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Abstract Despite many efforts, balance control of human-
oid robots in the presence of unforeseen external or internal
forces has remained an unsolved problem. The difficulty of
this problem is a consequence of the high dimensionality
of the action space of a humanoid robot, due to its large
number of degrees of freedom (joints), and of non-lineari-
ties in its kinematic chains. Biped biological organisms face
similar difficulties, but have nevertheless solved this prob-
lem. Experimental data reveal that many biological organ-
isms reduce the high dimensionality of their action space
by generating movements through linear superposition of a
rather small number of stereotypical combinations of simul-
taneous movements of many joints, to which we refer as kine-
matic synergies in this paper. We show that by constructing
two suitable non-linear kinematic synergies for the lower part
of the body of a humanoid robot, balance control can in fact
be reduced to a linear control problem, at least in the case
of relatively slow movements. We demonstrate for a variety
of tasks that the humanoid robot HOAP-2 acquires through
this approach the capability to balance dynamically against
unforeseen disturbances that may arise from external forces
or from manipulating unknown loads.
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1 Introduction

The balance control problem of humanoid robots is known
to be hard to solve due to the high dimensionality of their
action space (since many degrees of freedoms, i.e., joints,
are involved) and the non-linearities inherent to any kine-
matic chain. Because of the importance of finding solutions
to this problem, quite a bit of effort has already been invested
and many approaches from different research areas have been
proposed.

A first step was made by Vukobratović and Borovac (2004)
by introducing the Zero Moment Point (ZMP) criterion. It
simplifies the high dimensional problem by reducing all act-
ing forces above the foot (in the case of single support, i.e.,
contact with the ground with only on foot) to one single force
(Vukobratović and Borovac 2004). Due to physical interac-
tion between foot and ground, we get as a result of Newton’s
3rd law (i.e., action–reaction), at the point where this result-
ing force acts, a so-called ground reaction force with opposite
sign. The two-dimensional point (called ZMP) on the ground,
where this resulting force acts, can then be used to character-
ize the dynamic state of the robot: if the ZMP lies within the
support polygon of the robot, the state of the robot is called
dynamically stable. This so called “ZMP stability criterion”
reduces the problem of stability to coordinate the limbs of the
robot (i.e., apply appropriate torques through their servos) in
such a way, that the ZMP stays within the support polygon1.

1 The robot could also change the size of the support polygon by, for
example, hold on to something. For a discussion of different control
strategies in this context, we refer to Goswami and Kallem (2004).

123

http://dx.doi.org/10.1007/s00422-011-0430-1


236 Biol Cybern (2011) 104:235–249

While the ZMP can be calculated analytically, the position
of this point can also be measured by pressure sensors (actu-
ally measuring the ground reaction force). From this point
of view the resulting point is called accordingly Center of
Pressure (CoP). As Goswami (1999) demonstrated, the ZMP
equals the CoP since they describe the same phenomenon
from different points of view. In this paper, we are going to
use the name CoP, since we use the pressure sensor infor-
mation in combination with the support polygon to estimate
the state of stability. Since the original ZMP definition has
some limitations (Goswami 1999), other ground reference
points have been proposed, for example, the Foot Rotation
Indicator (FRI) introduced by Goswami (1999) or the Cent-
roidal Moment Pivot (CMP), just to name two. For a detailed
discussion, we refer to Popović et al. (2005).

Other approaches have been proposed that are also based
on a reduced model of the robot. For example, the Inverted
Pendulum Model, introduced by Kajita et al. (1992), has
proved to be very useful. It describes the whole robot,
under some assumptions, by a linear inverted pendulum
and thereby, reduces the number of dimensions. Extensions
of this model have also been studied, for example, the
Three-Dimensional Inverted Pendulum Model (3D-LIPM)
by Kajita et al. (2001) and the Reaction Mass Pendulum
(RMP) by Lee and Goswami (2007). Although all these
reduced models are useful, still, at the point of implemen-
tation one has to find control schemes which map the strat-
egy back into the full dynamic model (as Lee and Goswami
(2007) pointed out). Hence, they have difficulties dealing
with unknown external perturbations, since these perturba-
tions present a change in the dynamics of the robot.

An alternative approach to balance control is to rely on
the static model, i.e., to use the kinematic model and the
mass distribution of the robot. By employing a local Jaco-
bian Pseudo-Inverse (JPI) approach on local information, like
Resolved Motion Rate Control (RMRC) (Whitney 1969), the
optimal change of the joint angles can be calculated. Some of
these frameworks even allow to set priorities among conflict-
ing tasks, e.g., Baerlocher and Boulic (1998, 2004). Accord-
ingly, balancing could be one of these tasks, typically with
a high priority. In order to deal with unforeseen perturba-
tions, the setup has to be used inside a feedback control loop,
for example as proposed in Mansard and Chaumette (2007).
However, a drawback of such an approach is that it calculates
online inverse kinematics, which involves computationally
expensive matrix inversions.

Other approaches try to solve directly the dynamic equa-
tions within constraints, which reflect the border of stability.
For example, Kagami et al. (2001) proposed an online bal-
ancing scheme by solving a quadratic programming problem.
However, the precise dynamic model of the robot is needed
in order to apply this approach. Therefore, it has difficulties
in situations where the dynamic model of the robot signif-

Fig. 1 The figure is a part of a Fig. 4 taken from d’Avella and Bizzi
(2005). They present shared and behavior-specific time-varying syner-
gies (i.e., activation of 13 muscles of adult bullfrogs over time). We
adopt this concept for robots by defining synergies in the context of
time-varying joint angles (compare Fig. 7)

icantly changes due to external unknown forces, for exam-
ple, introduced by picking up unknown loads or contact with
the environment, which are standard situations for humanoid
robots working in a human environment.

Biological organisms face similar problems, but, as exper-
imental data suggest, employ a radically different strategy for
controlling their movement apparatus with many degrees of
freedom (DoF), in particular for balance control. Numerous
studies from the Lab of Bizzi at MIT (Mussa-Ivaldi 1999;
d’Avella et al. 2003; d’Avella and Bizzi 2005) have shown
that the central nervous systems of a variety of organisms
employ a modular architecture for motor control, whereby
many different movements (arm movements, walking, jump-
ing, and swimming) can be constructed as largely linear (but
non-negative) combinations of a rather small repertoire of
movement primitives (also referred to as muscle synergies,
or kinematic synergies; we use the latter term in this arti-
cle). For example, Fig. 1 shows a result from d’Avella and
Bizzi (2005). It depicts the underlying non-linear orchestra-
tion of 13 muscles activations2, i.e. synergies, for different
behaviors and synergies, which are shared between different
behaviors for bullfrogs. However, such synergies are not only
found in rather simple animals, but also in complex biological
systems like humans.

