subset of possible configurations, which is of major importance for RL algorithms to deal
with large action spaces [32].
PS methods start by defining an objective to guide the parameters search, for instance the average
stationary reward

Jπθ = Es∼µπθ (·),a∼πθ(·|s) [R(s,a)]

=

∫
S

∫
A
µπθ(s)πθ(a | s)R(s,a) dads, (7)

where µπθ is the stationary state distribution induced by πθ, or the starting state objective

Jπθ = Es∼µ0(·) [Vπθ(s)] =

∫
S
µ0(s)Vπθ(s) ds, (8)

where µ0 is the initial state distribution. There are two big approaches to find the policy parameters
that maximize Jπθ : gradient-free and gradient-based methods. Gradient-free optimizers can deal with
non differentiable policies and are typically simpler and have low computational complexity, but on
the other hand can be very slow to achieve convergence. An example of such a methods evolutionary
algorithms [33]. Gradient-based methods are more common, and named in the literature as Policy
Gradient (PG) methods. In PG algorithms the policy needs to be differentiable. With an estimate for
the gradient of the objective function the policy parameters can be updated with a gradient ascent
technique

θ ← θ + α∇θJπθ , (9)

where α is a learning rate, and ∇θJπθ is commonly referred to as the policy gradient.
PG methods offer a couple of advantages in relation to value function approximation methods [21]:
following the gradient moves the policy in the direction of a better objective; it works well in high-
dimensional state-action spaces; the policy representation is often more compact than the value function
representation; the ability to learn stochastic policies. There are of course some disadvantages such as
slower convergence or that convergence to a local optimum is not always guaranteed.
A natural join of value function and policy search methods are Actor-Critic algorithms, which still
search for the best policy parameterization but using learned value functions from full returns or TD
errors, providing faster convergence with lower gradient variance estimates [34].

2.5. Model-based and Model-free Reinforcement Learning

In RL problems the transition probability density function is generally unknown. Even if the state and
actions spaces were discrete and small, a closed-form solution for the value function as in Equation (5)
could not be found, because Pπ is unknown. However, the agent can still learn a value function
from collecting experience from the environment in the form of state–action–reward–next-state tuples
(s,a, r, s′). With the collected experience there are two major paths to learn a policy: with model-free
RL methods; or with model-based RL methods.

6

In model-free RL there is no concept of a transition dynamics model. The agent uses the experience to
directly learn the value function of a state or a policy. To compute the value function for a specific
state, the RL agent could estimate the expected return by averaging the sum of discounted rewards of
successive MC rollouts starting from that state. Alternatively it could estimate the Q-function also by
MC rollouts as suggested by the Policy Gradient Theorem [35]. Sampling trajectories from simulators
poses no problem apart from time. However, sampling from real systems is not always feasible as it
is time consuming and can lead to material wear and tear. Examples of model-free algorithms are
REINFORCE [36], Relative Entropy Policy Search (REPS) [37], Trust Region Policy Optimization
(TRPO) [38] and Deep Deterministic Policy Gradient (DDPG) [39].
Model-based RL methods seek to improve the sample efficiency over model-free approaches by using
the collected experience to learn a model of the transition dynamics. Agents can then sample from this
model to generate trajectories to compute the value function or the policy gradient as if the samples came
directly from the environment. Alternatively, the model might even allow a closed-form computation of
the value function [18] or the policy gradient [9]. These methods have the advantage of requiring less
interactions with the real system and therefore promise to be more sample efficient. However, when
choosing a model class we are directly restricting the type of environments we can represent. The
downside is that if the model poorly represents the real dynamics, the learning algorithm may explore
the model errors to generate a control policy that may lead to a totally incorrect behaviour. It is not
difficult to construct an example where model-based methods would fail. Consider for instance that
in the real environment the agent can transition to two different states with almost equal probability.
If P (s′ | s,a) is modelled with a Gaussian distribution, which is very common due to its analytical
properties [9, 29], we are directly making a mistake by assuming the transition to be unimodal. Examples
of model-based algorithms are PILCO [9] and Guided Policy Search (GPS) [40].
Although model-free algorithms seem to be more sample inefficient, because they cannot generate
synthetic samples, they offer advantages with respect to model-based ones. They do not suffer from
model-bias, which is an issue of RL algorithms related to optimizing a policy based on samples from
the model and not the true environment. Even though multiple interactions are required, learning
a policy is often easier than learning precise dynamics models. Thus, model-free RL algorithms are
more common in practice and recent successful algorithms are all model-free [37, 39, 38, 41]. Whether
model-free works better than model-based is still an open research question. In model-free methods the
model is somewhat encoded in the value function, while in model-based explicitly learning the model is
difficult and one incurs in inductive-bias.
For the particular reason that in robotics applications it is extremely important to have algorithms
with low sample complexity and safe exploration, in this thesis we will focus on using model-based
algorithms.

2.6. On-Policy and Off-Policy Reinforcement Learning

A further class of RL algorithms regards the use of on- or off-policy data. It is common to refer to the
policy being optimized as the target policy and the policy used to interact with the environment as the
behavioural policy [21].
On-policy algorithms learn the target policy based on samples collected by interacting with the
environment using the same target policy (i.e., the target and behavioural policies match). They are
generally unbiased and require continuous interactions with the environment after every value or policy
improvement, which constitute the main source of sample inefficiency of on-policy methods. Examples
of algorithms belonging to this class include SARSA [42], REINFORCE [36] or TRPO [38].
Off-policy algorithms offer the promise of learning the target policy using samples from a different
behavioural policy. In comparison to on-policy, they allow for: better exploration, since multiple
behavioural policies can be used to provide data; better sample efficiency by reusing samples from other
policies; learning from agents or human demonstrations; and safety, because in on-policy algorithms
the initial target policy (used also as behavioural policy) can be arbitrarily bad. These points make

7

them more appealing than on-policy methods. However, estimating off-policy value functions or
policy gradients is known for being a hard problem, because of the mismatch between the state-action
distribution induced by the current target policy and the distribution of the off-policy data [17].
Examples of off-policy algorithms include Q-learning [31], REINFORCE with Importance Sampling [43],
Off-Policy Actor-Critic (Off-PAC) [15] or DDPG [39]. In Chapter 3 we give a detailed overview of
off-policy policy gradient methods.

2.7. Policy Gradient Theorem

As explained in Section 2.4 one way to compute the parameters of a parameterized policy is to guide
the search with gradient ascent. For that we define an objective function, such as in Equation (7) or
Equation (8), compute the gradient with respect to the parameters and update them using Equation (9).
The main concern is on how to obtain a good estimator for ∇θJπθ .

The Policy Gradient theorem introduced by Sutton et. al [35] provides a clear derivation on how to
estimate the policy gradient from experience. Here we provided a simple and intuitive derivation of
this theorem. We start by defining as objective the starting state formulation and the corresponding
gradient

Jπθ = Es∼µ0(·) [Vπθ(s)] =

∫
S
µ0(s)Vπθ(s) ds

∇θJπθ = ∇θEs∼µ0(·) [Vπθ(s)] =

∫
S
µ0(s)∇θVπθ(s) ds. (10)

Our goal is to find an expression for the gradient of the value function, such that we can estimate it by
transitioning in the MDP. Using the relation between the value function and the Q-function we have

∇θVπθ(s) = ∇θ
(∫
A
πθ(a|s)Qπθ(s,a) da

)
=

∫
A
∇θ (πθ(a|s))Qπθ(s,a) da+

∫
A
πθ(a|s)∇θQπθ(s,a) da

=

∫
A
∇θ (πθ(a|s))Qπθ(s,a) da+

∫
A
πθ(a|s)∇θ

(
R(s,a) + γ

∫
S
P
(
s′ | s,a

)
Vπθ(s

′) ds′
)

da

=

∫
A
∇θ (πθ(a|s))Qπθ(s,a) da+ γ

∫
A

∫
S
πθ(a|s)P

(
s′ | s,a

)
∇θVπθ(s

′) ds′ da. (11)

Before expanding the recursive term in Equation (11), let us introduce some useful quantities. We denote
by Pπθ(s→ x, k) the probability of transitioning from state s to state x after k steps, while following
the policy πθ. The following identities are straightforward to obtain: Pπθ(s→ s, 0) = 1 is the probability
of staying in the same state without taking any step; Pπθ(s→ s′, 1) =

∫
A πθ(a|s)P (s′ | s,a) da is the

probability of moving to a next state in one step; and Pπθ(s→ x, k + 1) =
∫
S Pπθ(s→ s′, k)Pπθ(s

′ →
x, 1) ds′ is the recursive form of the probability of reaching x from s after k + 1 by transitioning first
to s′ after k steps and finally from s′ to x in one last step. We also introduce for notation purposes
fπθ(s) =

∫
A∇θ (πθ(a|s))Qπθ(s,a) da. Expanding Equation (11) and introducing the defined quantities

8

we get

∇θVπθ(s) = fπθ(s) + γ

∫
A

∫
S
πθ(a|s)P

(
s′ | s,a

)
∇θVπθ(s

′) ds′ da

= fπθ(s) + γ

∫
S
Pπθ(s→ s′, 1)∇θVπθ(s

′) ds′

= fπθ(s) + γ

∫
S
Pπθ(s→ s′, 1)

(
fπθ(s

′) + γ

∫
S
Pπθ(s

′ → s′′, 1)∇θVπθ(s
′′) ds′′

)
ds′

= fπθ(s) + γ

∫
S
Pπθ(s→ s′, 1)fπθ(s

′) ds′ + γ2
∫
S
Pπθ(s→ s′′, 2)∇θVπθ(s

′′) ds′′

= . . .

=
∞∑
k=0

γk
∫
S
Pπθ(s→ x, k)fπθ(x) dx

=

∫
S

∞∑
k=0

γkPπθ(s→ x, k)︸ ︷︷ ︸
ηπθ (x)

fπθ(x) dx

=

∫
S
ηπθ(x)

∫
A
∇θ (πθ(a|x))Qπθ(x,a) dadx

=

∫
S
ηπθ(s

′) ds′
∫
S

ηπθ(x)∫
S ηπθ(s

′) ds′

∫
A
∇θ (πθ(a|x))Qπθ(x,a) dadx

=

∫
S
ηπθ(s

′) ds′
∫
S
µπθ(x)

∫
A
∇θ (πθ(a|x))Qπθ(x,a) dadx

∝
∫
S
µπθ(x)

∫
A
∇θ (πθ(a|x))Qπθ(x,a) dadx, (12)

where ηπθ is the discounted state visitation and µπθ(x) the discounted state distribution when starting
at state s and following the policy πθ.
By considering a single initial state, the policy gradient is the same as the value function gradient, and
using the log-ratio trick in Equation (10), we get

∇θJπθ ∝
∫
S
µπθ(s)

∫
A
∇θ (πθ(a|s))Qπθ(s,a) dads

=

∫
S
µπθ(s)

∫
A
πθ(a|s)∇θ (log πθ(a|s))Qπθ(s,a) dads

= Es∼µπθ (·),a∼πθ(·|s) [Qπθ(s,a)∇θ log πθ(a|s)] . (13)

Equation (13) is referred to as the (on-policy) Policy Gradient Theorem [35]. There are a couple of
important observations to make about this gradient estimator. The direct one is that an unbiased
estimate of the gradient can be computed by sampling directly from the environment. Hence, although
there is a dependence on the state distribution, its expression does not need to be known. Estimating by
sampling is particular important in this case, because as stated by Sutton et. al [21]: "...the effect of the
policy on the state distribution is a function of the environment and is typically unknown.". The other
important observation is that there is no gradient over the state distribution or the Q-function. The
main downside of the policy gradient theorem is that everytime the policy changes the state distribution
changes accordingly, so after each policy update a new rollout to estimate the gradient is needed.
Although computing the policy gradient with online trajectories is easy, in many scenarios consecutive
interactions with the environment are expensive and even not feasible. As detailed in Section 2.6, a
better way to work in robotic applications is by using off-policy data. Therefore, a more desirable
estimator is one that provides a gradient when presented with off-policy samples. Unfortunately there

9

is currently no unifying theorem for off-policy gradient estimation as there is for the on-policy case. In
this thesis we will focus on off-policy gradient estimation and in Chapter 3 we will present the current
different state-of-the-art approaches for its computation.

2.8. Policy Representations

When the state or action spaces are too large it is infeasible to store a tabular representation of the policy.
Hence, they are better represented compactly using a set of parameters. Here we consider the class of
differentiable policies that can be parameterized in different ways, with linear and nonlinear function
approximators, such as linear weighted combinations of features or neural networks, respectively.
A linearly parameterized policy is of the form θ>φ(s,a), where θ ∈ RD are the parameters and
φ(s,a) ∈ RD a state-action feature vector. In the case of a discrete set of actions, the softmax function
can be used to build a normalized probability mass function

πθ(a|s) =
exp

(
θ>φ(s,a)

)∑
z exp (θ>φ(s, z))

. (14)

For continuous and stochastic action spaces the policy can be represented using a Gaussian distribution

πθ(a|s) = N
(
a
∣∣∣µ = fθ(s),Σ = gθ(s)

)
,

with a mean parameterized by fθ and covariance by gθ. For complex representations, the linear policy
can be replaced with other parameterizations. For instance, fθ and gθ can be the outputs of a multi-head
neural network. The Gaussian is often a good choice because it easy to sample from and gradients can
be backpropagated using the reparameterization trick [44].

2.9. Kernel Density Estimation

Density estimation is the problem of finding the underlying probability distribution of a random variable
(or a set of random variables) given a dataset sampled from that distribution. It is of great importance
in Machine Learning, since many algorithms assume the distributions are known, for instance in any
Bayesian methods. There are generally two types of density models, parametric and nonparametric. As
the name suggests, parametric models describe a probability distribution solely using a number of fixed
parameters. For instance, the multivariate Gaussian distribution is fully described by its mean vector
and covariance matrix. On the contrary, nonparametric methods do not have a fixed set of parameters,
but rather describe the distribution using the set of data points. Naturally, parametric methods offer
the advantage of having a low memory footprint and fast inference complexity, but unfortunately if the
model is not complex enough we might not be able to capture all the details present in the data. A
telling example is if the true data distribution is multimodal but we model the density with a single
Gaussian, which is by definition unimodal. Nonparametric methods do not have these drawbacks,
since they do not assume a fixed model for the distribution, and additionally under infinite sample
assumptions they are able to fully express the underlying distribution [45]. As many nonparametric
models, the disadvantages are the large memory footprint and slow inference. Naively, one needs to
store the total number of samples and thus computing the density of a new data point is linear in the
number of samples [46].
Assume we wish to find the probability density p(x) of a random variable x ∈ RD, where the D-
dimensional space is Euclidean. The probability mass in a region R can be expressed as

P =

∫
R
p(x) dx.