For example, recent work on whole-body movements of
humans (Freitas et al. 2006; Tricon et al. 2007; Torres-Oviedo
and Ting 2007) show that balance control and other human
body movements during standing can be understood as com-
binations of a small set of stereotypical kinematic synergies
(each of them affects several joints). Experiments, where
humans where asked to bend their upper trunk, while record-
ing the angles of the ankle, hip and knee, revealed after a
Principal Component Analysis (PCA) of these angles, that
already the first principle component can explain over 99% of
the total angular variance (Alexandrov et al. 1998). This sug-
gests that a set of muscles (multiple degrees of freedom) are

2 obtained by a non-negative matrix factorization algorithm
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controlled by a low dimensional (possibly even one-dimen-
sional) variable. Other experiments suggest that this principle
of kinematic synergies is present over a wide range of dif-
ferent movements like reaching and grasping (Mason et al.
2001), upper-arm movement (Sabatini 2002), and making a
step (Wang et al. 2005). Hence, kinematic synergies seem to
present a general strategy biological organisms apply.

In this work, we adopt this concept for real robots in
general and for balance control of humanoid robots in partic-
ular. Therefore, we consider instead of a time-varying acti-
vations of different muscles (as in Fig. 1) time-varying joint
angles of different joints. Although there exists an obvious
gap between muscles of a biological systems and high torque
driven joints we are still able to adopt this concept by defining
abstract synergies in mathematical terms, as we have already
demonstrated in a preceding conference paper (Hauser et al.
2007). We showed how this basic modular strategy (based on
kinematic synergies) can be adapted for balance control of
a humanoid robot. The kinematic synergies were calculated
offline by an optimization process based only on the static
model (kinematics and masses) of the robot3. Despite the use
of the static model, we could demonstrate that the concept of
kinematic synergies, when plugged into a linear control loop,
can provide a powerful scheme for dynamic balance control.
This article presents an extension of the previous work, i.e.,
Hauser et al. (2007), by following points: (1) We demon-
strate that our approach of kinematic synergies is robust to
parameter changes of the model of robot. Actually, changes
of the static model present a standard situation for biological
systems since they grow or even get injured (e.g., loosing a
leg). (2) Additionally, we show that no special tuning of the
controller parameters is needed since the proposed frame-
work works (i.e., balances the robot) within a wide range of
these parameters. (3) We demonstrate that the chosen kine-
matic synergies, originally designed for double support, can
also be applied for the case of single support. (4) Finally, we
demonstrate that the proposed approach for balance control
can be transferred from a simulated humanoid robot without
any changes to a real humanoid robot. In the next section, we
define kinematic synergies. Section 3 explains how to con-
struct and use kinematic synergies for balance control of the
humanoid robot HOAP-2. In Sect. 4, we present a number of
experiments with the simulated and the real HOAP-2.

2 Formal definitions of kinematic synergies

In this section, we define kinematic synergies in order to
reduce high dimensionality and non-linearities. Typically,

3 This optimization process is closely related to the Jacobian Pseudo-
Inverse approaches (Sciavicco and Siciliano 1999), however, the com-
putations are only needed for the (offline) construction of the synergies
(and therefore are calculated only once) and not during online control.

humanoid robots have a high number of degrees of
freedom (DoF), namely joints. We interpret kinematic syner-
gies (KS) as a way to reduce the DoF by putting a defined set
of joints under the regime of one controlling parameter, which
we refer to as the KS-parameter s. We define a kinematic syn-
ergy as a non-linear mapping � of the KS-parameter s ∈ R

to a fixed number of m degrees of freedom (joints).

Definition 1 A KS is a function � := �(s) which maps the
KS-parameter s ∈ R onto a m dimensional vector of joint
angles qKS = �(s):

� : R → R
m . (1)

The superscript KS denotes the subset of m joints, which are
controlled by the KS. The total number of joints of the robot
is denoted by n. Further, we define the function ϕ

ϕ : R
m → R

n (2)

to embed the m-dimensional subspace spanned by � into the
n-dimensional space of all joints of the robot. This embed-
ding copies the angles of all joints affected by � and leaves
the remaining joints constant.

A KS is typically applied in order to control a low dimen-
sional, or even one-dimensional, variable y ∈ R

l . In general,
the output y depends on all n joint positions q ∈ R

n of the
robot and can be described by a non-linear function f(q)

f : R
n → R

l . (3)

We want the KS to control the output y = (f ◦ϕ ◦�)(s), see
Fig. 2. In the case of balance control, the function f represents
the non-linear relationship between all joints of the robot and
a ground reference point like the CoP. We will use two KS �x

and �z for the two-dimensions of the CoP. Therefore, in this
particular case each KS is used to control a one-dimensional
output (l = 1).

Since such a KS affects m degrees of freedom that depend
just on a one-dimensional parameter s, we can impose further
constraints on the function �. A reasonable choice for such
a constraint is a linear relationship between the controlling
parameter s and its corresponding output y. This reduces
non-linearities, inherent to kinematic chains, and hereby

Fig. 2 Scheme for the composition of the functions ϕ and f according
to (2) and (3) with the kinematic synergy �
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facilitates controlling and learning. Hence, we are particu-
larly interested in the following type of KS:

Definition 2 A linearizing kinematic synergy is a kinematic
synergy according to Definition 1, which has a linear rela-
tionship between its controlling parameter s and the corre-
sponding (to be controlled) output y

y = (f ◦ ϕ ◦ �)(s) = k · s, k ∈ R. (4)

We restrict our attention in this article to such linearizing KS,
to which we simply refer as KS.

For a better understanding, we provide some additional
remarks:

1. As stated above the property of linearity in Def. 2 reduces
inherent non-linearities. But Eq. 4 presents a static map-
ping, and therefore, it will only linearize the static part
(linearization at q̇ = 0, q̈ = 0) of the whole dynamic
model of the robot. Nevertheless, it will reduce non-
linearities in the dynamic regime to some extent too, since
the dynamic part is coupled with the static part of the
differential equations.