Using N samples from the true density, {xi}Ni=1 , xi ∼ p(x), and assuming the region R is sufficiently

10

small such that the density is constant, we can show that p(x) is approximately [46]

p(x) ≈ K

NV
, (15)

where K is the number of points falling in region R, V is the volume of region R and N the number of
datapoints.
The two free parameters in Equation (15) are K and V , and their choice leads to two different approaches
of nonparametric estimation. For the case when K is fixed and V determined from the data we get a
k-nearest neighbours estimate. If V is fixed and K determined from the data we have a kernel density
estimation model. The approximation in Equation (15) can be shown to converge to the true density
for growing N , decreasing V and growing K [46].
In kernel density estimation the simplest way to determine K is to consider that R is a hypercube in
RD of side h centered in x. We define a kernel function k : RD ×RD → R nonnegative and normalized,
i.e., k(z) ≥ 0 and

∫
k(z) dz = 1 ∀z ∈ RD, as

k

(
x− xi
h

)
=

{
1, if xi is inside the hypercube centered at x
0, otherwise ,

from which it directly follows that the total number of points laying inside the hypercube is

K =

N∑
i=1

k

(
x− xi
h

)
. (16)

Substituting Equation (16) back into Equation (15) we get the simplest kernel density estimator based
on an hypercube in RD of side-length h

p(x) =
1

N

N∑
i=1

1

hD
k

(
x− xi
h

)
, (17)

where we used the fact that V = hD.
Using a hypercube as a kernel function can lead to discontinuous density estimations, which can be
problematic not only because the density is not smooth but also because if we need to compute gradients
of the kernel function we might not be able to. Therefore, an alternative to the hypercube is to use a
kernel that produces continuous and differentiable density functions, such as the multivariate Gaussian.
The estimation for the density at each point turns out

p(x) =
1

N

N∑
i=1

1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− xi)>Σ−1 (x− xi)

)
,

which can be seen as a sum of N Gaussians (normalized by 1/N), each centered in xi, where the
covariance matrix Σ can be interpreted as the hyperparameter h.
In Equation (17) we derived the density estimate only for a single variable. Very often we are interested
in modelling joint distributions. It is straightforward to extend Equation (17) by noting that by
definition a product of kernels is also a valid kernel [46]. Therefore, the joint distribution of a set of M
variables (x1, . . . ,xM) is

p
(
x1, . . . ,xM

)
=

1

N

N∑
i=1

M∏
l=1

1

hDll
kl

(
xl − xli
hl

)
, (18)

where each random variable xl ∈ RDl , and kl is the kernel corresponding to the joint variable l, with
corresponding bandwidth hl.

11

42024
0.00

0.25

true density
sampled data

h: 0.1
h: 0.8

h: 2.9

Figure 1.: Kernel density estimation with different bandwidths This figure illustrates the role
of the bandwidth in kernel density estimation. Here we use Gaussian kernels to approximate
the true density (in blue), which is a zero-mean and 1.5 standard deviation Gaussian, using
100 samples (in grey). In this setting, the bandwidth can be seen as the standard deviation
of the Gaussian. With small bandwidths (orange) the estimate tends to overfit the data,
while with large bandwidths (green) the model oversmooths the distribution. In red we
show a bandwidth that brings us closer to the true density.

A crucial part of kernel density estimation relies on choosing a good value for the hyperparameter
bandwidth h. As illustrated in Figure 1, a small value for h means that the estimation of p(x) takes
into account a very small amount of points around x, which tends to overfit the data, meaning the
kernel is very sensitive to noise. On the opposite, a large value of h leads to oversmooth estimations,
meaning we underfit to the dataset.
There are multiple ways to estimate the bandwidth. Statistical methods such as Silverman’s rule of
thumb minimize the integrated mean squared error and derive a closed form solution, but assume the
underlying distribution is known, for instance Gaussian [47]. Another approach is to assume the points
are i.i.d. (independent, identically, distributed) and maximize the likelihood function L

(
x1, . . . ,xN

∣∣∣h)
with respect to h [48]. For some kernel functions it results in maximum likelihood estimates in closed-
form, while for others one can use a gradient approach. Finally, a third method commonly used in ML
is to estimate h using k-fold Cross-Validation (CV) [49], by splitting the data into k sets (with the
same number of points), compute h based of k − 1 sets and validate the choice in the remaining set.
The optimal bandwidth is chosen as the one having the lowest mean squared error in the validation set.
Both the likelihood and the CV methods do not assume any type of distribution fixed a priori, and in
our empirical evaluations both led to identical results.
Kernel methods can be powerful density approximators but along with their linear (in the dataset size)
complexity for inference, they also suffer from the curse of dimensionality [50], since they measure
Euclidean distances in high-dimensional spaces.

2.10. Kernel Regression

Let us assume we are faced with a dataset of input-output pairs D ≡ {(xi, yi)}Ni=1 with xi ∈ RD and
yi = f(xi) + ε ∈ R, where f(x) : RD → R is called the regression function and ε represents the noise
in the measurement, often assumed to be zero-mean Gaussian distributed. In a regression problem
the goal is to find f(x) such that a loss function is minimized. One can show [46] that the regression

12

function that minimizes the expected squared error loss

E(x,y)∼p(x,y) [L(y, f(x))] =

∫
Y

∫
X

(y − f(x))2 p(x, y) dx dy

is the conditional expectation of y given x

f(x) = E [y | x] =

∫
yp(y | x) dy =

∫
y
p(x, y)

p(y)
dy. (19)

Introducing the kernel density estimates for the single (Equation (17)) and joint distribution (Equa-
tion (18)) cases in Equation (19), and using the notation kh(z) = 1/h · k(z/h), we get an approximate
regression function f̂(x) ≈ f(x)

f̂(x) =

∫
y
p̂(x, y)

p̂(x)
dy

=

∫
y 1
N

∑N
i=1 khx(x− xi)khy(y − yi)
1
N

∑N
j=1 khx(x− xj)

dy

=

∑N
i=1 khx(x− xi)

∫
ykhy(y − yi) dy∑N

j=1 khx(x− xj)

=

∑N
i=1 khx(x− xi)yi∑N
j=1 khx(x− xj)

, (20)

where
∫
ykhy(y− yi) dy = yi can be proved with a change of variables and assuming a zero mean kernel,

i.e., with
∫
k(z)z dz = 0.

Equation (20) is the Nadaraya-Watson regression [51, 52], or simply just kernel regression. It can be
seen as a weighted average of y1, . . . , yN , where the weights are related to how similar the desired point
x is to each of the points in the dataset x1, . . . ,xN . Therefore, it computes a local mean around x. In
Figure 2 we show how this local mean is affected by different values of bandwidth.
Kernel regression can in theory approximate any function locally, provided with infinite samples and
decreasing bandwidth, in contrary to parametric methods, which are constrained to a model class and
the number of parameters. Although evaluating a new data point is linear in the number of samples,
by using kernels we can work directly in infinite dimensional spaces (e.g., using a Radial Basis Function
kernel) and avoid the conversion to a fixed feature space.

2.11. Integral Equations of the Second Kind and the Galerkin
Projection

A Fredholm integral equation of the second kind has the form

λx(s)−
∫
D
K(s, t)x(t) dt = y(s) ∀s ∈ D, (21)

where D ⊂ Rm is a closed bounded set, m ≥ 1, λ 6= 0, and K(s, t) is an absolutely integrable
function [53]. We want to find the solution for the function x, given λ and y 6= 0 (if y = 0 we have an
eigenvalue-eigenfunction problem). Solving this equation explicitly is a hard problem. Therefore, we
find an approximate numerical solution x̃ of x, by projecting x to a space spanned by a finite family of
functions.
Equation (21) can also be written as (λ − K)x = y, where K is a compact operator on a complete
normed vector space (Banach space), for instance the 2-normed space L2(D). Let x be a function from
the space of functions X , x ∈ X , and consider a subset Xn ⊂ X , as the set of functions spanned by n

13

0.0 0.5 1.0 1.5 2.0
x

0

5y

true function
sampled data

h: 0.01
h: 0.1

h: 1.0

Figure 2.: Kernel regression with different bandwidths This figure illustrates the role of the
bandwidth in kernel regression. Here we approximate the function f(x) = 2x3−1.5x2−2x+3
(blue line) in the region x ∈ [0, 2]. We generate 15 pairs (xi, yi), where yi = f(xi) + ε,
with ε ∼ N (µ = 0, σ = 0.2), from which we estimate f(x) with kernel regression, using a
Gaussian kernel with varying bandwidths. With a large bandwidth (green) the estimate is
very poor, leading to an almost constant value everywhere, since every data point receives
very similar weights. Although in this case a very small bandwidth (yellow) approximates
fairly well the desired function, it contains flat regions, because it only considers data
points from a small neighbourhood. Flat and steep regions can be problematic if we need to
differentiate the kernel function, since the gradient will be zero or infinite in many regions.
A more plausible value for the bandwidth is shown in red, giving a smoother approximation
of the true function.

basis functions {b1, . . . , bn}. We can describe a function x̃ in the space Xn as a linear combination of
the basis functions

x̃(s) =
n∑
j=1

cjbj(s) ∀s ∈ D, (22)

where the real coefficients cj are to be found.

By introducing the approximation from Equation (22) in Equation (21) we can compute a residual
when approximating x with x̃

r̃(s) = λx̃(s)−
∫
D
K(s, t)x̃(t) dt− y(s)

=

n∑
j=1

cj

(
λbj(s)−

∫
D
K(s, t)bj(t) dt

)
− y(s) ∀s ∈ D, (23)

where cj are determined such that r̃ is approximately zero.

The Galerkin projection method requires the inner product between the residuals and the basis functions
to be zero

〈r̃, bi〉 = 0 for i = 1, . . . , n, (24)

where 〈·, ·〉 is the inner product for the space X , which in a real vector space of continuous functions of
domain D can be written as 〈f, g〉 =

∫
D f(x)g(x) dx.

14

Applying Equation (24) to Equation (23) we obtain

n∑
j=1

cj

(
λ〈bj(s), bi(s)〉 − 〈

∫
D
K(s, t)bj(t) dt, bi(s)〉

)
− 〈y(s), bi(s)〉 = 0 for i = 1, . . . , n

n∑
j=1

cj

(
λ

∫
D
bj(s)bi(s) ds−

∫
D

(∫
D
K(s, t)bj(t) dt

)
bi(s) ds

)
−
∫
D
y(s)bi(s) ds = 0 for i = 1, . . . , n,

which can be viewed as a linear system of equations being solved for {c1, . . . , cn}. Additionally, it can
be shown that the solution for this problem exists and is unique [53].
Notice that if the basis functions are probability density functions, then Equation (24) can be seen as
the expectation of the residuals under each of the n basis functions.

15

3. Related Work

The Policy Gradient Theorem [35] offers a powerful way to estimate the gradient of the objective
function via an expectation. In an on-policy setting it is easily computed with Monte Carlo sampling by
direct interaction with the environment, for instance using the REINFORCE algorithm [36]. However,
every time the policy is updated the state distribution changes accordingly, meaning that new samples
are needed to estimate the next gradient step. The successive interactions are the main cause of high
sample complexity. One way to improve sample efficiency is to prevent the state-action distribution
induced by the optimized policy begin far from the samples [37], or by sampling trajectories with
policies close to the previous optimized one [38, 41], by specifying a threshold for the Kullback–Leibler
(KL) divergence.
Off-policy algorithms promise better sample efficiency by optimizing the policy with data collected
from different sources, for instance using human demonstrations or a suboptimal policy. However,
devising a gradient estimate for off-policy data is not simple, because the state distributions under the
behavioural and target policies do not exactly match. In the rest of this section we give an overview
on algorithms for off-policy gradient estimation, separated into three classes: Pathwise Importance
Sampling; Off-Policy Semi-Gradient; Model-based Policy Gradient.

3.1. Pathwise Importance Sampling

Importance Sampling (IS) methods allow to estimate an expectation of a quantity under a density
function that is impractical to sample but easy to evaluate at a desired point [46]. In off-policy learning,
this distribution is the policy being optimized πθ. Using a different distribution β that we can easily
sample from, IS computes the expectation and corrects the bias from sampling from β. To compute
an expectation under πθ the most straightforward way is to sample from β and correct the prediction
just using the IS weights πθ(z)/β(z), since Ez∼πθ [f(z)] = Ez∼β[πθ(z)/β(z)f(z)]. Although simple, IS
methods have some flaws. If IS weights are low in regions where the behavioural policy is largely dense
and high in the opposite case, it often produces high variance estimates and can lead to numerical
issues. Therefore, IS methods are suited when both distributions are close.
We denote by Pathwise Importance Sampling (PWIS) the algorithms that weigh trajectories using
IS. The first PWIS approaches to off-policy gradient estimation in MDPs and in Partially Observable
MDPs (POMDPs) were presented in [43], where the authors apply IS and weighted IS on top of the
REINFORCE algorithm [36]. Let us consider the probability of a trajectory τ sampled with πθ and
assuming a Markovian environment, pπθ(τ) = p(s0)

∏T−1
t=0 πθ(at | st)p(st+1 | st,at). REINFORCE’s

gradient estimation is an expectation over on-policy trajectories, ∇θJπθ = Epπθ (τ) [R(τ)∇θ log pπθ(τ)],
where R(τ) is the (discounted) return of the sampled trajectory τ . If we can only sample from a
behavioural policy β, we can still compute and expectation over pπθ by correcting the trajectories’
probabilities using Epπθ (τ) [f(τ)] = Epβ(τ)

[
pπθ(τ)
pβ(τ)

f(τ)
]

= Epβ(τ)
[∏T−1

t=0
πθ(at|st)
β(at|st) f(τ)

]
, where in the

ratio between trajectories’ probabilities the transition probabilities cancel out [21]. Hence, a simple
modification to REINFORCE using IS leads to

∇θJπθ = Epβ(τ)

[
T−1∏
t=0

πθ(at | st)
β(at | st)

R(τ)∇θ log pπθ(τ)

]
.

Notice that the transition probabilities of the environment’s dynamics do not need to be explicitly
known, because ∇θ log pπθ(τ) = ∇θ

∑T−1
t=0 log πθ(at | st). This estimate can be further improved by

17

noticing that future actions do not influence past rewards [54].
Variations that deal with common IS problems have been developed along the years. For instance, in
Guided Policy Search [40] the authors add a regularizer term to the straightforward IS formulation
that ensures that some samples drawn from the behavioural policy are very probable under the target
policy, and additionally controls how distant from the samples the target policy is allowed to differ.
More recently Imani et. al [55] introduced an emphatically weighted policy gradient, which also uses
importance sampling to correct for the off-policy state distribution. However the authors refer that
to extend the algorithm to continuous action domains an alternative to importance sampling ratios is
needed.
Although PWIS methods seem suited for off-policy learning, their main downsides are the possibly
large variance estimates and that one needs to know the (stochastic) behavioural policy used to collect
the off-policy samples. The latter limits the applicability in some scenarios where it is not easy to
access the exact behavioural policy, such as in human demonstrations.