2. The controlled variable y is one-dimensional, but is con-
trolled by m > 1 joints. Hence, we have additional redun-
dant degrees of freedom and therefore, we are free to
impose additional constraints on the KS. Naturally, the
choice will depend on the task for which the KS are con-
structed. In our case of balance control, we used con-
straints to assure double support and an upright posture
(used in the optimization process described in Sect. 3.1).

3. KSs are calculated offline for each robot (see Sect. 3.1)
and subsequently fixed during simulation as well as when
used with the real robot. In a biological interpretation, we
assume the KSs to be found by evolution.

4. The presented framework was kept as simple as possible.
Various extensions, which lead to a better performance
for particular tasks, are possible. One could define a two-
dimensional kinematic synergy (i.e., s ∈ R

2 and y ∈ R
2)

or time-varying KSs (qKS = �(s, t)), which depend on
a cyclic movement, for example, to be used in a walking
cycle.

3 Using kinematic synergies for balance control of the
humanoid robot HOAP-2

In this section, we show in detail how to use kinematic syner-
gies for balance control of the humanoid robot HOAP-2, see
Fig. 3a. The robot has n = 25 degrees of freedom (rotational
joints). Its structure can be seen in Fig. 3b. The goal is to
construct KSs for balance control in double support. There-
fore, we have to decide (a) what output function f and output
variables y we are going to use, (b) which subset of m joints

(a)

L hip 1

L hip 2

L hip 3

L knee

L ankle 1

L ankle 2
R ankle 2

R ankle 1

R knee

R hip 3

R hip 1
R hip 2

(b)

(c)

Fig. 3 a The real HOAP-2 robot and b its schematic structure. The
red marked and labeled joint rotation axes are controlled by the kine-
matic synergies Φx and Φz. c Support polygon on the support surface
for the robot, including the touch sensors, which are used to measure
the center of pressure (mCoP). Black arrows indicate the x dimension
(forward/backward: range 9.5 cm) and z dimension (left/right: range:
14.3 cm) for movements of the CoP

we put under the regime of the KSs, and (c) what additional
constraints we are going to apply to construct the KSs:

(a) For balance control, a natural choice for the function
f is a ground reference point. These points are mathe-
matically defined and can be analytically derived, but in
practice, they are estimated via pressure sensors. There-
fore, we will denote the reference point measured by the
pressure sensors as measured Center of Pressure (mCoP).
HOAP-2 has four of such sensors per feet, located at the
corners (see Fig. 3c).
Since a KS is defined as a static mapping, we use the static
version of the mCoP to construct our KS. In the static
case (zero joint velocity q̇ and zero joint acceleration q̈)
the mCoP coincides with the projected Center of Mass
(pCoM). Therefore, we chose the pCoM as output func-
tion f . Since the pCoM is a two-dimensional point on the
supporting surface, we split it up into its two-dimensions
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yx = pCoMx and yz = pCoMz and define two separate
KSs, namely Φx and Φz, in order to control these one-
dimensional outputs yx and yz .

(b) Next, we have to decide what joints are placed under the
regime of our KSs. A natural choice for balance con-
trol is to use all m = 12 leg joints (three hip joints,
one knee joint, and two ankle joints for both legs). Their
corresponding rotational axes are highlighted in red in
Fig. 3b. The additional surplus of joints are free to be used
for other tasks (grasping, lifting weights, and tracking
objects, etc.). Their movements clearly will change the
pCoM too, but as we show later in Sect. 4, our approach
is able to deal with that in a natural way.

(c) Finally, we choose some additional constraints (next to
the linearity property) for the KSs, which are used for
the optimization process described in the next section.
Suitable constraints for balance control are to keep the
upper body as upright as possible and to maintain double
support.

Note that in contrast to our setup for the humanoid robot
here, humans use a number of sensory channels for balance
control. They incorporate the visual input next to the sensory
information from their graviceptive and proprioceptive sys-
tems. The latter is the only one that we use in our context
and it is mimicked in the HOAP-2 robot in very simple form
as touch sensors. However, there exist biologically inspired
approaches for balance control that include multiple sensory
information. For example, Mahboobin et al. (2008) added
the graviceptive sensory information in order to increase
the robustness of the balancing. They combined both infor-
mation streams via a Kalman filter. Another approach has
been suggested by Peterka (2009). He demonstrated that a
combination of a ZMP compensation scheme (linear feed-
back loop based on the CoP), a feedback loop based on
the ankle angle (proprioceptive sensor), and a feedback loop
based on the body tilt angle (graviceptive sensor) is able to
increase the balance performance. However, both mentioned
approaches have been used so far only to balance a sim-
ple, one-dimensional, linear model of the robot (i.e., a linear
inverted pendulum), instead of a real robot. An extention of
our kinematic synergy approach in order to incorporate mul-
tiple sensory information would be in so far interesting, as
that the kinematic synergies might be able to close the gap
between these simple models and the real robots. However,
this would be beyond the scope of this paper.

3.1 Calculating kinematic synergies with inverse
kinematics

In this section, we describe the process to obtain the desired
KSs in detail. All calculations are based only on the kine-
matic model of the robot including the mass information

(no dynamical information like the inertia matrices is
needed). The KSs were constructed offline and subsequently
fixed during control action.

We defined an initial posture qinit (see Fig. 5; posture A).
This posture resulted (for the case of a horizontal support
surface) in a pCoM at the center of the support polygon. We
used a posture with wide-spread arms in order to avoid self
collision when moving. The KS-parameters sx and sz were
rescaled such that the values −1 and +1 corresponded to the
borders of the support polygon. Therefore, the region of act-
ing without falling was (for the case of a horizontal support
surface) sx/sz ∈ [−1,+1] for both dimensions x and z, see
red-dashed lines in Fig. 3c. We additionally set the origin
of the coordinate system for the pCoM to the center of the
support polygon and therefore, the resulting outputs in the
initial posture were fx(qinit) = fz(qinit) = 0.

We will only describe the procedure for �x. The second
kinematic synergy �z was obtained in a similar manner. The
KS was implemented as look-up table which maps the KS-
parameter sx ∈ [−1,+1] to joint angle offsets (with regard
to the initial posture)4, i.e., Δqx = ϕ(qKS

x ) − qinit . Note
that the look-up table represents a discretized version of a
linearizing kinematic synergy as defined in Definition 2. In
order to obtain joint angle offsets between the table entries,
a linear interpolation was used. We used joint angle offsets
instead of absolute joint angles in order to be able to use a lin-
ear superposition (as biological data suggest) of both KSs,
i.e., Δq = Δqx + Δqz . Although, the problem is (due to
the kinematic chains) non-linear, we will show that a linear
superposition is valid for a wide range of postures. The lin-
ear superposition allows us to use two separate simple KS,
which depend only on a one-dimensional KS-parameter, and
which can be constructed independently5.

In order to construct the look-up table, we divided the
range of the KS-parameter sx over the support polygon into
80 points. Therefore, the distance between two neighbor-
ing points represents 9.5 cm/80 ≈ 0.12 cm in the pCoM
space, which corresponds to a step of Δsx = 0.025 in the
KS-parameter space.

The construction of the KS consisted of two alternating
optimization steps (see optimization scheme in Fig. 4). Start-
ing from qinit and sx = 0, the first optimization step was used
to move the pCoM of the robot to the next point y′

x of the
look-up table (located 0.12 cm in x-direction from the ori-
gin). In addition, the optimization tried to keep the upper
part of the body upright. An inverse kinematics algorithm
based on the Jacobian Pseudo-Inverse (JPI) (Sciavicco and
Siciliano 1999) was used to calculate the joint movement.

4 The function ϕ is used to project the m-dimensional vector qKS
x into

the n-dimensional space of all joints.
5 Without this property, one would have to construct one single KS with
a two-dimensional KS-parameter, i.e., s ∈ R

2.
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Fig. 4 Scheme of the construction process for the look-up table for the
KS �x in the form < sx,Δq >. Optimization step 1 moves the pCoM
in the desired direction to y′

x, while keeping the trunk in an upright
position. Optimization step 2 keeps the feet at the initial positions. The
process ends when the end of the support polygon (SP) is reached

Therefore, the applied Jacobian matrix consisted of two 3×m
sub-matrices, the Jacobian for the position of the pCoM and
the Jacobian for the rotation of the torso. However, due to
the movement calculated by this optimization, the position
of the right foot relative to the left foot tended to change. This
should be avoided in order to prevent the robot from falling.
Therefore, a second JPI optimization step (see Fig. 4) was
used to move the right foot back into its original position rel-
ative to the left foot. For this optimization, the same Inverse
Kinematics algorithm was applied using only the 6 joints of
the right leg.

These two previously described steps were iterated until
the desired output value y′

x was reached. Subsequently, the
joint angle offsets to the initial posture were stored in the
look-up table and, now starting from the new joint position,
the next entry of the look-up table was calculated. The same
process was applied for the opposite direction (i.e., for sx

from 0 to −1). This finally led to a look-up table for the
range sx ∈ [−1,+1] which mapped the KS-parameter sx to
joint angle offsets.

Figure 5 presents four typical postures for different KS-
parameter pairs [sx/sz]. The center of the figure shows the
support polygon (gray area) and the coordinate system of the
KS-parameters. The yellow circles (A–D) represent the pos-
tures in the KS-parameter space. The corresponding screen-
shots can be seen in the corners of the figure.

A B

DC

Fig. 5 Typical postures of the simulated HOAP-2 resulting from the
KSs �x and �z for different KS-parameters. The center of the figure
shows the defined coordinate system for the KS-parameters sx and sz .
The gray shaded area indicates the support polygon (SP) of our robot
standing with both feet on the ground. The red-dashed lines depict the
limits of the SP and correspond to the values sx = ±1.0 and sz = ±1.0.
The yellow points show typical postures in the KS-parameter space.
Corresponding postures can be seen in the corners (labeled from A to
D). The used KS-parameters [sx/sz] can be seen below the screenshots.
Screenshot A shows the initial posture qinit (sx = sz = 0 / at the origin)
B shows the robot bending forward with sx = 0.8 and sz = 0.0, while
in C the robot is bending to the left (with sx = 0.0 and sz = −0.8).
Screenshot D presents a combination of both kinematic synergies with
sx = −0.5 and sz = 0.5

Figure 6a shows the mapping of the KS-parameter sx to
the outputs yx =pCoMx and yz =pCoMz for the KS �x. We
can identify a linear relationship between sx and yx, whereas
the second output dimension yz is unaffected by sx. The same
plot for the KS �z is shown in Fig. 6b.

A graphical representation of the joint angle offsets over
the range of the KS-parameter spaces (from −1 to +1) for the
kinematic synergies �x and �z is presented in Fig. 7 (com-
pare to the biological counterpart in Fig. 1). Similar to their
biological prototypes the two KSs largely affect disjoint sets
of joints. The joints mainly responsible for the movement
in x-direction are orthogonal to the joints mainly responsi-
ble for the z-direction. Note that the human muscle-skeleton
system exhibits, although more complex, a similar structure.
This orthogonality suggests to combine the two KSs linearly
which is done by summing up the initial posture and the two
joint angle offsets qL = qinit + Δqx + Δqz .

In order to show the validity of the linear superposition of
the two KSs, we evaluated empirically the deviation of the
actual pCoM < fx(qL), fz(qL) > from the case of perfect
linear superposition < fx(qinit + Δqx), fz(qinit + Δqz) >.
The deviations for the whole support polygon can be seen in
Fig. 8. Except for extremal cases, where the pCoM is located
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Fig. 6 a The plot shows the mapping of the KS-parameter sx to the
outputs yx = pCoMx and yz = pCoMz for the KS �x. While the rela-
tionship between sx and yx is linear (as demanded by the definition of
a linearizing kinematic synergy), yz is nearly unaffected by sx. b The
same plot for the second KS-parameter sz
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Φ
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L hip 1

L hip 2

L hip 3
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R ankle 2
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L hip 1
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R hip 3
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R ankle 1
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Fig. 7 Graphical representation of the KSs �x and �z (compare to
the biological counterpart in Fig. 1). Shown are the joint angle offsets
(in color coding) for the kinematic synergies �x (moves the pCoM for-
ward/backward) and �z (moves the pCoM left/right) for the HOAP-2
over the range [−1,+1] for the KS-parameters sx and sz . Note that
these two KSs affect largely disjoint sets of joints

at a corner of the support polygon, the deviations from line-
arity are quite small.