3.2. Off-Policy Semi-Gradient

The off-policy policy gradient theorem was first proposed by Degris et. al [15] as part of the first
off-policy actor-critic (Off-PAC) algorithm. The authors consider a modified discounted infinite-horizon
objective

Ĵπθ = Es∼µβ(·) [Vπθ(s)] =

∫
S
µβ(s)Vπθ(s) ds, (25)

where µβ is the state distribution under the behavioural policy β. It is difficult to reason on this
objective, because the value function is defined for πθ but the expectation is taken under µβ . Futhermore,
the authors derive the gradient as

∇θĴπθ = ∇θ
∫
S
µβ(s)

∫
A
πθ(a | s)Qπθ(s,a) da

=

∫
S
µβ(s)

∫
A
Qπθ(s,a)∇θπθ(a | s) + πθ(a | s)∇θQπθ(s,a) da

≈
∫
S
µβ(s)

∫
A
Qπθ(s,a)∇θπθ(a | s) da,

where the term πθ(a | s)∇θQπθ(s,a) is dropped because it is difficult to estimate with off-policy
data [15]. The authors justify this approximation and provide a proof that guarantees improvement at
every gradient step for discrete MDPs. By ignoring the referred term, Off-PAC and other algorithms
built on top of the off-policy gradient theorem, such as Deterministic Policy Gradient (DPG) [16] and
Deep DPG (DDPG) [39], are coined as semi-gradient algorithms.
We argue that the approximations made by semi-gradient algorithms introduce a bias in the gradient
estimate, which is one of the reasons why they cannot deal with truly off-policy samples. A common
way for RL algorithms to deal with this issue is by forcing the distributions induced by the target and
behavioral policies to be close, following the ideas from Relative Entropy Policy Search (REPS) [37].
For instance, the replay buffer in DDPG is filled with samples from consecutive policies. If the policy
parameters do not change abruptly, the samples in the buffer mimic an on-policy setting to a certain
extent.
Fujimoto et. al [17] argued that learning algorithms based on sampling from a replay buffer fail in truly
off-policy settings. The authors introduced the extrapolation error to denote the error made by learning
algorithms that sample from a replay buffer with a data distribution that does not match the one
induced by the current target policy. Their approach to reduce the extrapolation error is to generate for
each state candidate actions that match the distribution in the batch and select the action with highest
value from a learned Q-function, leading to the Batch-Constrained Deep Q-Learning (BCQ) algorithm.

18

3.3. Model-based Policy Gradient

A third way to perform policy gradients with off-policy data is by constructing a model of the underlying
MDP. A dataset of transitions is used to model the transition probability of the dynamics and the
reward function, from which we can compute the gradient. Since the transitions can come from any
policy, most model-based algorithms can be classified as off-policy methods.
Wang et. al [56] solve the policy gradient with the online Model Based Policy Gradient (MBPG)
algorithm. The agent explores the environment and learns tabular representations of small models for
the transition probability matrix and reward function, which then can be used to compute the value
function and the state distribution as in Equation (5) and Equation (6), allowing for a solution of the
policy gradient similar to the Policy Gradient Theorem as

∇θJπθ =
∑
s

Nπθ(s)
∑
a

∇θπθ(a | s)
∑
s′

P (s′ | s,a)
(
R(s′ | s,a) + Vπθ(s

′)
)
,

where Nπθ(s) is the expected number of visits to state s when following πθ. To update the parameters
the authors use a line search algorithm to determine the step size. To keep the model and computations
tractable, in successive iteration steps the state-action pairs that are not relevant to update πθ are
discarded. One of the drawbacks of the MBPG algorithm is that it needs to throw away information to
be able to build small models of the underlying MDP.
A remarkable example in the class of model-based algorithms is PILCO [9], which learns a probabilistic
dynamics model using Gaussian Processes (GPs) regression. By incorporating the modelling uncertainty
expressed in the GP, the authors claim it reduces the model-bias. PILCO can learn from scratch
with very few samples, making it one of the currently most sample efficient algorithms. To derive
a policy gradient in closed-form, PILCO uses moment matching to approximate the distribution
over the next state and propagates the gradient through time to update the policy parameters. One
important drawback of PILCO is that by performing moment matching it is not able to learn multimodal
transitions, which restricts the class of tasks it can solve.

19

4. Nonparametric Off-Policy Policy Gradient

4.1. Problem Definition

Off-policy sample efficient RL algorithms are crucial for real systems applications. Although recent
algorithms perform well in simulated environments, such as the Mujoco physics engine [57], considering
the amount of samples needed, sometimes in the order of millions, it would be infeasible to learn directly
in the real world, not only due to the required time but also because of hardware wear and tear. A
plausible approach is to learn the control policy in simulation and apply it directly in the real world
with very little fine-tuning [58]. The problem with simulators is that it is difficult to model all the
possible intricacies of interactions, such as friction or measurement noise. A path to obtain sample
efficiency is by building a model using information collected directly from the environment, from which
we can further sample from, thus reducing the direct interaction with the world. Naturally, building an
imperfect model gives rise to other problems, such as the model-bias, which arises from optimizing the
policy with data from a model and not from the true environment [59, 9].
Our approach is to derive a policy search gradient-based method to improve sample efficiency, by
modelling the environment dynamics with nonparametric density estimation, using a dataset of pre-
collected on- or off-policy samples from the environment. As is common in policy gradient methods, let
us define the discounted infinite-horizon starting state objective

Jπθ = Es∼µ0(·) [Vπθ(s)] =

∫
S
µ0(s)Vπθ(s) ds, (26)

where µ0(s) is the initial state distribution and Vπθ(s) the value function at state s.
If the policy being optimized is stochastic, the value function turns out

Vπθ(s) =Ea∼πθ(·|s)
[
R (s,a) + γEs′∼P (·|s,a)

[
Vπθ(s

′)
]]

=

∫
A
πθ(a | s)

(
R (s,a) + γ

∫
S
P
(
s′ | s,a

)
Vπθ(s

′) ds′
)

da ∀s ∈ S, (27)

while if it is deterministic we drop the expectation over the actions

Vπθ(s) = R(s, πθ(s)) + γ

∫
S
P (s′ | s, πθ(s))Vπθ(s

′) ds′ ∀s ∈ S. (28)

In this chapter we will present our findings relative to the stochastic policy case, since it is more general
than the deterministic one. Nevertheless, the derivations for the latter are straightforward to obtain.
The problem we want to solve is to maximize the objective in Equation (26), while complying with the
value function constraints

max
θ

Jπθ =

∫
S
µ0(s)Vπθ(s) ds

s.t. Vπθ(s) =

∫
A
πθ(a | s)

(
R (s,a) + γ

∫
S
P
(
s′ | s,a

)
Vπθ(s

′) ds′
)

da ∀s ∈ S. (29)

Notice that it is not straightforward to extract a closed-form solution for the policy parameters (outside
the Linear-Quadratic-Regulator assumptions), as the optimization problem presented above may include
non-convex constraints over the whole continuous state space represented by the recursion in the value
function. However, we can search for an approximate solution directly in the policy parameters space

21

by updating them using the gradient ascent from Equation (9).
Our goal is to compute an estimate for the policy gradient ∇θJπθ , which is equivalent to finding ∇θVπθ ,
when provided with trajectories collected offline and without explicitly knowledge of the behavioural
policy. For that we will build a model of the transition density and reward functions. Of course when
a model is present one could possibly use the Policy Gradient Theorem and compute the gradient
estimate by running rollouts. However, we are interested in getting a closed-form solution without
needing to sample.

4.2. Nonparametric Bellman Equation

As it is intractable to take into account the possibly infinitely many constraints of the optimization
problem in Equation (29), following the ideas of Nonparametric Dynamic Programming from Kroemer
et. al [18], we replace those constraints with a subset of linear constraints based on collected samples.
However, whereas in [18] the authors derive a policy evaluation step without explicitly declaring the
policy, we always keep the policy throughout the derivation, which allows to write the value function
based on the current policy parameters.
For the probabilistic transitions of dynamical systems one is usually interested in the conditional proba-
bility of the next state given the current state-action pair P (s′ | s,a). A more informative quantity is the
joint probability distribution P (s,a, s′), from which we can easily compute the desired conditional distri-
bution using Bayes rule by marginalizing out the next state, P (s′ | s,a) = P (s,a, s′) /

∫
P (s,a, s′) ds′.

To represent the joint probability distribution we use kernel density estimation by assuming we only
have a finite number of n available transition samples collected in a dataset D ≡ {si,ai, ri, s′}ni=1. Here
si ∈ RdS can be any state, ai ∈ RdA is sampled from an unknown behavourial policy β, which can be
independent of the current state, s′i ∈ RdS is sampled from an underlying probability distribution of the
environment by taking action ai in state si, s′i ∼ P (s′ | si,ai), and ri is sampled from the unknown
reward function ri ∼ R (si,ai).
Let us define three different kernel functions ψ, ϕ and φ, for the current state, action and next state,
respectively, as

ψ : S × S → R+ (30)
ϕ : A×A → R+ (31)
φ : S × S → R+, (32)

where they need to be normalized, e.g.,
∫
ψ(x,y) dx = 1 ∀y, symmetric and positive definite [18]. In

practice, the current state kernel ψ and the next state kernel φ are the same. Moreover, we define
bandwidths for each kernel, hψ, hϕ and hφ. For notation purposes we rewrite the kernel functions
of any input and a collected sample i from the dataset D with ψi(s) = ψ(s, si), ϕi(a) = ϕ(a,ai)
and φi(s′) = φ(s′, s′i). This notation is slightly different from the one introduced in Section 2.9 and
Section 2.10, but more readable in the following derivations, e.g., ψ(x,xi) would be equivalent to
ψhψ(x− xi).
If the next state conditional probability density is approximated with kernel density estimation it follows

P (s,a, s′) ≈ P̂ (s,a, s′) :=
1

n

n∑
i=1

ψi(s)ϕi(a)φi(s
′)

P (s,a) ≈ P̂ (s,a) :=
1

n

n∑
i=1

ψi(s)ϕi(a)

P (s′ | s,a) ≈ P̂ (s′ | s,a) :=

∑n
i=1 ψi(s)ϕi(a)φi(s

′)∑n
j=1 ψj(s)ϕj(a)

.

22

Similarly, the reward function is approximated with the Nadaraya-Watson (kernel) regression [51, 52]

R(s,a) ≈ R̂(s,a) :=

∑n
i=1 ψi(s)ϕi(a)ri∑n
j=1 ψj(s)ϕj(a)

.

We can now replace the approximate reward function and transition conditional probability back into
the value function constraint of Equation (27) to obtain an approximation for the value function
V̂πθ(s) ≈ Vπθ(s), leading to the Nonparametric Bellman Equation (NPBE)

V̂πθ(s) =

∫
A
πθ(a | s)

(
R̂ (s,a) + γ

∫
S
P̂
(
s′ | s,a

)
V̂πθ(s

′) ds′
)

da

=

∫
A
πθ(a | s)R̂ (s,a) da+ γ

∫
A

∫
S
πθ(a | s)P̂

(
s′ | s,a

)
V̂πθ(s

′) ds′ da

=

∫
A
πθ(a | s)

∑n
i=1 ψi(s)ϕi(a)ri∑n
j=1 ψj(s)ϕj(a)

da+ γ

∫
A

∫
S
πθ(a | s)

∑n
i=1 ψi(s)ϕi(a)φi(s

′)∑n
j=1 ψj(s)ϕj(a)

V̂πθ(s
′) ds′ da

=

n∑
i=1

(∫
A
πθ(a | s)

ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)

da

)
︸ ︷︷ ︸

ε
πθ
i (s)

ri

+ γ
n∑
i=1

(∫
A
πθ(a | s)

ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)

da

)
︸ ︷︷ ︸

ε
πθ
i (s)

∫
S
φi(s

′)V̂πθ(s
′) ds′

= ε>πθ(s)r + γ

∫
S
ε>πθ(s)φ(s′)V̂πθ(s

′) ds′ ∀s ∈ S, (33)

where we have defined r = [r1, . . . , rn]>, φ(s′) = [φ1(s
′), . . . , φn(s′)]>, and the basis functions

επθi (s) =

∫
A πθ(a | s)

ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)

da if πθ is stochastic
ψi(s)ϕi(πθ(s))∑n
j=1 ψj(s)ϕj(πθ(s))

if πθ is deterministic
for i = 1, . . . , n. (34)

Additionally, we make use of the special case of Fubini’s Theorem to interchange the integral and
summation order [60] (in various steps of the derivations we will use this theorem again without
explicitly referring to it).

Notice that επθ(s) is a valid distribution, because following the kernel and policy definitions we have
επθi (s) ≥ 0 and

n∑
i=1

επθi (s) =

n∑
i=1

∫
A
πθ(a | s)

ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)

da

=

∫
A
πθ(a | s)

∑n
i=1 ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)︸ ︷︷ ︸

=1

da

=

∫
A
πθ(a | s) da = 1 ∀s ∈ S.

Equation (33) is similar to a Fredholm Integral Equation of the Second Kind (Equation (21)). When

23

comparing both equations we have

V̂πθ(s)︸ ︷︷ ︸
λx(s)

−
∫
S
γε>πθ(s)φ(s′)︸ ︷︷ ︸

K(s,t)

V̂πθ(s
′)︸ ︷︷ ︸

x(t)

ds′ = ε>πθ(s)r︸ ︷︷ ︸
y(s)

∀s ∈ S, (35)

with λ = 1 and t ≡ s′. Hence, as initially done in Kromer et. al [18], we can write an approximation for
the value function in closed form as a linear combination of basis functions

V̂πθ(s) = ε>πθ(s)

(
r + γ

∫
S
φ(s′)V̂πθ(s

′) ds′
)

= ε>πθ(s)qπθ (36)

=
n∑
i

επθi (s)qπθi ∀s ∈ S,

where επθ = [επθ1 , . . . , ε
πθ
n]> are the n basis functions to project Vπθ onto, and qπθ = [qπθ1 , . . . , qπθn]>

can be interpreted as the value weights, with qπθi =
(
ri + γ

∫
S φi(s

′)V̂πθ(s
′) ds′

)
for i = 1, . . . , n.

Notice that differently from [18] we explicitly leave the dependency of the value function on the policy
parameters. Since the basis are density functions, the value weights can be computed with the Galerking
projection method by taking the expectation of Equation (33) with respect to each of the basis functions.
Therefore, we project the value function defined over the whole state space onto the space spanned by
the n basis functions, thus transforming an infinite set of constraints in a finite set of n constraints

Eεπθh (s)

[
V̂πθ(s)

]
= Eεπθh (s)

[
ε>πθ(s)r + γ

∫
S
ε>πθ(s)φ(s′)V̂πθ(s

′) ds′
]

for h = 1, . . . , n.

Introducing the value function computed in Equation (36) we obtain

Eεπθh (s)

[
επθ(s)

>qπθ

]
= Eεπθh (s)

[
ε>πθ(s)r + γ

∫
S
ε>πθ(s)φ(s′)επθ(s

′)>qπθ ds′
]

for h = 1, . . . , n

∫
S ε

πθ
1 (s)επθ(s)

>qπθ ds
...∫

S ε
πθ
n (s)επθ(s)

>qπθ ds

 =

∫
S ε

πθ
1 (s)επθ(s)

>r ds+ γ
∫
S ε

πθ
1 (s)

∫
S ε
>
πθ

(s)φ(s′)επθ(s
′)>qπθ ds′ ds

...∫
S ε

πθ
n (s)επθ(s)

>r ds+ γ
∫
S ε

πθ
n (s)

∫
S ε
>
πθ

(s)φ(s′)επθ(s
′)>qπθ ds′ ds

∫
S
επθ(s)επθ(s)

> ds︸ ︷︷ ︸
Cπθ∈Rn×n

qπθ =

∫
S
επθ(s)επθ(s)

> ds r + γ

∫
S
επθ(s)επθ(s)

> ds

∫
S
φ(s′)επθ(s

′)
>

ds′︸ ︷︷ ︸
P̂πθ∈Rn×n

qπθ

Cπθqπθ = Cπθr + γCπθP̂πθqπθ , (37)

where we defined P̂ πθij = Es′∼φi(·)
[
επθj (s′)

]
=
∫
S φi(s

′)επθj (s′) ds′ and Cπθ =
∫
S επθ(s)επθ(s)

> ds.

24

Additionally, we state that P̂πθ is a (right) stochastic matrix, since each row sums up to 1

n∑
j=1

P̂ πθij =

n∑
j=1

∫
S
φi(s

′)επθj (s′) ds′

=

∫
S
φi(s

′)
n∑
j=1

επθj (s′)︸ ︷︷ ︸
=1

ds′

=

∫
S
φi(s

′) ds′ = 1 ∀i = 1, . . . , n.

To remove Cπθ from Equation (37) we need to assure that its inverse exists. In fact, Cπθ is only singular
if two basis functions are the same, which would happen for the deterministic policy case if two samples
were coincident. Finally we can express the value weights as

C−1πθ Cπθqπθ = C−1πθ Cπθr + γC−1πθ CπθP̂πθqπθ

qπθ = r + γP̂πθqπθ

qπθ =
(
I− γP̂πθ

)−1
r = Λ−1πθ r. (38)

The matrix Λπθ is always invertible because its eigenvalues are all non negative. Since P̂πθ is a stochastic
matrix all its eigenvalues are in absolute value less or equal than 1, and the eigenvalues of Λπθ are
≥ 1− γ > 0 for γ ∈ [0, 1) [61].

Therefore, the value function for the whole state space assumes a solution as stated by the following
theorem.

Theorem 1. The closed form solution of the Nonparametric Bellman Equation for every point
in the state space, supported by the values from qπθ , has a unique fixed-point solution

V̂πθ(s) := επθ(s)
>qπθ = επθ(s)

>Λ−1πθ r ∀s ∈ S. (39)

Proof. We need to show that

V̂πθ(s)− ε
>
πθ

(s)

(
r + γ

∫
S
φ(s′)V̂πθ(s

′) ds′
)

= 0 ∀s ∈ S. (40)

Plugging the solution for the nonparametric bellman equation we get

ε>πθ(s)Λ
−1
πθ
r − ε>πθ

(
r + γ

∫
S
φ(s′)ε>πθ(s

′)Λ−1πθ r ds′
)

= ε>πθ(s)

(
Λ−1πθ r − r − γ

∫
S
φ(s′)ε>πθ(s

′)Λ−1πθ r ds′
)

= ε>πθ(s)

((
I− γ

∫
S
φ(s′)ε>πθ(s

′) ds′
)

Λ−1πθ r − r
)

= ε>πθ(s)
(
ΛπθΛ

−1
πθ
r − r

)
= 0 ∀s ∈ S.

25

4.3. Policy Gradient

With a closed-form solution for the value function in Equation (39) we are now able to derive an analytical
gradient of the objective also in closed-form. We start by taking the gradient of the nonparametric
value function with respect to the policy parameters

∇θV̂πθ(s) = ∇θ
(
ε>πθ(s)Λ

−1
πθ
r
)

=

(
∂

∂θ
ε>πθ(s)

)
Λ−1πθ r + ε>πθ(s)

(
∂

∂θ
Λ−1πθ

)
r

=

(
∂

∂θ
ε>πθ(s)

)
Λ−1πθ r + ε>πθ(s)

(
−Λ−1πθ

(
∂

∂θ
Λπθ

)
Λ−1πθ

)
r

=

(
∂

∂θ
ε>πθ(s)

)
Λ−1πθ r + ε>πθ(s)

(
−Λ−1πθ

(
∂

∂θ

(
I− γP̂πθ

))
Λ−1πθ

)
r

=

(
∂

∂θ
ε>πθ(s)

)
Λ−1πθ r + γε>πθ(s)Λ

−1
πθ

(
∂

∂θ
P̂πθ

)
Λ−1πθ r

=

(
∂

∂θ
ε>πθ(s)

)
qπθ + γε>πθ(s)Λ

−1
πθ

(
∂

∂θ
P̂πθ

)
qπθ ∀s ∈ S. (41)

Replacing Equation (41) in the objective defined in Equation (26) we obtain

∇θĴπθ := ∇θ
∫
S
µ0(s)V̂πθ(s) ds ≈

∫
S
µ0(s)∇θVπθ(s) ds = ∇θJπθ

∇θĴπθ =

∫
S
µ0(s)

((
∂

∂θ
ε>πθ(s)

)
qπθ + γε>πθ(s)Λ

−1
πθ

(
∂

∂θ
P̂πθ

)
qπθ

)
ds

=

(∫
S
µ0(s)

∂

∂θ
ε>πθ(s) ds

)
qπθ + γ

(∫
S
µ0(s)ε

>
πθ

(s) ds

)
Λ−1πθ

(
∂

∂θ
P̂πθ

)
qπθ

=

(
∂

∂θ

∫
S
µ0(s)ε

>
πθ

(s) ds

)
qπθ + γε>πθ,0Λ

−1
πθ

(
∂

∂θ
P̂πθ

)
qπθ

=

(
∂

∂θ
ε>πθ,0

)
qπθ + γε>πθ,0Λ

−1
πθ

(
∂

∂θ
P̂πθ

)
qπθ , (42)

where we introduced ε>πθ,0 =
∫
S µ0(s)ε

>
πθ

(s) ds.
We can further simplify Equation (42) by introducing a new quantity µπθ that we conjecture to be the
support points of the (unnormalized) state distribution, since it follows that

µ>πθ = ε>πθ,0Λ
−1
πθ

µπθ = Λ−>πθ επθ,0

Λ>πθµπθ = επθ,0(
I− γP̂>πθ

)
µπθ = επθ,0

µπθ = επθ,0 + γP̂>πθµπθ . (43)

Notice the similarities between Equation (43) and Equation (6). For discrete MDPs the first term is
the initial state distribution while in a nonparametric modelling we compute an average initial state
distribution based on the collected samples. In Chapter 5 we will show empirically that this quantity
does provide an estimate of the state distribution over the whole state-space.
Similarly to the extrapolation of the value function for the whole state space (Equation (39)), the state
distribution can be computed based on the support points as

µπθ(s) := ε>πθ(s)µπθ ∀s ∈ S. (44)

26

Replacing the state distribution into Equation (42) we introduce the Nonparametric Off-Policy Policy
Gradient Theorem.

Theorem 2. For a dataset of samples D ≡ {si,ai, ri, s′}ni=1 collected in an off-policy manner with any
behavourial policy β, transition dynamics modelled with kernel density estimation and reward function
with kernel regression, the Nonparametric Off-Policy Policy Gradient is given by

∇θĴπθ =

(
∂

∂θ
ε>πθ,0

)
qπθ + γµ>πθ

(
∂

∂θ
P̂πθ

)
qπθ . (45)

The Nonparametric Off-Policy Policy Gradient has a closed-form solution in the sense that the gradient
is not estimated by sampling from the environment (or the model) as in pure on-policy policy gradient.
Moreover, once we have sufficiently many samples to describe the dynamics and the reward function,
no further interaction with the environment is required. Hence, the policy gradient can be estimated in
a truly offline and off-policy setting.
Notice that contrary to Off-PAC [15] we started from a well understood and sound objective function
and do not exclude any terms when computing the gradient. Therefore, we conjecture (but do not
prove it) that the only source of bias in the gradient is if the model is itself biased.

4.4. Why Nonparametric Modelling

An advantage of nonparametric over parametric density estimation models is that they are theoretically
guaranteed to be consistent estimators, because as the number of samples grows to infinity and with
shrinking bandwidths, the estimates converge to the true density function [45].
The Nadaraya-Watson estimator computes a regression as a local mean and introduces two sources of
bias [62]. The first is the design-bias, which is related to how the samples are obtained, since it depends
on a term of the form β′(x)/β(x), where β is the sampling distribution. The second is the boundary bias,
resulting from a high bias near the boundaries. It can be shown that with mild continuity conditions
on the regression function and on the sampling distribution, with Gaussian kernels and in the limit
of infinite number of samples and bandwidths converging to zero, the bias of the Nadaraya-Watson
regression tends to zero, and more importantly does not depend on the sampling distribution. This
result can be further used to prove that the bias of the solution of the Nonparametric Bellman Equation
also shrinks to zero under the same conditions.
Even though principled, kernel density estimation and regression models have two major downsides.
They suffer from the curse of dimensionality and their naive inference complexity is O(n), where n is the
number of samples. Therefore, scaling to high-dimensional state and action spaces is not elementary.

4.5. Implementation Details

Although we presented a way to derive an expression for the policy gradient in closed form in Equa-
tion (45), a correct implementation still needs to choose which kernel to use, the right bandwidth and
estimate quantities involving integrals. For the latter, most quantities can be seen as expectations of
random variables and thus straightforwardly solved using Monte Carlo integration techniques [63].
The choice of the kernel functions and their bandwidths should not be overlooked. Different choices
are possible, but in order to get smooth and differentiable density models we chose the Multivariate
Gaussian [64], which satisfies the conditions imposed in Section 4.2. We consider in practical implemen-
tations each dimension of the state and action features to be independent [9, 29], i.e., their bandwidths
can be described as diagonal matrices, hψ,hφ ∈ RdS and hϕ ∈ RdA , where dS is the number of state
dimensions and dA the number of action dimensions. With this definition of bandwidth we can write

27

the kernel function as (for instance for ψ)

ψ(s, si) =
1√

(2π)k|diag(hψ)|
exp

{
−1

2
(s− si)>diag(hψ)−1(s− si)

}
where diag refers to the diagonal matrix and |X| the determinant of the matrix X.

As already referred in Section 2.9, there are multiple ways to estimate the bandwidths. We opt to chose
them via cross-validation. The candidate bandwidths are picked from the interval [hsilv − α;hsilv + α],
where hsilv is the bandwidth estimated with Silverman’s rule of thumb, and α an hyperparameter.

We now detail how to compute the quantities involving integral computations. We approximate each
entry of επθ(s) and επθ,0 with Monte Carlo sampling as

επθi (s) =

∫
A
πθ(a | s)

ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)

da

≈ 1

NMC
π

NMC
π∑
z=1

ψi(s)ϕi(az)∑n
j=1 ψj(s)ϕj(az)

with az ∼ πθ(· | s), (46)

επθ,0i =

∫
S
µ0(s)ε

πθ
i (s) ds

≈ 1

NMC
µ0

NMC
µ0∑
z=1

επθi (sz) with sz ∼ µ0(·). (47)

For many environments, although the state distribution might change depending on the task at hand,
we can consider the existence of a single initial state s0. For instance, a robot arm may return to an
initial position after performing a selected task. In such scenarios, the integral in Equation (47) reduces
to επθ,0i = επθi (s0).

To estimate the entries of matrix P̂πθ we also use Monte Carlo integration. However, a better
approximation is to consider that with a large amount of samples we may set a very small kernel
bandwidth and approximate the integral by taking the mean of φi(·), which is just the sampled next
state s′i

P̂ πθij =

∫
s
φi(s

′)επθj (s′) ds′ (48)

≈ 1

NMC
φ

NMC
φ∑
z=1

επθj (s′z) with s′z ∼ φi(·) (49)

≈ επθj (s′i) with ||hφ|| small enough. (50)

Due to the nature of kernels, many entries of P̂πθ are close to zero, as depicted in Figure 3. Hence, a
reasonable (and crucial) approximation is to sparsify P̂πθ and only keep the k largest values of each
row, at a cost of O(k · log n) per row [65], directly reducing the memory of storing P̂πθ from O(n2) to
O(k n). Although additional computational cost for sparsifying P̂πθ is required, having a sparse matrix
outweighs that cost, since many matrix operations are more computational efficient when matrices
are sparse. The question that remains is how to choose k. In Figure 4 we depict how the mean KL
divergence per row between the original and sparse matrix changes with the number of elements kept.
We define the optimal k (k∗), as the minimum k such that the average KL divergence per row is below

28

j

i

0.0

0.2

0.4

0.6

0.8

Figure 3.: Example of a P̂πθ matrix Each entry in P̂πθ ∈ R100×100 was computed by taking the
mean of φi(s′) as in Equation (50). From the figure it is noticeable that most entries are
close to zero, making it suitable for sparsification. Moreover, the visible main diagonal
comes from the states s′i and si being close, since the rows are ordered by the order the
samples were collected. This figure was generated by collecting 100 samples from the
Pendulum-v0 environment [19] by starting in the upright position and applying actions
sampled from a mixture of two Gaussians as explained in Section 5.3. The policy being
optimized was a neural network of one hidden layer and 50 neurons, with ReLU activation
functions and randomly initialized weights.

a desired threshold. Formally k∗ is defined as

k∗ = arg min
k=1,...,n

1

n

n∑
i=1

DKL

(
P̂πθ
i

∥∥∥∥ P̂πθ
sparsei(k)

)
≤ δsparse, (51)

where P̂πθ
i is the ith row of P̂πθ , P̂πθ

sparsei(k) is constructed with the ith row of P̂πθ by keeping the top
k values, setting the rest to zero and finally normalizing to 1, and δsparse is the chosen threshold for the
average KL divergence.

Determining k∗ is costly and cannot be done in every policy improvement step. Nevertheless, we can
compute it once before optimizing the policy and see it as an empirical choice. Unfortunately, we do not
have any theoretical guarantees on the effects of sparsification, but we found it to work well empirically.