Note that the described optimization procedure is closely
related to standard JPI approaches. However, these appro-
aches are typically used for online control, involving com-
putationally expensive real-time calculations. With the use
of kinematic synergies most of this computational load can
be transferred to the offline optimization scheme. As a con-
sequence, and as we will demonstrate later, without a signifi-
cant loss of performance the robot can be balanced with very
little computational power.

3.2 From statics to dynamics by using linear controllers

The kinematic synergies �x and �z were constructed using
the pCoM as output function and, therefore, they were based
on the static model of the robot. However, the robot can only

Error Function
[cm]

rear

left

0.2

0.6

1.0

1.4

Fig. 8 Empirical evaluation of the validity of the linear superposition
of the KSs �x and �z . We calculated the deviation of the actual pCoM
< fx(qinit + qx + qz), fz(qinit +Δqx+Δqz) > from the case of perfect
linear superposition < fx(qinit + Δqx), fz(qinit + Δqz) >. The Euclid-
ean norm of the deviations is shown in color code for the whole support
polygon. Except for extremal cases, where the pCoM is located at a
corner of the support polygon, the deviations from linearity are quite
small. The white dotted lines depict the contours of the feet

estimate the mCoP with its pressure sensors6, which is also
affected by the dynamics of the robot. Nevertheless, we are
still able to use the obtained KSs in a dynamic context if
following assumption holds:

Assumption: The robot moves sufficiently slowly such
that

mCoP ≈ pCoM.

As we will demonstrate in this section, the assumption allows
us to use simple linear controllers in conjunction with the
KSs. Due to the assumption, we are in principle limited to
“sufficiently slow” movements. However, we will demon-
strate in our experiments that a wide range of unknown exter-
nal forces can be counterbalanced by our approach, despite
this limitation.

We now explain how the kinematic synergy �x can be
used in combination with a linear controller for balancing the
robot in x-direction (forward/backward). For the other KS �z

the process is similar. As long as the assumption holds, the
function from the time derivative ṡx of the KS-parameter to
mCoPx can be approximated by a linear transfer function

P(z) = K

(z − 1)
, (5)

with K ∈ R
+ and with z being the time shift operator for dis-

crete systems (Oppenheim and Willsky 1992). The denom-
inator polynomial represents an integrator (one pole at z =
+1), which integrates the velocity ṡx of the KS-parameter to
obtain sx.

As long as the dynamical effects are small enough, they
can be seen as uncertainties in the linear model of Eq. 5.
Already a simple linear feedback controller can handle these
small uncertainties. In order to obtain a closed control loop,

6 In our simulations of the HOAP-2, we also used simulated pressure
sensors to calculate the mCoP.
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Fig. 9 Closed control loop for the kinematic synergy �x. Since we
want to have the mCoPx at the center of the support polygon, the ref-
erence point is set to ỹx = 0. The external perturbation d results from
external forces and/or model uncertainties

we define a feedback error

ex := ỹx − yx (6)

with ỹx being the desired output value and yx = mCoPx.
The goal is to prevent the robot from falling. Therefore, the
mCoPx should stay close to the center of the support poly-
gon. Since we have defined the center of SP at the origin, see
Fig. 3c, the desired value ỹx is set to 0.

We can now use a general standard PID controller to get
the controller output ṡx

ṡx = K P ex + K I

∫
exdt + K D

dex

dt
, (7)

where K P , K I , and K D are the positive PID controller
parameters. Figure 9 shows the described closed control loop
for the kinematic synergy �x. Since the plant (see Eq. 5)
already contains an integrator, the use of PD controllers
(K I = 0) is sufficient. For the KS �z , we used a similar
control loop, which worked independently from and in par-
allel to the first control loop.

We have described the control scheme to control around
a set point (ỹx = ỹz = 0). However, the control loop can
also be used to move the mCoP on any desired time-varying
trajectory7, i.e., ỹx(t) and ỹz(t). This is useful in many appli-
cations. For example, for the purpose of initiating a walking
cycle, the robot has to move its mCoP under the future sup-
porting foot in order to be able to raise the other leg without
falling.

The controller parameters used in the experiments were
empirically found to have a reasonable performance. As we
demonstrate (see Sect. 4.3) there is a wide range of appro-
priate controller parameters and, therefore, the choice of the
parameters is not critical.

Linear and non-linear control theory offers a number of
possible improvements for the controllers, for example, adap-
tive control (see Åstrom and Wittenmark 1995) or robust
control schemes, optimal control, and different trial and error
approaches to find good control parameters (see for example
Kuo and Golnaraghi 2002). Even higher order controllers or
different control structures than in Fig. 9 could be used. How-
ever, in order to illustrate the capability of using kinematic

7 We have already demonstrated that in Hauser et al. (2007).

synergies for balance control, we only use the previously
presented, simple PID controllers.

3.3 Examination of different possible perturbations

Lets take a closer look at possible perturbations d for the
proposed control loop (Fig. 9). We will distinguish between
three different kinds of perturbations:

1. Model perturbations: Since we obtained our KSs from the
static model of the robot, unmodeled dynamics, which
will always be present to some extent, result in model
perturbations.

2. Internal perturbations: The mCoP is also influenced by
movements of joints, which are not under the control of
the kinematic synergies. For example, if our humanoid
robot uses the presented KSs for balancing and addition-
ally moves a heavy weight with its arms, this movement
will also change the mCoP position. Note that the pro-
posed control loop does not need any information about
the movements of these joints.

3. External perturbations: For example pushes, pulls, contact
with the environment, or a moving support platform.

Since a standard feedback control loop has the property
to suppress the perturbations d, our approach works for a
wide range of tasks. As shown in our experiments (Hauser
et al. 2007), these tasks include counteracting external forces,
following trajectories, compensating for forces introduced
by movements of the limbs of the robot or even a mixture
of these tasks. If the perturbation is too large, the assump-
tion (mCoP ≈ pCoM) might be violated and the control-
ler will, therefore, not be able to compensate the resulting
error anymore. Yet, as our experiments show, the proposed
system is capable to react appropriately to a wide range of
perturbations.

4 Experiments

We conducted experiments with our proposed approach for
a variety of possible applications. We demonstrate that kine-
matic synergies with linear controllers empower a humanoid
robot to counterbalance different kinds of dynamic pertur-
bations. In our first experiments, the robot had to counter-
act a moving support surface (platform where it stood on)
and abrupt unforeseen external forces at the same time (see
Sect. 4.1). Subsequently, we show that the approach can also
be extended easily to balancing in single support (the robot
only stood on the left foot, see Sect. 4.2) and that robust-
ness against parameter changes is an inherent property (Sect.
4.3). Furthermore, we compare our approach to an online
Jacobian Pseudo-Inverse (JPI) algorithm. Finally, we dem-
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onstrate that our approach can be easily transferred from the
simulation to the real robot without any special precautions
(Sect. 4.5).

All simulations were implemented in the robot simulation
software Webots, see Michel (2004). A detailed model of
the dynamics of the HOAP-2 robot, based on data provided
by the vendor Fujitsu, was used. The basic simulation time
step was set to 2 ms and the time steps for the control loops
were set to 8 ms. In the general setup, we had two kinematic
synergies (�x and �z), which were used within two sep-
arate control loops. They reacted independently from each
other on their corresponding output dimension x and z. In
dependence on their errors ex and ez , both linear controllers
calculated the velocities ṡx and ṡz of their KS-parameters.
The velocities were integrated numerically to obtain sx and
sz , which were then mapped via the look-up table into joint
angle offsets. Subsequently, these joint angle offsets were
linearly combined as described in Sect. 3.1 to get the actual
joint target angles. Finally, these angles were transformed
into torques by local PD controllers8 at the servos.

We provide supplementary multimedia material in form of
two videos. The first one (simulation_videos.avi) shows all
simulated experiments of the following sections. The second
video (real_robot_videos.avi) shows the experiments with
the real robot. Both videos (in compressed form) are about
13 MB in size.

4.1 Moving support platform (surfboard task)

In this task, we simulated the HOAP-2 robot standing on a
movable support platform (surfboard). The surfboard could
rotate about the x-axis with angle Θx and about the z-axis
with the angle Θz . Typical scenarios of the setup can be seen
in Fig. 10.

We considered the case where the surfboard was tilted
dynamically in random directions. The random trajectories
for the angles Θx and Θz were generated independently from
each other by smoothing (by the use of a discrete low-pass
FIR-filter9) random trajectories of jumps (steps) with random
amplitudes and random durations. Typical resulting trajecto-
ries are presented in Fig. 11a and b.

In addition to the random movement of the surfboard,
unforeseen external forces (for example these forces could
arise from wind or contact with other objects) were applied to
the torso of the robot at various points in time. We designed
this scenario in order to show that our proposed approach
is able to deal with different kinds of external perturba-
tions simultaneously. Furthermore, control strategies that
require knowledge of the dynamic model of the robot are

8 Note that these are the hardware controller of the servos and not the
controllers from our proposed control loops.
9 The used FIR-filter had three poles at 0.997.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10 Screenshots of the posture of the (simulated) HOAP-2 at 4
time points during the balancing experiment with the random moving
support surface (surfboard) and external perturbations (winds). In b,
the wind W 1 was blowing from the right (point of view of the robot;
red arrow). As a consequence, the robot was leaning against the wind
in order to move its mCoP back into the middle of the support poly-
gon. In d another wind W 2 was blowing from the right and the back
(red arrow), resulting in a diagonal force. Again, the robot responded
properly to this online modification of its dynamic model

inapplicable in this scenario, because the external forces
change the dynamic model of the robot in an unknown, online
manner. Figure 11 shows the results when an external force
W 1 = [0, 0, 5]T N (a force from the right side) was applied
at the torso of the robot during the interval [5 s, 10 s], and
another external force W 2 = [5, 0,−5]T N (a force from the
right and the back) was applied during the interval [15 s, 20 s]
(we shaded these two time intervals in gray). Note that the
onsets of the winds were abrupt (i.e., a step function in time)
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Fig. 11 Result for the experiment with a moving support platform
(surfboard) and unexpected external forces (wind) W 1 and W 2. The
balance of the HOAP-2 is controlled by two linear controllers combined
with the kinematic synergies. Without balance control (red-dashed line
in c and d) the mCoP left the support polygon after 16s (in response to
the wind W 2), and the robot fell over. With balance control (solid lines)
the stability of the robot was maintained in spite of unexpected external
forces

and, therefore, represented highly dynamical perturbations
to the system.

Typical trajectories of the mCoP for the described setup,
with and without balance control, are shown in Fig. 11c and d.
Without balance control, the robot lost balance after 16 s
(indicated by a black star in Fig. 11c and e), whereas with
our controllers, balance was maintained. The error signals for
both dimensions x and z can be seen in Fig. 11e and f. Note
that both perturbations, the movements of the surfboard and
the external forces, are external perturbations. In addition, as
the setup was dynamic, inherent model perturbations were
present too. With this experiment, we demonstrated that our
approach is able to react online against a mixture of different
types of unforeseen perturbations.

4.2 Kinematic synergies in single support

In this experiment, we demonstrate how to apply our
approach in single support. We used two different strategies.
The first strategy reused the KSs previously calculated for
double support (referred to as DS-KS). We switched off the
output of the control loop for the joints of the lifted leg and set
the desired mCoP position to the center of the reduced support
polygon (defined by the single supporting foot). The second
strategy was to design new KSs for single support (referred
to as SS-KS). We used the same procedure as described pre-
viously in Sect. 3.1, with the distinction, that we used a
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Fig. 12 Setup for the single support task. a Shows the initial posture.
The yellow circle denotes the CoM of the robot and the arrow points
to the pCoM, which is located at the center of the support polygon. b
Shows the joint angle trajectories which were used for the kick motion.
When no balance control was applied, the robot lost balance and tipped
over at about 7.5 s

different initial position (the one shown in Fig. 12a) and we
only optimized the joint angles of the supporting leg.

In the experimental setup, the robot stood only on its left
foot. The right foot had no contact to the ground and therefore
the right leg was free to perform any desirable movement, for
example, a kick motion. The initial posture can be seen in Fig.
12a. The corresponding s-values for this posture were sx = 0
and sz = 0.195 for DS-KS and sx = sz = 0 for SS-KS.