An important part in the computation of the policy gradient are also the gradients of επθ,0 and P̂πθ

with respect to the policy parameters. For the former we have

∂

∂θ
επθ,0i =

∫
S
µ0(s)

∂

∂θ
επθi (s) ds

29

1 51 101 151 201 251 301 351 401 451
Entries kept per row

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
KL

 d
iv

er
ge

nc
e

pe
r r

ow

Figure 4.: Mean KL divergence between P̂πθ and P̂sparse
πθ for different levels of sparsifica-

tion In this figure we show the mean KL divergence per row if only the top k entries
per row of P̂πθ are kept. The dataset for this experiment was collected by sampling 500
transitions from the CartPole environment [20] with actions randomly sampled as described
in Section 5.3. The curve tells that only a fraction of each row has relevant information.
For instance, for this task, we are able to achieve convergence and do not lose substantially
more information in P̂πθ if we only keep the top 75 entries of each row and set the rest to
zero.

where by expanding and applying the log-ratio trick we can compute the derivative also by sampling

∂

∂θ
επθi (s) =

∂

∂θ

∫
A
πθ(a | s)

ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)

da

=

∫
A

∂

∂θ
πθ(a | s)

ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)

da

=

∫
A
πθ(a | s)

∂

∂θ
log πθ(a | s)

ψi(s)ϕi(a)∑n
j=1 ψj(s)ϕj(a)

da

≈ 1

NMC
π

NMC
π∑
z=1

∂

∂θ
log πθ(az | s)

ψi(s)ϕi(az)∑n
j=1 ψj(s)ϕj(az)

da with az ∼ πθ(· | s).

In addition, if the policy is a (multivariate) Gaussian distribution with a mean parameterized by fθ
and a covariance by gθ, i.e. πθ(a | s) ∼ N

(
a
∣∣∣µ = fθ(s),Σ = gθ(s)

)
, we can propagate the gradient

through a stochastic function using the reparameterization trick [44] by writing επθi (s) as

επθi (s) =

∫
A
N
(
a
∣∣∣ fθ(s), gθ(s)) ψi(s)ϕi(a)∑n

j=1 ψj(s)ϕj(a)
da

=

∫
η
N
(
η
∣∣∣0, I) ψi(s)ϕi(fθ(s) + ηgθ(s))∑n

j=1 ψj(s)ϕj(fθ(s) + ηgθ(s))
dη

(52)

and applying the chain rule to compute the derivative with respect to θ.
For P̂πθ it is straightforward to compute the gradient as well

∂

∂θ
P̂ πθij =

∫
s
φi(s

′)
∂

∂θ
επθj (s′) ds′.

30

We move now to compute the support points of the value function and state distribution, which we can
view as two systems of linear equations

qπθ = Λ−1πθ r

⇔ Λπθqπθ = r, (53)

µπθ = Λ−>πθ επθ,0

⇔ Λ>πθµπθ = επθ,0.

The naive solution for both is to directly invert Λπθ (or its transpose), which when naively performed
costs O(n3), where n is the number of collected samples, thus undermining the application of the
algorithm for datasets of reasonable size. Instead, we can use other solving approaches such as the
Conjugate Gradient method. Assuming P̂πθ is sparse so is Λπθ . Hence, we have a sparse system of
linear equations, for which the Conjugate Gradient method is still one of the most fitted to solve [66].
This method works straightforwardly if Λπθ is squared, symmetric and positive-definite. Although the
first and third conditions hold, Λπθ is not necessarily symmetric. Nevertheless, we can always solve the
system Λ>πθΛπθqπθ = Λ>πθr, which yields the same result as Equation (53) [66] (the same is true when
solving for µπθ), at the expense of slower convergence.
With the previously detailed calculations we can compute the policy gradient from Equation (45). To
update the policy parameters θ we use the update rule described in Equation (9) with an adaptive
learning rate scheme such as ADAM [67].
A high level pseudo-code of a comprehensive algorithm is presented in Algorithm 1. We denote it as
the Nonparametric Off-Policy Policy Gradient Algorithm (NOPG), and in particular NOPG Stochastic
(NOPG-S) and NOPG Deterministic (NOPG-D) when optimizing a stochastic or deterministic policy,
respectively.

4.6. Computational and Memory Complexity

As any nonparametric algorithm, NOPG computational and memory complexities are highly dependent
on the number of collected samples n. The most relevant requirements per policy update in Algorithm 1
are:

• In line 2, building the vector επθ,0 takes O
(
NMC
µ0 NMC

π n
)
. For the complexity computation we

assume always a constant cost of sampling from a distribution and also drop the fact that we need
to normalize the vector, which takes at least two times the size of the vector, since it involves
diving each entry the sum of all entries. Storing επθ,0 needs O

(
NMC
µ0 NMC

π n
)
memory;

• In line 3, we compute P̂πθ row by row, by sparsifying each row via selecting the top k elements,
leading to a complexity of O

(
NMC
φ NMC

π n2 log k
)
, since O(n log k) is the cost of processing one

row. Storing P̂πθ needs O
(
NMC
φ NMC

π kn
)
;

• In line 5 solving the linear system of equations with the Conjugate Gradient method takes
O (
√
ν(k + 1)n), where ν is the condition number of P̂πθ after sparsification, and (k + 1)n the

number of nonzero elements [66]. The plus one comes from the computation of Λπθ , since
subtracting P̂πθ from the identity matrix can lead to a increase of n nonzero elements. Comparing
the result with the naive solution involving a matrix inverse, which costs in the order of O

(
n3
)
,

we see the advantage of using the Conjugate Gradient method in sparse matrices. As a side note,
computing the condition number ν is computationally intensive, but methods to compute an
upper bound exist [68];

31

Algorithm 1 Nonparametric Off-Policy Policy Gradient (NOPG)
Input:

Dataset D ≡ {si,ai, ri, s′i, ti}
n
i=1, where ti indicates a terminal state

Parameterized policy πθ
Kernels ψ, ϕ and φ for state, action and next state, respectively
Policy updates T
Learning rate α
Discount factor γ
Initial state distribution µ0

Output:
Optimized policy πθ

1: for t = 1, . . . , T do
2: Build επθ,0 as in Equation (47) (with επθi from Equation (46))
3: Build each entry of P̂πθ as in Equation (49) (with επθj from Equation (46)), while sparsifying

each row using Equation (51). Set row i of P̂πθ to 0 if ti indicates a terminal state
4: Build matrix Λπθ as

Λπθ = I− γP̂πθ

5: Evaluate Λπθ at the current policy parameters and solve the linear systems of equations for qπθ
and µπθ using the Conjugate Gradient method

Λπθqπθ = r Λ>πθµπθ = επθ,0

6: Compute the policy gradient

∇θĴπθ =

(
∂

∂θ
ε>πθ,0

)
qπθ + γµ>πθ

(
∂

∂θ
P̂πθ

)
qπθ

7: Update the policy parameters with a gradient ascent technique

θ ← θ + α∇θĴπθ

8: end for

32

• In line 6, the cost of the vector-vector multiplication
(
∂
∂θε
>
πθ,0

)
qπθ is O

(
NMC
µ0 NMC

π n
)
, and the

vector-(sparse) matrix-vector multiplication µ>πθ
(
∂
∂θ P̂πθ

)
qπθ is O

(
NMC
φ NMC

π kn2
)
, thus totalling

O
(
NMC
µ0 NMC

π n+NMC
φ NMC

π kn2
)
. Assuming the number of policy parameters M to be much

lower than the number of samples, M << n, we ignore the gradient computation, since even when
using a simple method of differentiation such as finite differences, we would have O(M) << O(n).

The reader might be asking why do we consider in every step the terms of the Monte Carlo integration,
instead of discarding them, since in the Big-O notation it is common to drop constant terms. We left
these terms to emphasize that the policy parameters are "hidden" inside each entry of επθ,0 and P̂πθ ,
and thus we need to keep these terms until we compute the gradient. In fact, modern engines using
automatic differentiation for gradient computation such as Tensorflow [69], build a static computational
graph to backpropagate gradients. Therefore, we cannot simply ignore these constants. The only
exception is when computing qπθ and µπθ with Conjugate Gradient. Here we drop the terms because
Λπθ is evaluated for the current policy parameters, leading to a P̂πθ matrix effectively represented with
k × n elements.
Taking into account all the costs, we conclude that the computational complexity of NOPG per policy
update is

O
(
NMC
µ0 NMC

πθ
n
)︸ ︷︷ ︸

επθ,0

+O
(
NMC
φ NMC

πθ
n2 log k

)︸ ︷︷ ︸
P̂πθ

+ O
(√
ν(k + 1)n

)︸ ︷︷ ︸
Conj. Grad. qπθ ,µπθ

+O
(
NMC
µ0 NMC

πθ
n
)︸ ︷︷ ︸(

∂
∂θ
ε>πθ,0

)
qπθ

+O
(
NMC
φ NMC

πθ
kn2

)︸ ︷︷ ︸
µ>πθ(

∂
∂θ

P̂πθ)qπθ

= O
(
NMC
µ0 NMC

πθ
n
)

+O
(
NMC
φ NMC

πθ
n2(k + log k)

)
+O

(√
ν(k + 1)n

)
,

and the memory complexity is

O
(
NMC
µ0 NMC

πθ
n
)︸ ︷︷ ︸

επθ,0

+O
(
NMC
φ NMC

πθ
kn
)︸ ︷︷ ︸

P̂πθ

+O (n)︸ ︷︷ ︸
qπθ

+O (n)︸ ︷︷ ︸
µπθ

,

where the quantities in "underbrace" indicate the source of the complexities as described in this chapter.
Hence, we state that NOPG has nearly quadratic computational complexity and linear memory
complexity with respect to the number of samples n, per policy update.

33

5. Experiments

In this section we present empirical results between the deterministic and stochastic versions of NOPG
and different on- and off-policy algorithms. The algorithms chosen are: Deterministic Policy Gradient
(DPG) [16]; Deep Deterministic Policy Gradient (DDPG) [39]; Trust Region Policy Optimization
(TRPO) [38] (with implementations from OpenAI baselines [70]); DDPG Offline, which is a modified
version of DDPG where the gradient updates use full-batch samples from a fixed replay buffer that is
populated with data collected following a behavioural policy; and Gradient of a Partially Observable
Markov Decision Process (G(PO)MDP) [54] with Pathwise Importance Sampling correction, which we
shorten to PWIS throughout the rest of this work.
We first present in Section 5.1 a qualitative comparison between the gradient estimates of NOPG, DPG
and PWIS, followed by quantitative empirical results of NOPG, DDPG, TRPO, DDPG Offline and
PWIS in the OpenAI Gym [19] and Quanser Control Systems [20] platforms for different environments.
Each experiment is chosen to highlight NOPG’s sample complexity, the ability to learn with randomly
sampled data and to optimize a policy based on suboptimal trajectories. Moreover, all environments
have continuous state-action spaces to mimic closer a real world scenario.
For a fair comparison, in all experiments and algorithms we use a parameterized policy encoded with a
neural network. The policy has a single hidden layer with 50 units and Rectified Linear Unit (ReLU)
activations. For deterministic policies the output of the neural network is a single action, while for
stochastic policies the outputs are the mean and covariance of a Gaussian distribution, as explained in
Section 2.8.
A crucial point in the NOPG algorithm is the choice of the kernel and its bandwidth. This is a general
problem in kernel density estimation as explained in Section 2.9 and not particular to NOPG. We
decided to use Multivariate Gaussian kernels with diagonal bandwidths, as presented in Section 4.5.
The bandwidths are estimated using cross validation. For each dimension of the state and action spaces
we first compute an initial rough estimate with Silverman’s rule of thumb [47], hsilv, and after select 30
bandwidths from the linearly spaced interval [0, 1.5 · hsilv], from which we select the best using 5-fold
cross validation. Additionally, we can specify an external hyperparameter as a multiplicative scaling
factor to adjust the bandwidth with hfactor = [. . . , hfactor

i , . . .], where hfactor
i is the i-th dimension factor.

In the quantitative experiments, we report the policy evaluation results for NOPG using the policy
after the last optimization step, while for DDPG Offline and PWIS we take the maximum value
obtained, since we noticed that learning was unstable. Detailed information on the experiments and
hyperparameters can be found in Appendix B for the experiment in Section 5.1, and in Appendix C for
the other experiments.

5.1. Qualitative Gradient Comparison

To assess the quality of NOPG’s gradient estimate we set up an experiment with a simple 2-dimensional
LQR problem. We compare the estimates for a deterministic policy with NOPG-D and DPG, and for
a stochastic policy using NOPG-S and PWIS. For both settings we compute the true gradient of the
LQR system using finite differences. The results are depicted in Figure 5.
In both experiments we collected 5 datasets of 100 trajectories of 30 steps each. Each trajectory starts
in a given initial state and transitions according to the LQR dynamics using a policy encoded as a
diagonal matrix K = diag(k1, k2). For the deterministic experiment each trajectory is generated by
adding Gaussian noise to an initial policy Kinit, and thereafter keeping the policy unchanged. For the
stochastic policy experiment, in each step of the trajectory the policy is forced to be stochastic by

35

1.0 0.5 0.0 0.5
k1

1.0

0.5

0.0

0.5

k2

Finite Differences NOPG-D DPG

(a) LQR with deterministic policy

0.5 0.0 0.5
k1

0.5

0.0

0.5

Finite Differences NOPG-D PWIS

(b) LQR with stochastic policy

Figure 5.: Comparison of gradient estimates in a LQR system In each plot the isolines show
the 2-dimensional LQR return for different values of a diagonal policy parameterization.
Each arrow trajectory corresponds to the policy gradient estimates of different algorithms.
The red circle at (k1, k2) = (0, 0) is the best configuration. The initial policy parameters
correspond to the black cross (lower right part of the figures), and the red circle the
best parameter configuration. Subfigure (a) shows the gradient estimates in the case of a
deterministic policy, while Subfigure (b) depicts the stochastic policy case. In both settings
NOPG provides a good approximation of the gradient.

adding Gaussian noise to Kinit. This stochasticity is important for PWIS, which only admits such class
of behavioural policies.
As expected from theory, in Figure 5a we can observe that DPG provides a biased estimate of the
gradient. We can also state that because the datasets generated for this experiment used very similar
policies, when DPG takes a gradient step that leads the policy to a region without samples it provides
a bad estimate. Similarly in Figure 5b one can notice that PWIS provides a high-variance gradient
estimate. On the contrary, in both experiments NOPG provides low-bias and low-variance estimates,
showing that it can move away from the region of samples collected with the behavioural policy and
converge to an approximate good solution.

5.2. Learning with a Uniform Dataset

In this experiment we test the ability of NOPG to learn with a carefully chosen dataset, composed
by a uniform grid of states and actions sampled from the Pendulum-v0 environment of OpenAI Gym
(referred just as Pendulum). This task consists on balancing a pendulum that is attached to a motor
on one end, where a continuous torque u ∈ [−2, 2] can be applied to make the pendulum rotate.
A schematic of this environment is depicted in Figure 6a. The system’s state is fully described by
s = (cos(θ), sin(θ), θ̇), where θ[rad] ∈ [−π, π] is defined as 0 when the pendulum is in the upright
position, and θ̇ the angular velocity with θ̇ ∈ [−8, 8] rad/s. The reward per time-step is given by
R(θ, θ̇, u) = −(norm(θ)2 + 10−1θ̇2 + 10−3u2), where norm(θ) places θ in the interval [−π, π]. The
reward is maximal when (θ, θ̇) = (0, 0) and u = 0, i.e., the goal is to bring the pendulum to the desired
state with minimal effort. In the original environment the pendulum can start from a random state.
To ensure that we are in the worst possible starting configuration, in our experiments we evaluate
the trained policies by setting the starting state to the bottom position with zero angular velocity,
s0 = (cos(π), sin(π), 0), which forces the pendulum to swing up to the top position. In the evaluation we
run the optimized policy for 500 steps, where a cumulative reward of −500 is considered a satisfactory
return.