In order to demonstrate the validity of both strategies, we
moved the body joint and the hip joints of the left leg (these
joints were not under the control of the KSs) in order to per-
form a kick motion, which also included the upper trunk (see
Fig. 12b). For the robot this movement represented an inter-
nal perturbation as discussed in Sect. 3.3. When no balancing
control was active, after about 7.5 s of simulation time, the
robot tipped over and fell. With the controllers switched on,
the robot was able to keep balance during the kick motion
(in both cases, SS-KS and DS-KS). Figure 13 shows the time
course from 2 to 12 s of this experiment with DS-KS. Similar
results were obtained with SS-KS. Figure 14a and b shows
the trajectories of the KS-parameters sx and sz . Note that in
the case of DS-KS, there was an offset at the beginning of the
simulation for the KS-parameter sz . This reflects the offset
of the initial posture for single support from the original ini-
tial posture for double support. Figure 14c and d presents the
errors during the simulation. The controllers counteracted
the disturbances correctly and kept the errors close to zero
for both strategies. The dashed red curve shows the errors
when no controllers were activated. Note that the scales of the
y-axes of the plots in Fig. 14 are different for the dimensions
x and z. This is a consequence of the used kick motion which
mostly affected the mCoP in the x direction (forward/back-
ward). Both strategies (DS-KS and SS-KS) showed a similar
performance (see Fig. 14c, d). As a consequence, we can see
that the KSs can also be used for different, albeit related tasks,
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Fig. 13 Postures of the simulated HOAP-2 for the single support task. The first row shows the robot from the front and the second row shows the
robot from the side. Screenshots were taken every second from the 2nd to the 11th second

0 2 4 6 8 10 12
−0.8

−0.4

0

0.4

time [sec]

[c
m

]

 

 

DS−KS
SS−KS

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

0.3

time [sec]

[c
m

]

 

 

DS−KS
SS−KS

0 2 4 6 8 10 12
−2

−1

0

1

2

time [sec]

[c
m

]

 

 

controlled DS
controlled SS
UNcontrolled

0 2 4 6 8 10 12
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time [sec]

[c
m

]

 

 

controlled DS
controlled SS
UNcontrolled

(a) (b)

(c) (d)

Fig. 14 Results for the single support task. The left column shows
the results for the x-dimension (�x, forward/backward) and the right
column the results for the z-dimension (�z , left/right). a and b The
responses of the KS-parameter sx and sz for both approaches (SS-KS
and DS-KS). c and d The errors. The red-dashed curves denote the
errors when no balance control was active. In this case, the beginning
of the red region indicates, when the robot tipped over and lost balance

for which, in the first place, they have not been designed for.
This might also help to reduce the number of needed KSs
in real world applications, because related tasks might share
the same set of KSs.

4.3 Robustness to changes in the model of the robot
and the controller parameters

The kinematic synergies are based on the static model of the
robot. Since uncertainties in the model parameters (lengths
and masses) are common, it is desirable to have a framework
that is robust to changes in those parameters. Moreover, such
a robustness simplifies a transfer from the simulation to a
real robot. In addition, it would be beneficial to have a wide

range of valid control parameters, i.e., K P and K D , which
are able to balance the robot. In the following experiments,
we demonstrate that our proposed setup is widely robust to
variations of these parameters.

In a first experiment, we varied the size of the robot by
changing the length of every link by a multiplicative length
factor, ranging from 0.5 to 2.5. We used the trajectory fol-
lowing task from our previous work Hauser et al. (2007),
where the robot had to follow a figure eight trajectory with
its mCoP, while it manipulated a heavy weight. The KSs were
kept constant. First, we used the same controller parameters
for both controllers as in the original task (K P = 80 and
K D = 0.1). The robot was able to keep balance for a length
factor, which ranged from 0.85 to 1.1. In Fig. 15, the mean
squared errors for the x-dimension10 for successful length
factors (the robot kept balance) are indicated by red circles
for these controller parameters. In order to demonstrate how
to improve robustness, we increased the response time of the
controllers by setting the controller parameters to K P = 50
and K D = 0.0. In this case, successful length factors ranged
from 0.85 to 1.45 (indicated by blue crosses in Fig. 15). Note
that the mean squared error only increased slightly. We also
tested an even slower controller (K P = 20 and K D = 0.0),
which resulted in a fairly large range from 0.7 to 2.25 (indi-
cated by green triangles in Fig. 15). However, the used con-
troller was too slow to follow the desired trajectory, which
can be seen in the high mean squared error values. The cor-
responding mCoP trajectories of all three controllers can be
seen in the right plots of Fig. 15. The black lines are the target
trajectories. The conclusion of the experiment is that the pro-
posed setup is robust to changes in the lengths of the robot. In
addition, the results suggest that there is a tradeoff between
the robustness of the approach and the response times of the
controllers. Similar results were obtained, when the masses
as well the lengths were changed simultaneously to simulate
growing.

In a second experiment, we provide an evaluation of the
robustness of our approach to the choice of the controller

10 Similar plots were obtained for the z-dimension.
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Fig. 15 Results on robustness to changes in the lengths. The lengths of
all links were multiplied by a length factor. The plot shows three differ-
ent settings for the controller parameters, resulting in different response
times of the controllers. The red circles show the mean squared error
(mse) for the controller (K P = 80 and K D = 0.1) with the shortest
response time. The red circles are shown for the range of successful
length factors (the robot kept balance) from 0.85 to 1.1. By increas-
ing the response time (controller parameters were set to K P = 50 and
K D = 0.0.) the range (from 0.85 to 1.45) of successful length fac-
tors, and therefore, the robustness of our approach could be increased.
However, also the mse increased slightly, which indicates a worse
tracking performance. With an even longer response time (K P = 20
and K D = 0.0), the region of successful length factors (from 0.7 to
2.25) also grew, however, the controller was no longer able to follow
the desired trajectory (indicated by the large mse values). The results
point to the fact, that there is a tradeoff between the robustness of the
approach and the response time of the controller. The right plots show
the corresponding mCoP trajectories for the three controllers (at a length
factor = 1)

parameters. We used the single support task described in
Sect. 4.2 (using the previously described SS-KS) and varied
the K P and K D parameters over several decades. We evalu-
ated which parameter settings (K P /K D-pairs) were success-
ful, i.e., the robot was able to keep balance. The results can be
seen in Fig. 16. Successful parameter settings are highlighted
in green. Note that the region of successful settings ranges
over two decades for both parameters. This suggests that our
approach is robust to the choice of the controller parameters
and, thus, appropriate parameters are easily found. Moreover,
this robustness potentially allows us to combine our approach
with adaptive control as in Åstrom and Wittenmark (1995)
or online policy search methods ( Kober and Peters 2009).