36

θ = 0

 θ > 0

(a) Pendulum

θ = 0

 θ > 0

x = 0 x

(b) CartPole

-1.2 -0.6 -0.5 -0.4 0 0.45 x

(c) MountainCar

Figure 6.: Environment schematics These figures depict the environments used in the experiments.

In Table 1 we report the performance of the discrete and stochastic versions of NOPG for different
uniformly sampled dataset sizes. The configurations can be found in Table C1. From the table it is
possible to notice that already with 450 samples both versions of NOPG can solve the task. When
comparing with the results from random sampling from Figure 8, we verify that a uniform dataset is a
better scenario for NOPG.

Sample size NOPG-D NOPG-S
200 −3794.9± 11.9 −3788.5± 00.9
450 −576.3± 03.1 −594.1± 39.8
800 −572.3± 02.3 −572.8± 03.9
1250 −567.9± 03.2 −564.2± 01.6
1800 −472.0± 28.8 −457.9± 26.0
3200 −415.4± 00.7 −428.0± 26.9

Table 1.: Returns in the Pendulum environment with uniform sampling This table presents
the returns obtained by NOPG-D and NOPG-S as a function of the dataset size with samples
from an uniform grid. Depicted are the mean and 95% confidence intervals of 10 trials. The
datasets’ details are found in Table C1.

As argued in Chapter 4, NOPG interpolates the value function and the state distribution of any state
using the closed-form expression from Equation (39) and Equation (44), respectively. In Figure 7
we show the value function and state distribution estimates computed with NOPG-D before any
policy update and after 301 iterations. It is possible to see that NOPG is able to find a reasonable
approximation of the optimal value function and that it can predict that the goal state, located at
(θ, θ̇) = (0, 0), will be reached, as depicted in the rightmost figure. The ability of NOPG to estimate the
state distribution in closed-form is particularly interesting in robotic applications, because knowing the
state distribution without needing to interact with the environment provides a safe way to determine if
the robot is moving towards a dangerous region of the state space.

5.3. Learning with a Random Behavioural Policy

In contrast to the uniform grid experiment, here we show how NOPG behaves in the presence of a
dataset sampled with a random behaviour policy in the Pendulum and CartPole environments.
The CartPole stabilization is a classical control task consisting on a pole attached to an actuated cart
that can move horizontally. Here we use the CartPole version from Quanser Control Systems [20] with
an OpenAI Gym interface. The goal is to keep the pole in the upright position and prevent it from

37

2 0 2
 [rad]

6

4

2

0

2

4

6

 [r
ad

/s
]

V(0)

250 200 150 100 50

2 0 2
 [rad]

(0)

0.0 0.2 0.4 0.6 0.8 1.0

(a) Before any policy update

2 0 2
 [rad]

6

4

2

0

2

4

6

 [r
ad

/s
]

V(301)

250 200 150 100 50

2 0 2
 [rad]

(301)

0.0 0.2 0.4 0.6 0.8 1.0

(b) After 301 policy updates

Figure 7.: Phase portrait of the value function and state distribution for the Pendulum
environment The plots show the value function and state distribution estimates in the
Pendulum environment using NOPG-D, with a uniformly sampled data. The two leftmost
plots show the estimates before any policy update and the rightmost after 301 updates. In
this experiment, data was collected uniformly from a grid of state-action pairs (30 angles, 30
angular velocities, 2 actions) and NOPG-D trained with the details presented in Table C2.

falling by moving the cart with a motor controlled with a continuous action u ∈ [−24, 24] Volts. A figure
of this environment is found in Figure 6b. The state is fully described as s = (x, sin(θ), cos(θ), ẋ, θ̇),
where x is the cart’s relative position to the center, ẋ the cart’s velocity, θ is the angle the pole makes
with the vertical axis, defined as 0 in the upright position and positive in the clockwise direction, and θ̇
is the angular velocity. The reward per time-step is defined as R(θ) = cos θ, which is maximal when
the pole is in the upright position. The starting state is s0 = (x = 0, sin(θ), cos(θ), ẋ = 0, θ̇ = 0),
with θ sampled from a uniform distribution θ ∼ U [−10−2π, 10−2π], i.e., with the pole close to the
top position. The episode terminates if the absolute value of θ is greater than 0.25 radians or the
pre-specified number of steps is reached. The original environment also stops if the cart exceeds some
distance to the center. As we are just interested in stabilizing the pole we removed this constraint
leading to a smaller state space s = (θ, ẋ, θ̇). We want to refer that we can also keep the cart in the
center at x = 0, by introducing a penalty in the reward function proportional to the absolute distance
from the center, at the cost of more samples. We evaluate the policies with 104 steps. Given the reward
function, if the return is less than 104 it indicates the number of steps taken before the pole falls.
To generate random trajectories for the Pendulum environment we start in the upright position and
apply actions sampled from a mixture of two Gaussians, centered in −2 and 2, each with 0.75 standard
deviation. If the desired trajectory size is more than 500 transitions, the system is reset to the initial
position and the sampling process repeats. This configuration ensures that the desired goal state is
seen at least once during sampling. For all algorithms we ensure the same configuration.
In Figure 8 we show the results of the policy evaluation returns of the different algorithms in the
Pendulum environment. Notice that the horizontal axis is in logarithmic scale. It is possible to observe
that both versions of NOPG need less samples (about one order of magnitude) to achieve the same
results as other state-of-the-art algorithms, hence supporting the claim for a more sample-efficient off-
policy algorithm. NOPG-D performs worse than the stochastic version because during the optimization
procedure the policy might jump to a state-action space location with few samples from where the
gradient is close to zero and thus from where it cannot escape. With NOPG-S this issue is solved with
the inherent stochasticity of the policy. Moreover, it is interesting to note that for the same number
of policy updates as NOPG, the offline version of DDPG is in line with the findings from Fujimoto
et. al [17], i.e., it cannot cope with truly off-policy samples.

38

102 103 104 105

Sample size

4

3

2

1

0

Re
tu

rn

1e3

NOPG-D
NOPG-S

DDPG baseline
PWIS

DDPG offline
TRPO baseline

Baseline return

Figure 8.: Returns in the Pendulum environment with randomly sampled data This plot
compares the return obtained by NOPG and typical on- and off-policy algorithms in the
Pendulum task, as a function of the number of collected samples. NOPG’s performance
surpasses other algorithms by at least an order of magnitude. The TRPO and DDPG curves
start at 103 samples because to accelerate training we only evaluate these algorithms after
collecting every other 103 samples. The solid line represents the mean and the shaded area
the 95% confidence interval of 10 runs. The details used in this experiment are presented
in Table C3.

Similar to the Pendulum experiment we run a task with the Cartpole environment using random data.
Sample collection is done by repeatedly placing the pole in the starting state and applying a random
policy that samples from a uniform distribution between −5 and 5. In Figure 9 we plot the results.
We can see that eventually TRPO and DDPG learn an optimal policy after collecting around 11 · 103

samples, while the offline version of DDPG and PWIS are not able to learn, similar to the Pendulum
task. Again, NOPG shows that it is capable of learning in a total off-policy setting, using an order
of magnitude less samples than state-of-the-art algorithms. One could argue that in every iteration
NOPG uses the full dataset while other algorithms, such as DDPG, sample a batch from a replay buffer.
While this observation is certainly valid, in this particular experiment DDPG runs 50 policy updates
after collecting a single new transition by sampling 64 transitions from the current buffer, meaning that
for a buffer with 100 samples it almost surely encounters all transitions at least once.
We further applied a policy learned in simulation in the real CartPole system. Although this experiment
does not prove the capability of NOPG to learn directly on the real system, it shows that the policy
learned can cope with the small intricacies not modelled in simulation, such as the friction forces action
on the cart’s wheels. These results can be explained because the kernel assumes a noisy environment,
and thus the policy is potentially more robust. In Figure 10 we show a snapshot series in the real
environment. We want to stress that we tried to learn a policy directly with data collected from the
real CartPole system, but unfortunately we were not successful. Many factors could have contributed
to this inability, such as the fact that the pole has to be precisely standing still or that the wheels’
friction results in very noisy measurements.

5.4. Learning from Suboptimal trajectories

We provide an experiment to show that NOPG finds a policy that improves on suboptimal trajectories
given by a human demonstrator. In this setting the data provided is completely offline and off-policy,
which mimics one way to produce training data in robotics. It is also worth noting that such setting

39

102 103 104 105

Sample size

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

1e4

NOPG-D
NOPG-S

DDPG baseline
PWIS

DDPG offline Baseline return

Figure 9.: Returns in the Cartpole stabilization environment with randomly sampled data
This plot compares the return obtained by NOPG and typical on- and off-policy algorithms
in the CartPole task, as a function of the number of collected samples. NOPG’s performance
surpasses other algorithms by at least an order of magnitude. The TRPO and DDPG curves
start at 5 · 102 samples because to accelerate training we only evaluate these algorithms
after collecting every other 5 · 102 samples. The solid line represents the mean and the
shaded area the 95% confidence interval of 10 runs. The details used in this experiment
are presented in Table C4.

is different from pure imitation learning. Observe that PWIS algorithms cannot learn directly from
human demonstrations, because they require the explicit probability distribution of the behaviour
policy, contrary to NOPG.
For this task we use the 2-dimensional ContinuousMountainCar-v0 environment of OpenAI Gym (we
refer to it as MountainCar), which is an adapted version of the original task proposed in [71], where
a car is placed still in a valley between two mountains and on the top of the mountain to the right
there is a flag. The schematic of this environment is depicted in Figure 6c. The systems’ state is
fully described by s = (x, ẋ), where x ∈ [−1.2, 0.6] is the relative position of the car, ẋ its velocity
and the maximum absolute velocity is 0.07. The flag is placed at x = 0.45. The car moves with an
external force represented by a continuous action u ∈ [−1, 1]. The starting state is s0 = (x0, 0), where
x0 ∼ U [−0.6,−0.4], i.e. the car starts in the valley fully stopped. We use a modified reward function
as R = −1 for each time-step. The task is to bring the car to the flag in the least steps as possible.
Therefore, a return tells how many steps it takes for the car to reach the flag. The sole acceleration in
the positive x direction does not work. Instead, the car needs to build momentum by first moving away
from the goal. To evaluate a policy we set a maximum episode length of 500 steps.
We provide NOPG with an offline dataset generated by a human demonstrator. This collection is
composed of 10 deliberately suboptimal trajectories of maximum length equal to 500. In all trajectories
the car reaches the goal, with the exception of 2 of them. At each step the human chooses whether to
accelerate in the positive (u = 1) or negative (u = −1) direction or to not accelerate at all (u = 0).
To mimic the scenario of a continuous behavioural policy we add Gaussian noise N (0, 0.25) to each
action. The mean trajectory as approximately 434 steps (return of −434) with negligible variance,
which indicates that they are definitely suboptimal, since it is possible to solve the task with nearly 100
steps.
Figure 11 shows the performance obtained by NOPG with different numbers of trajectories. One can
also think of the horizontal axis as the number of samples by roughly assigning 450 samples to each
trajectory. Hence, from the figure we conclude that both versions of NOPG can learn an optimal policy

40

Figure 10.: Evaluation of a policy optimized with NOPG-S in the real CartPole system
This stream of figures (left to right, top to bottom ordering) shows the application of a
policy learned in simulation with NOPG-S in the real CartPole environment. The policy
was trained using 1500 data points from trajectories with actions randomly sampled from
a uniform distribution. Although a compliant policy can be learned with less samples,
we found its actions alternated between very low and high signals, leading to very rough
movements. We noticed that using more samples solved this problem.

already using a minimum of 2 trajectories (roughly 1000 samples). This experiment shows that NOPG
is indeed finding a policy that is optimal and not just performing pure imitation learning with the
off-policy data.
Like in the Pendulum experiment, in Figure 12 we can also look at the phase portrait of the state
space before and after any policy update. With an initial randomly initialized policy it is possible to
observe in the right side of Figure 12a that the state distribution is very concentrated in the valley
region, from where the car cannot escape. Also, the value function before any policy update is assigning
more credit to the positions that are to the right of the starting position (on average −0.5) and have
a positive velocity. After some updates, as depicted in Figure 12b, the policy found translates into a
value function that is not completely white near (x, ẋ) = (−0.5, 0), meaning that the car might be able
to escape the valley region. Also, if the car is at the leftmost position and with high velocity in the
positive direction, the value function is already closer to what we would expect from an optimal policy.
Since the episode terminates when the car crosses the goal position, there is no concept of a stationary
state distribution, making it more difficult to analyse the rightmost figure. Nevertheless, it is possible
to observe that the policy manages to move the car out of the valley region, visible by the nonzero
probability on the area near the goal state as indicated by the state distribution.
In Figure 13 we show two trajectories of evaluation runs of NOPG-D in the MountainCar environment.
It is easy to identify that Trajectory 1 needed less steps to reach the goal because it started on the right
side of the valley at x > −0.5 (x = −0.5 is the valley’s flat region), which already has some inclination.
This starting position allows the car to gain more momentum when accelerating backwards, and it just
needs to swing backwards once. In contrast, in trajectory 2 the car started on the left side of the valley
(x < −0.5), which has an opposite inclination, and hence it needed to swing two times to gain enough
momentum.
As we have seen, it is not an easy task to actually quantify the similarity between MDP instances and
there exist a lot of

41

1 2 3 4 5 6 7 8 9 10
Number of trajectories

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Re
tu

rn

1e2

NOPG-D NOPG-S Human baseline

Figure 11.: Returns in the MountainCar environment with varying number of trajectories
This plot shows the returns obtained by NOPG-D and NOPG-S as a function of the
number of trajectories (roughly each trajectory corresponds to 450 samples). The human
baseline corresponds to the average return in the human demonstrations and is depicted
by the dashed line. The solid line represents the mean and the shaded area the 95%
confidence interval of 10 runs. The details used in this experiment are presented in
Table C5.

1.0 0.5 0.0 0.5
x

0.06

0.04

0.02

0.00

0.02

0.04

0.06

x

V(0)

100 80 60 40 20 0

1.0 0.5 0.0 0.5
x

(0)

0.0 0.2 0.4 0.6

(a) Before any policy update

1.0 0.5 0.0 0.5
x

0.06

0.04

0.02

0.00

0.02

0.04

0.06

x

V(251)

100 80 60 40 20 0

1.0 0.5 0.0 0.5
x

(251)

0.0 0.2 0.4 0.6

(b) After 251 policy updates

Figure 12.: Phase portrait of the value function and state distribution for the Mountain-
Car experiment The plots show the value function and state distribution estimates in
the MountainCar environment using NOPG-D. The two leftmost plots show the estimates
before any policy update and the rightmost after 251 updates. NOPG-D was trained with
4 trajectories provided by a human demonstrator with the details presented in Table C5.

42

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
x

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

x

Traj. 1 Traj. 2 Goal state

Figure 13.: Trajectories in the state space of the MountainCar environment This figure
shows two trajectories from evaluation runs of NOPG-D in the MountainCar environment.
Trajectory’s 1 return is −79 and trajectory’s 2 is −139. The crosses denote the starting
states and the circles the final states. The dashed vertical line at x = −0.45 depicts
the goal state. The policy used was optimized with NOPG-D trained on 4 trajectories
provided by a human demonstrator with the details presented in Table C5.

43

6. Conclusion and Future Research

In this thesis we delved into Policy Gradient estimators for off-policy datasets. In RL tasks, searching
directly in the space of parameterized policies is often a better approach than estimating first a value
function and extracting a policy thereafter, specially for large and continuous state and action spaces.
Additionally, learning with samples collected off-policy seems to be a promising path for robotic
applications, due to the promise of higher sample-efficiency and the ability to learn from multiple
different policies, for instance through demonstrations.
The Policy Gradient Theorem [35] provides a solid foundation to perform a gradient step to update the
policy parameters by letting an agent interact directly with the environment. The crux is that every
policy update requires usually more than one trajectory rollout, which hinders its direct application to
real world systems. For the reasons explained above, a much more desired approach is to use off-policy
datasets. However, the Policy Gradient Theorem fails in this setting because an expectation under
the state distribution induced by the policy can no longer be directly computed. In Chapter 3 we
presented the current state-of-the-art methods to compute a policy gradient in an off-policy manner,
including Importance Sampling, the Off-Policy Policy Gradient Theorem and Model-based RL solutions.
IS methods show large variance estimates, only support the class of stochastic policies and tend to
only work well when the behavioural and target distributions are close. The Off-Policy Policy Gradient
Theorem defines an objective function that in our opinion is not very well understood, and drops a
term in the gradient derivation, which is guaranteed to improve the policy only for tabular MDPs.
These sources of approximations made by these algorithms and its successors are solved in practice by
ensuring the joint distribution of state-action pairs induced by the behavioural and target policies are
somewhat close. Therefore, we argue that these algorithms cannot succeed in truly offline and off-policy
configurations, as also noticed in other works [17].
The main finding of this work is a novel way to compute a policy gradient for deterministic and
stochastic policies in closed-form from an offline dataset with transitions collected using an unspecified
behavioural policy. Following the work of Kroemer et. al [18], we started by modelling the transition
probability density function as a density estimation problem solved with kernel density estimation,
and the reward function approximated with the Nadaraya-Watson kernel regression. With these two
constructs we employed a Galerkin Projection to solve the infinite value function constraints, defined
over a continuous state space, on a subspace spanned by a set of basis functions based on the samples
collected in an off-policy dataset. We obtained a nonparametric value function with a direct dependence
on the policy parameters. With this formulation we could compute a policy gradient in closed-form,
such that a policy update requires no further interaction with the environment, opposite to the on-policy
version of the Policy Gradient Theorem. Another important finding of this work is that with this
kind of nonparametric modelling, we are able to compute the state distribution under a policy for
the whole state space. Estimating this quantity is of special importance in robotics to prevent the a
priori exploration of dangerous areas of the state space. Based on these theoretical ideas we provided a
working algorithm which we name as the Nonparametric Off-Policy Policy Gradient (NOPG) algorithm.
In Chapter 5 we tested how NOPG compares to other state-of-the-art on- and off-policy learning
methods. We empirically showed with a simple 2-dimensional LQR system that the gradient of NOPG
converges to true gradient, while IS and DPG show a large variance and biased estimates, respectively.
In another experiment we trained a policy parameterized by a small neural network with NOPG using
different dataset configurations. We attested that with an uniformly sampled grid of state-action pairs
NOPG can learn the Pendulum task with a minimum of 450 samples. Additionally, we set an experiment
to show that NOPG can also learn with off-policy data collected with a random behavioural policy as
demonstrated with the Pendulum and CartPole examples. The results exhibited that other algorithms

45

failed to learn or that their sample complexity was at least one order of magnitude larger. Finally, we
tested NOPG with a human provided dataset of suboptimal trajectories to solve the MountainCar task
and showed that NOPG is able to surpass the human baseline and find an optimized policy.
In conclusion, in this work we showed to be possible to learn controllers with offline and off-policy data
provided with random behavioural policies in a sample efficient way, emphasizing the potential to use
NOPG in scarce sample regimes such as real robot applications.

Future Research

The main downside of the NOPG algorithm is also its strength, namely the number of available
samples. In its current form, every policy update has at least quadratic computational and linear
memory complexities in the dataset size. Additionally, nonparametric methods suffer from the curse of
dimensionality and they do not work properly in high-dimensional spaces. Further research could begin
by expressing a transition model using density mixture models (for instance Gaussian mixtures) and
the reward function with mixture of experts models. This formulation could potentially reduce the
number of parameters and be able to scale to more data points. More importantly, one could possibly
obtain an expression for the value function that is no longer a single scalar but rather a distribution,
which would enable guiding the exploration to areas of the state space with higher uncertainty.

46

Bibliography

[1] C. Szepesvari, Algorithms for Reinforcement Learning. Morgan and Claypool Publishers, 2010.

[2] C. E. Shannon, Programming a Computer for Playing Chess, pp. 2–13. New York, NY: Springer
New York, 1988.

[3] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for temporal difference learning,”
Machine Learning, vol. 22, pp. 33–57, Mar 1996.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the
game of go with deep neural networks and tree search,” Nature, vol. 529, pp. 484–503, 2016.

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al., “A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A.
Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[7] OpenAI, “Openai five.” https://blog.openai.com/openai-five/, 2018.

[8] J. Peters, J. Kober, K. Mülling, O. Kroemer, and G. Neumann, “Towards robot skill learning:
From simple skills to table tennis,” in Machine Learning and Knowledge Discovery in Databases,
Proceedings of the European Conference on Machine Learning, Part III (ECML 2013), vol. LNCS
8190, pp. 627–631, Springer, 2013.

[9] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient approach to
policy search,” in Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, (USA), pp. 465–472, Omnipress, 2011.

[10] N. M. O. Heess, T. Dhruva, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,
S. M. A. Eslami, M. A. Riedmiller, and D. Silver, “Emergence of locomotion behaviours in rich
environments,” ArXiv, vol. abs/1707.02286, 2017.

[11] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. W. Pachocki,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder,
L. Weng, and W. Zaremba, “Learning dexterous in-hand manipulation,” CoRR, vol. abs/1808.00177,
2018.

[12] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine, “Learning to walk via deep
reinforcement learning,” CoRR, vol. abs/1812.11103, 2018.

[13] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies,” J.
Mach. Learn. Res., vol. 17, pp. 1334–1373, Jan. 2016.

47

https://blog.openai.com/openai-five/

[14] S. Gu, T. P. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine, “Q-prop: Sample-efficient policy
gradient with an off-policy critic,” in 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[15] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” CoRR, vol. abs/1205.4839, 2012.

[16] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic policy gra-
dient algorithms,” in Proceedings of the 31st International Conference on International Conference
on Machine Learning - Volume 32, ICML’14, pp. I–387–I–395, JMLR.org, 2014.

[17] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without exploration,”
CoRR, vol. abs/1812.02900, 2018.

[18] O. B. Kroemer and J. R. Peters, “A non-parametric approach to dynamic programming,” in
Advances in Neural Information Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger, eds.), pp. 1719–1727, Curran Associates, Inc., 2011.

[19] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” CoRR, vol. abs/1606.01540, 2016.

[20] “Quanser - control systems lab solutions.” https://www.quanser.com/solution/
control-systems/. Accessed: 2019-06-08.

[21] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cambridge, MA, USA:
MIT Press, 1st ed., 1998.

[22] D. P. Bertsekas, Reinforcement Learning and Optimal Control. Athena Scientific, first ed., 2019.

[23] D. Kirk, Optimal Control Theory: An Introduction. Dover Books on Electrical Engineering Series,
Dover Publications, 2004.

[24] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. New
York, NY, USA: John Wiley & Sons, Inc., 1st ed., 1994.

[25] C. Daniel, O. Kroemer, M. Viering, J. Metz, and J. Peters, “Active reward learning with a novel
acquisition function,” Auton. Robots, vol. 39, pp. 389–405, Oct. 2015.

[26] T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans, “Dual representations for dynamic pro-
gramming,” Journal of Machine Learning Research, vol. 1, pp. 1–29, 01 2008.

[27] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief survey of deep
reinforcement learning,” CoRR, vol. abs/1708.05866, 2017.

[28] R. Bellman, “The theory of dynamic programming,” Bull. Amer. Math. Soc., vol. 60, pp. 503–515,
11 1954.

[29] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. Adaptive Computation
and Machine Learning, Cambridge, MA, USA: MIT Press, Jan. 2006.

[30] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Athena Scientific, 1st ed., 1996.

[31] C. J. C. H. Watkins and P. Dayan, “Q-learning,” in Machine Learning, pp. 279–292, 1992.

[32] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for robotics,” Found.
Trends Robot, vol. 2, pp. 1–142, Aug. 2013.

[33] J. Koutník, G. Cuccu, J. Schmidhuber, and F. Gomez, “Evolving large-scale neural networks for
vision-based reinforcement learning,” in Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’13, (New York, NY, USA), pp. 1061–1068, ACM, 2013.

48

https://www.quanser.com/solution/control-systems/
https://www.quanser.com/solution/control-systems/

[34] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural Information
Processing Systems 12 (S. A. Solla, T. K. Leen, and K. Müller, eds.), pp. 1008–1014, MIT Press,
2000.

[35] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement
learning with function approximation,” in Proceedings of the 12th International Conference on
Neural Information Processing Systems, NIPS’99, (Cambridge, MA, USA), pp. 1057–1063, MIT
Press, 1999.

[36] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement
learning,” Machine Learning, vol. 8, pp. 229–256, May 1992.

[37] J. Peters, K. Mülling, and Y. Altün, “Relative entropy policy search,” in Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI’10, pp. 1607–1612, AAAI Press,
2010.

[38] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,”
in Proceedings of the 32nd International Conference on Machine Learning (F. Bach and D. Blei,
eds.), vol. 37 of Proceedings of Machine Learning Research, (Lille, France), pp. 1889–1897, PMLR,
07–09 Jul 2015.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[40] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of the 30th International Confer-
ence on International Conference on Machine Learning - Volume 28, ICML’13, pp. III–1–III–9,
JMLR.org, 2013.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” CoRR, vol. abs/1707.06347, 2017.

[42] G. A. Rummery and M. Niranjan, “On-line Q-learning using connectionist systems,” Tech. Rep.
TR 166, Cambridge University Engineering Department, Cambridge, England, 1994.

[43] N. Meuleau, L. Peshkin, and K.-E. Kim, “Exploration in gradient-based reinforcement learning,”
Tech. Rep. 2001-003, MIT, 2001.

[44] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014.

[45] L. Devroye and L. Gyorfi, Nonparametric density estimation: the L1 view. New York; Chichester:
John Wiley and Sons, 1985.

[46] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics).
Berlin, Heidelberg: Springer-Verlag, 2006.

[47] B. W. Silverman, Density estimation for statistics and data analysis. Monographs on Statistics
and Applied Probability, London: Chapman and Hall, 1986.

[48] J. M. Leiva-Murillo and A. Artés-Rodríguez, “Algorithms for maximum-likelihood bandwidth
selection in kernel density estimators,” Pattern Recognition Letters, vol. 33, pp. 1717–1724, 2012.

[49] C. J. Stone, “An asymptotically optimal window selection rule for kernel density estimates,” Ann.
Statist., vol. 12, pp. 1285–1297, 12 1984.

49

[50] P. Domingos, “A few useful things to know about machine learning,” Commun. ACM, vol. 55,
pp. 78–87, Oct. 2012.

[51] E. A. Nadaraya, “On estimating regression,” Theory of Probability and its Applications, vol. 9,
pp. 141–142, 1964.

[52] G. S. Watson, “Smooth regression analysis,” Sankhy: The Indian Journal of Statistics, Series A,
vol. 26, pp. 359–372, 01 1964.

[53] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind. Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University Press, 1997.

[54] J. Baxter and P. L. Bartlett, “Direct gradient-based reinforcement learning,” 2000 IEEE Interna-
tional Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings
(IEEE Cat No.00CH36353), vol. 3, pp. 271–274 vol.3, 2000.

[55] E. Imani, E. Graves, and M. White, “An off-policy policy gradient theorem using emphatic
weightings,” in Advances in Neural Information Processing Systems 31 (S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), pp. 96–106, Curran Associates,
Inc., 2018.

[56] X. Wang and T. G. Dietterich, “Model-based policy gradient reinforcement learning,” in Proceedings
of the Twentieth International Conference on International Conference on Machine Learning,
ICML’03, pp. 776–783, AAAI Press, 2003.

[57] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control.,” in IROS,
pp. 5026–5033, IEEE, 2012.

[58] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi, “Target-driven
visual navigation in indoor scenes using deep reinforcement learning,” CoRR, vol. abs/1609.05143,
2016.

[59] J. G. Schneider, “Exploiting model uncertainty estimates for safe dynamic control learning,” in
Proceedings of the 9th International Conference on Neural Information Processing Systems, NIPS’96,
(Cambridge, MA, USA), pp. 1047–1053, MIT Press, 1996.

[60] G. B. Thomas, M. D. Weir, and R. L. Finney, Calculus and analytic geometry. Addison-Wesley,
9th ed., 1996.

[61] S. U. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius theorem: Some of its applications,” Signal
Processing Magazine, IEEE, vol. 22, pp. 62–75, March 2005.

[62] L. Wasserman, All of Nonparametric Statistics (Springer Texts in Statistics). Berlin, Heidelberg:
Springer-Verlag, 2006.

[63] C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer Texts in Statistics). Berlin,
Heidelberg: Springer-Verlag, 2005.

[64] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[65] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Third
Edition. The MIT Press, 3rd ed., 2009.

[66] J. R. Shewchuk, “An introduction to the conjugate gradient method without the agonizing pain,”
tech. rep., Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

50

[67] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[68] G. Piazza and T. Politi, “An upper bound for the condition number of a matrix in spectral norm,”
Journal of Computational and Applied Mathematics, vol. 143, no. 1, pp. 141 – 144, 2002.

[69] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. Software available from tensorflow.org.

[70] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov, “Openai baselines.” https://github.com/openai/baselines, 2017.

[71] A. W. Moore, “Efficient memory-based learning for robot control,” tech. rep., University of
Cambridge, 1990.

51

https://github.com/openai/baselines

A. Proof of the Normalized State Distribution

Consider the discounted expected state visitation following a policy π

µπ(s) = µ0(s) + γ

∫
S

∫
A
µπ(s′)π(a | s′)P (s | s′,a) dads′ ∀s ∈ S.