4.4 Comparison to an online Jacobian pseudo-inverse
approach

As we have already mentioned in the introduction, our main
motivation was to adopt the biological concept of synergies,
rather than outperforming existing approaches. Nevertheless,
it is interesting to see how our biologically inspired approach
performs compared to pure algorithmic approaches, like an
online Jacobian Pseudo-Inverse (JPI) approach (Sciavicco
and Siciliano 1999). This approach performed online an
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Fig. 16 Region of evaluated controller parameters for the single sup-
port task described in 4.2. Successful parameter settings (for which the
robot was able to keep balance) are highlighted in green. Note that the
scales of the axes are logarithmic. The region of successful controller
parameters ranges over two decades for both parameters, indicating that
our approach is robust to the choice of the control parameters

Fig. 17 Schematic setup of the online Jacobian Pseudo-Inverse (JPI)
approach, to which we compared our approach (Fig. 9). Instead of
fixed kinematic synergies, this approach has to run online an optimiza-
tion process (based on a JPI) at every single time step to calculate the
optimal joint angles velocities
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Fig. 18 Resulting responses of the HOAP-2 to external forces. The
screenshots were made during dynamic action. The top row shows
screenshots for experiments while standing on the floor (setup F). Exter-
nal forces were applied by pushes. The second row shows screenshots
of experiments with the robot standing on a movable platform (setup P).
External forces were applied by moving the platform. In any of these
situations, the robot acted correctly and moved its mCoP to the desired
position at the center of the support polygon. Note that there are videos
of the experiments available as supplementary material

optimization similar to the one we used for the offline con-
struction of the KSs. In order to be responsive to external
perturbations and model uncertainties, we had to plug the
JPI into a feedback control loop.

Figure 17 shows the considered setup. In order to com-
pare both approaches, the robot had to track a rectangular
trajectory (with rounded edges) centered at the center of
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Fig. 19 The KS-parameters and the errors signals recorded during an
experiment with the real HOAP-2 robot. The robots were pushed from
different directions (setup F). The left figure shows the KS-parameters
and the right figure shows the corresponding error signals. We can see

that, except for a short time period after a change of the applied external
force, the error is kept close to zero. This indicates that the robot always
tried to maintain its mCoP at the center of the support polygon

the support polygon. We systematically increased the size
of the rectangle and the speed of the trajectory and com-
pared the maximum quantities, at which the robot tipped
over. The differences between the two approaches for both
limits (rectangle size and speed) were less than 1%. Hence,
there was no significant difference in their performances.
This suggests that the complex Jacobian pseudo-inverse com-
putations can be performed offline (in order to construct the
KSs) without a significant loss of performance. Note that the
JPI approach needs to apply online sophisticated, time inten-
sive calculations, while our approach is based on a much
simpler control law using only a PID controller. A com-
parison of the online computation time of both approaches
revealed a speed-up factor of 80 in favor of our approach. The
results also show that the performance loss due to the linear
superposition11 of the two KSs is negligible for humanoid
balancing.

4.5 Experiments with a real HOAP-2 robot

In our final experiment, we transferred our approach to a real
HOAP-2 robot. Due to the previously demonstrated robust-
ness against model uncertainties, we were able to simply
reuse the same KSs as in our simulations, even though the
static model used for the KSs did not perfectly match the
static model of the real robot.

We investigated two different setups. In the first setup,
the robot stood on the floor (denoted by F) and we applied
external forces. This was done by applying an almost con-
stant force from different directions for approximately 1 to
2 s by pushing the robot. In the second setup (denoted by P),

11 Note that the JPI approach does not use a linear superpositions, but
rather simultaneously optimize for both output dimensions, i.e., y ∈ R

2.

we reproduced the surfboard task. The robot stood on a mov-
able platform, which was mounted on a plastic sphere in order
to resemble the surfboard with its two degrees of freedom. In
contrast to the simulated experiment, no additional external
forces (winds) were used (only the movement of the platform
represented an external force). Note that in both setups, the
robot had no knowledge about the onset times, the directions,
or the amplitudes of the applied external forces.

The first row of Fig. 18 shows the responses of the robot to
pushes from different directions (setup F). The second row
shows responses of the robot to different movements of the
supporting platform (setup P). The robot counterbalanced
the applied external forces in order to keep its mCoP at the
middle of the support polygon in each of these cases.

In Fig. 19, we show typical KS-parameters and the error
signals recorded while the robot was pushed from differ-
ent directions (in setup F). Note that except for a short time
period after a change of the applied external force, the error
was kept close to zero. This indicates that the robot always
tried to maintain its mCoP at the center of the support poly-
gon. Note that videos of the experiments are provided in the
additional multimedia file.

5 Conclusion

We have presented a new approach toward balance control of
a humanoid robot that was based on inspiration from biology.
We resembled the concept of muscle synergies in physiology
by introducting kinematic synergies based on the coordina-
tion of joint angles. Our main motivation was to adopt the
biological concept for robots rather than to outperform exist-
ing approaches. However, as we have shown our biologi-
cally inspired approach performs comparable to the standard
approach, i.e., JPI. For the special case of balance control
of the humanoid robot HOAP-2, we demonstrated how such
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KSs can be constructed in such a way that their superposi-
tion is almost linear (like in biological paradigms), although
each KS itself is highly non-linear. Based on this concept,
we were able to demonstrate that it is possible to move the
time intensive calculations of the optimization process offline
and therefore keep the needed online calculations simple and
fast. We have demonstrated, both through computer simula-
tions and through experiments with the real robot HOAP-2,
that this strategy makes it possible to virtually reduce the
highly non-linear balance control problem of the robot to a
linear control problem (as long as the required movements
are not too fast). Note that, although it is well established by
experimental data that biological synergies exist, so far it was
not known whether they provide some tangible advantage for
motor control or not. Our results suggest that they enable bio-
logical organism to linearize certain non-linear motor control
problems.

We also showed that, in contrast to approaches, which are
based on an exact dynamic model of the robot, our proposed
combination of KSs and linear controllers enables a human-
oid robot to counterbalance unknown external forces of dif-
ferent kinds. Additionally, we demonstrated that robustness
to parameter changes in the model as well to changes in the
controller parameters is an inherent property of the proposed
approach. Based on this robustness, we were able to trans-
fer in straightforward manner this new approach for balance
control from a simulated to a real HOAP-2 robot.
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