We prove that the normalized discounted state distribution is given by (1− γ)µπ(s).
Assume an indicator variable defined as

Iπt (s) :=

{
1 , if st = s

0 , if st 6= s
,

where st is the state visited at time t, when following the policy π. Therefore, the discounted state
visitation is simply given by µπ(s) =

∑∞
t=0 γ

tIπt (s). First we prove that 0 ≤ (1 − γ)µπ(s) ≤ 1 ∀s ∈
S, 0 ≤ γ < 1

µπ(s) =

∞∑
t=0

γtIπt (s)

≤
∞∑
t=0

γt =
1

1− γ
if st = s ∀t,

µπ(s) =
∞∑
t=0

γtIπt (s)

≥
∞∑
t=0

γt · 0 = 0 if st 6= s ∀t,

=⇒ 0 ≤ µπ(s) ≤ 1

1− γ
⇔ 0 ≤ (1− γ)µπ(s) ≤ 1.

Then we prove that (1− γ)µπ(s) is normalized, i.e.,
∑
s∈S(1− γ)µπ(s) = 1∑

s∈S
(1− γ)µπ(s)

=
∑
s∈S

(1− γ)
∞∑
t=0

γtIπt (s)

=
∑
s∈S

∞∑
t=0

(γt − γt+1)Iπt (s)

Since only one state is visited at every time step t, i.e.,
if Iπt (si) = 1 then Iπt (sj) = 0 ∀i 6= j

=

∞∑
t=0

(γt − γt+1)

=γ0−γ1 + γ1 − γ2 + γ2 − γ3 + γ3 − . . .︸ ︷︷ ︸
=0

−γ∞

=γ0 − γ∞ = 1− 0 = 1 for 0 ≤ γ < 1.

53

B. Gradient Estimates with LQR, NOPG, DPG
and PWIS

Here we detail the experiment presented in Section 5.1. We use a discrete infinite-horizon discounted
Linear Quadratic Regulator system of the form

max
xt,ut

J =
1

2

∞∑
t=0

γt
(
x>t Qxt + u>t Rut

)
s.t. xt+1 = Axt + But ∀t,

where xt ∈ Rdx , ut ∈ Rdu , Q ∈ Rdx×dx , R ∈ Rdu×du , A ∈ Rdx×dx , B ∈ Rdx×du , γ ∈ [0, 1) and x0 given.
In this example we use consider a 2-dimensional problem with the following quantities

A =

[
1.2 0
0 1.1

]
B =

[
0.1 0
0 0.2

]
Q =

[
−0.5 0

0 −0.25

]
R =

[
0.01 0

0 0.01

]
x0 =

[
1
1

]
γ = 0.9.

For this LQR problem we impose a linear controller as a diagonal matrix

K =

[
k1 0
0 k2

]
. (54)

Deterministic Experiment (Figure 5a)
For each dataset we run 100 trajectories of 30 steps. Each trajectory is generated by following the
dynamics of the described LQR and using at each time step a fixed policy initialized as

K =

[
k1 + ε ε
ε k2 + ε

]
, ε ∼ N (0, 1),

where k1 = 0.7 and k2 = −0.7.
NOPG-D optimized for each dataset a policy encoded as in Equation (54) with: learning rate 0.5 with
ADAM optimizer; bandwidths (on average) for the state space hψ = [0.03, 0.05] and for the action
space hϕ = [0.33, 0.27]; discount factor γ = 0.9; and keeping 5 elements per row after sparsification of
the P matrix.
DPG optimized for each dataset a policy encoded as in Equation (54) with: learning rate 0.5 with
ADAM optimizer; Q-function encoded as Q(x,u) = x>Qx+ u>Ru (with Q and R to be learned);
discount factor γ = 0.9; two target networks are kept to stabilize learning and soft-updated using
τ = 0.01 (similar to DDPG).

Stochastic Experiment (Figure 5b)
For each dataset we run 100 trajectories of 30 steps. Each trajectory is generated by following the

55

dynamics of the described LQR, and using at each time step a stochastic policy as

ut = Kxt + ε, ε ∼ N (µ = 0,Σ = diag(0.01, 0.01)) , (55)

where K = diag(0.35,−0.35).
NOPG-S optimized for each dataset a policy encoded as in Equation (55) with: learning rate 0.25 with
ADAM optimizer; bandwidths (on average) for the state space hψ = [0.008, 0.003] and for the action
space hϕ = [0.02, 0.02]; discount factor γ = 0.9; and keeping 10 elements per row after sparsification of
the P matrix.
PWIS optimized for each dataset a policy encoded as in Equation (55) with: learning rate 2.5× 10−4

with ADAM optimizer; and discount factor γ = 0.9.

56

C. Experiments Configurations

In this section we detail in each table the configurations and hyperparameters used in the quantitative
experiments of Chapter 5. Every table entry should be self-explanatory, but we want to point one
that might not be straightforward. We use a policy encoded as neural network with parameters θ. A
deterministic policy can be viewed as a single action a = fθ(s), where fθ is the output of the learned
neural network. A stochastic policy is encoded as a Gaussian distribution with parameters determined
by a neural network with two outputs, the mean and covariance. In this case we represent by fθ(s)
the slice of the output corresponding to the mean and by gθ(s) the part of the output corresponding
to the covariance. In some algorithms we use a latent representation as part of the policy and value
function networks, denoted by z = hθ(s), which is then linearly transformed to give the Gaussian
policy parameters or to compute the value function.

#θ #θ̇ #u Sample size
10 10 2 200
15 15 2 450
20 20 2 800
25 25 2 1250
30 30 2 1800
40 40 2 3200

Table C1.: Pendulum uniform grid dataset configurations This table shows the level of dis-
cretization for each dimension of the state space (#θ and #θ̇) and the action space (#u).
Each line corresponds to a uniformly sampled dataset, where θ ∈ [−π, π], θ̇ ∈ [−8, 8] and
u ∈ [−2, 2]. The entries under the states’ dimensions and action dimension correspond
to how many linearly spaced states or actions are to be queried from the corresponding
intervals. The Cartesian product of states and actions dimensions is taken in order to
generate the state-action pairs to query the environment transitions. The rightmost column
indicates the total number of corresponding samples.

57

NOPG
discount factor γ 0.97
state hfactor 1.0 1.0 1.0
action hfactor 50.0
policy neural network parameterized by θ

1 hidden layer, 50 units, ReLU activations
policy output 2 tanh(fθ(s)) (NOGP-D)

µ = 2 tanh(fθ(s)), σ = sigmoid(gθ(s)) (NOGP-S)
learning rate 10−2 with ADAM optimizer
NMC
µ0 (NOPG-S) 15

NMC
φ 1

NMC
µ0 (non applicable) fixed initial state

policy updates 1.5 · 103

Table C2.: NOPG configurations for the Pendulum uniform grid experiment This table
contains the configurations of NOPG-D and NOPG-S needed to replicate the results from
the Pendulum uniform grid experiment (Table 1).

58

NOPG
dataset sizes 102, 5 · 102, 103, 1.5 · 103, 2 · 103, 3 · 103,

5 · 103, 7 · 103, 9 · 103, 104

discount factor γ 0.97
state hfactor 10.0 10.0 1.0
action hfactor 30.0
policy neural network parameterized by θ

1 hidden layer, 50 units, ReLU activations
policy output 2 tanh(fθ(s)) (NOGP-D)

µ = 2 tanh(fθ(s)), σ = sigmoid(gθ(s)) (NOGP-S)
learning rate 10−2 with ADAM optimizer
NMC
µ0 (NOPG-S) 10

NMC
φ 1

NMC
µ0 (non applicable) fixed initial state

policy updates 2 · 103

DDPG
discount factor γ 0.97
rollout steps 100
actor neural network parameterized by θactor

1 hidden layer, 50 units, ReLU activations
actor output 2 tanh(fθactor(s))
actor learning rate 10−3 with ADAM optimizer
critic neural network parameterized by θcritic

1 hidden layer, 50 units, ReLU activations
critic output fθcritic(s,a)
critic learning rate 10−2 with ADAM optimizer
soft update τ = 10−3

policy updates 3 · 105

TRPO
discount factor γ 0.97
rollout steps 1000
policy neural network parameterized by θ

1 hidden layer, 50 units, ReLU activations
latent representation z

policy output Gaussian distribution with mean and covariance
retrieved from Wpolicyz + bpolicy

value function has the same parameters θ and latent variable z
as the policy network

value function output Wvfz + bvf
value function learning rate 3 · 10−4 with ADAM optimizer
value function iterations per epoch 3
max KL 10−3

conjugate gradient iterations 10
conjugate gradient damping 10−2

policy updates 3 · 105

59

DDPG Offline
dataset sizes 102, 5 · 102, 103, 2 · 103, 5 · 103, 7.5 · 103,

104, 1.2 · 104, 1.5 · 104, 2 · 104, 2.5 · 104

discount factor γ 0.97
actor neural network parameterized by θactor

1 hidden layer, 50 units, ReLU activations
actor output 2 tanh(fθactor(s))
actor learning rate 10−2 with ADAM optimizer
critic neural network parameterized by θcritic

1 hidden layer, 50 units, ReLU activations
critic output fθcritic(s,a)
critic learning rate 10−2 with ADAM optimizer
soft update τ = 10−3

policy updates 2 · 103

PWIS
dataset sizes 102, 5 · 102, 103, 2 · 103, 5 · 103, 7.5 · 103,

104, 1.2 · 104, 1.5 · 104, 2 · 104, 2.5 · 104

discount factor γ 0.97
policy neural network parameterized by θ

1 hidden layer, 50 units, ReLU activations
policy output µ = 2 tanh(fθ(s)), σ = sigmoid(gθ(s))
learning rate 10−2 with ADAM optimizer
policy updates 2 · 103

Table C3.: Algorithms configurations for the Pendulum random data experiment These
tables contain the configurations of the algorithms needed to replicate the results from the
Pendulum random data experiment (Figure 8).

60

NOPG
dataset sizes 102, 2.5 · 102, 5 · 102, 103, 1.5 · 103, 2.5 · 103,

3 · 103, 5 · 103, 6 · 103, 8 · 103, 104

discount factor γ 0.99
state hfactor 1.0 1.0 1.0
action hfactor 20.0
policy neural network parameterized by θ

1 hidden layer, 50 units, ReLU activations
policy output 5 tanh(fθ(s)) (NOGP-D)

µ = 5 tanh(fθ(s)), σ = sigmoid(gθ(s)) (NOGP-S)
learning rate 5 · 10−2 with ADAM optimizer
NMC
µ0 (NOPG-S) 15

NMC
φ 1

NMC
µ0 15

policy updates 1.5 · 103

DDPG
discount factor γ 0.99
rollout steps 100
actor neural network parameterized by θactor

1 hidden layer, 50 units, ReLU activations
actor output 5 tanh(fθactor(s))
actor learning rate 10−3 with ADAM optimizer
critic neural network parameterized by θcritic

1 hidden layer, 50 units, ReLU activations
critic output fθcritic(s,a)
critic learning rate 10−2 with ADAM optimizer
soft update τ = 10−3

policy updates 2 · 105

TRPO
discount factor γ 0.99
rollout steps 500
policy neural network parameterized by θ

1 hidden layer, 50 units, ReLU activations
latent representation z

policy output Gaussian distribution with mean and covariance
retrieved from Wpolicyz + bpolicy

value function has the same parameters θ and latent variable z
as the policy network

value function output Wvfz + bvf
value function learning rate 3 · 10−4 with ADAM optimizer
value function iterations 3
max KL 10−3

conjugate gradient iterations 10
conjugate gradient damping 10−2

policy updates 2 · 105

61

DDPG Offline
dataset sizes 102, 5 · 102, 103, 2 · 103, 3.5 · 103, 5 · 103,

8 · 103, 104, 1.5 · 104, 2 · 104, 2.5 · 104

discount factor γ 0.99
actor neural network parameterized by θactor

1 hidden layer, 50 units, ReLU activations
actor output 5 tanh(fθactor(s))
actor learning rate 10−2 with ADAM optimizer
critic neural network parameterized by θcritic

1 hidden layer, 50 units, ReLU activations
critic output fθcritic(s,a)
critic learning rate 10−2 with ADAM optimizer
soft update τ = 10−3

policy updates 2 · 103

PWIS
dataset sizes 102, 5 · 102, 103, 2 · 103, 3.5 · 103, 5 · 103,

8 · 103, 104, 1.5 · 104, 2 · 104, 2.5 · 104

discount factor γ 0.99
policy neural network parameterized by θ

1 hidden layer, 50 units, ReLU activations
policy output µ = 5 tanh(fθ(s)), σ = sigmoid(gθ(s))
learning rate 10−3 with ADAM optimizer
policy updates 2 · 103

Table C4.: Algorithms configurations for the CartPole random data experiment These
tables contain the configurations of the algorithms needed to replicate the results from the
CartPole random data experiment (Figure 9).

NOPG
discount factor γ 0.99
state hfactor 1.0 1.0
action hfactor 50.0
policy neural network parameterized by θ

1 hidden layer, 50 units, ReLU activations
policy output 1 tanh(fθ(s)) (NOGP-D)

µ = 1 tanh(fθ(s)), σ = sigmoid(gθ(s)) (NOGP-S)
learning rate 10−2 with ADAM optimizer
NMC
µ0 (NOPG-S) 15

NMC
φ 1

NMC
µ0 15

policy updates 1.5 · 103

Table C5.: NOPG configurations for the MountainCar experiment This table contains the
configurations of NOPG-D and NOPG-S needed to replicate the results from the Moun-
tainCar trajectories experiment (Figure 11).

62

	1 Introduction
	1.1 Motivation
	1.2 Structure of the Thesis

	2 Background
	2.1 Reinforcement Learning
	2.2 Markov Decision Processes
	2.3 Value Function and State Distribution
	2.4 Value Methods and Policy Search
	2.5 Model-based and Model-free Reinforcement Learning
	2.6 On-Policy and Off-Policy Reinforcement Learning
	2.7 Policy Gradient Theorem
	2.8 Policy Representations
	2.9 Kernel Density Estimation
	2.10 Kernel Regression
	2.11 Integral Equations of the Second Kind and the Galerkin Projection

	3 Related Work
	3.1 Pathwise Importance Sampling
	3.2 Off-Policy Semi-Gradient
	3.3 Model-based Policy Gradient

	4 Nonparametric Off-Policy Policy Gradient
	4.1 Problem Definition
	4.2 Nonparametric Bellman Equation
	4.3 Policy Gradient
	4.4 Why Nonparametric Modelling
	4.5 Implementation Details
	4.6 Computational and Memory Complexity

	5 Experiments
	5.1 Qualitative Gradient Comparison
	5.2 Learning with a Uniform Dataset
	5.3 Learning with a Random Behavioural Policy
	5.4 Learning from Suboptimal trajectories

	6 Conclusion and Future Research
	Bibliography
	Appendices
	Appendix A Proof of the Normalized State Distribution
	Appendix B Gradient Estimates with LQR, NOPG, DPG and PWIS
	Appendix C Experiments Configurations

