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Abstract—Nature has developed methods for controlling the
movements of organisms with many degrees of freedom which
differ strongly from existing approaches for balance control
in humanoid robots: Biological organisms employ kinematic
synergies that simultaneously engage many joints, and which
are apparently designed in such a way that their superposition is
approximately linear. We show in this article that this control
strategy can in principle also be applied to balance control
of humanoid robots. In contrast to existing approaches, this
control strategy reduces the need to carry out complex computa-
tions in real time (replacing the iterated solution of quadratic
optimization problems by a simple linear controller), and it
does not require knowledge of a dynamic model of the robot.
Therefore it can handle unforeseen changes in the dynamics of
the robot that may arise for example from wind or other external
forces. We demonstrate the feasibility of this novel approach to
humanoid balance control through simulations of the humanoid
robot HOAP-2 for tasks that require balance control under
disturbances by unknown external forces.

I. I NTRODUCTION

Balance control for humanoid robots is known to be a
difficult problem because of the large number of degrees
of freedom (DoF) that are involved. It has been simplified
through the discovery that it suffices for balance control to
keep the center of pressure (CoP) (or related points on the
ground [1]) within the 2-dimensional support polygon defined
by the convex hull of those points where the feet are supported
by the ground. Powerful computational methods have been
developed for achieving this (see e.g. [2], [3]) by solving
suitable optimization problems. While [2] manages to achieve
in this way even online balance compensation (by solving
a quadratic programming problem), these approaches require
knowledge of the precise dynamic model of the robot, and
therefore cannot be applied in situations where the dynamic
model of the robot may change online, due to wind, picking
up loads, contact with other robots, or other external forces.

Biological organisms face similar problems, in fact, the
dynamic model of their movement apparatus changes in

addition during development, but also through injuries. But
the available experimental data suggest that biological organ-
isms employ a radically different strategy for controllinga
movement apparatus with many DoF, in particular for balance
control. Numerous studies from the Lab of Bizzi at MIT
[4], [5], [6] have shown that the central nervous systems
of a variety of organisms employ a modular architecture
for motor control, whereby many different movements (arm
movements, walking, jumping, swimming) can be constructed
as largely linear (but non-negative) combinations of a rather
small repertoire of movement primitives (also referred to as
muscle synergies, or kinematic synergies; we use the latter
term in this article). Figure 4 in [6] shows that kinematic
synergies in frogs engage largely disjoint sets of muscles,
which may facilitate an approximate linearization of move-
ment control through non-negative linear combinations of
these kinematic synergies. Also recent work on whole-body
movements of humans [7], [8] shows that balance control
and other human body movements during standing can be
understood as combinations of a very small set of stereotypical
kinematic synergies, that each affect several joints.

We explore in this article the question whether an analo-
gous modularization and simplification strategy might provide
a viable alternative to existing balance control methods in
humanoid robots. The first problem that one faces here is the
design of suitable kinematic synergies. In biological organisms
they are assumed to result from a combination of genetic
encoding and developmental learning. For humanoid robots
one could apply PCA to recordings of the movements of
multiple joints of humans (this is the way in which kinematic
synergies were extracted in [7], [8]) or one can use an even
simpler strategy that we describe in section (III), and apply
to the humanoid robot HOAP-2. We show in section (IV)
how the resulting two kinematic synergies for moving the
CoP left-right and forward-backwards can be used to design
a control loop with a linear controller for balance control of



the HOAP-2. We show in section (V) that a simple linear
controller is able to compensate for random movements of
a surfboard on which the robot stands, even in the presence
of unforeseeable online changes in the dynamic model of the
robot and its environment. Additionally we demonstrate that
the proposed framework can be used to follow any desired
trajectory for the CoP.

II. FORMAL DEFINITION OF K INEMATIC SYNERGIES

We regard a kinematic synergy as a fixed numberm of
degrees of freedom (joint angles) which cooperate under
the regime of a one dimensional input parameters. It can
be represented as a nonlinear functionΦ depending on one
controlling parameters ∈ R.

Definition 1: A kinematic synergy(KS) is a functionΦ :=
Φ(s) which maps a parameters ∈ R onto am dimensional
vector of joint anglesqKS = Φ(s):

Φ : R → R
m . (1)

The superscriptKS denotes the subset ofm joints of the
robot, which are controlled by theKS. The total number of
joints in the robot is denoted byn. Further we define the
function ϕ

ϕ : R
m

→ R
n (2)

which embeds them-dimensional subspace spanned byΦ

into the n-dimensional space of all joints of the robot. This
embedding copies the positions for all joints affected byΦ

and leaves the remaining joints constant.
A KS is typically applied in order to control a low-

dimensional, or even one-dimensional, variabley. In this
article we use twoKS’s that each control one dimension of
the center of mass projected to the ground (PCoM). Since
the PCoM depends on the posture of the whole robot, the
outputy depends on alln joint positionsq ∈ R

n of the robot.
Generally speaking we have a nonlinear functionf depending
on n degrees of freedom

f : R
n
→ R (3)

and we want theKS to control its corresponding output
y = f(q).

Figure 1 shows the mapping ofΦ from the one dimensional
s-space to them-dimensional joint space, the embedding with
the functionϕ and the mapping of functionf from the n-
dimensional space of all joints to the one dimensional output
y.

Since suchKS affectsm degrees of freedom that depend
just on a one dimensional parameters, we can impose further
constraints on the functionΦ. A reasonable choice for such
a constraint is a linear relationship between the controlling
parameters and its corresponding outputy. This will reduce
the nonlinearities inherent to any kinematic chain and hereby
facilitate controlling and learning. Hence we are particularly
interested in the following type ofKS:

Φ(s)

s ∈ R

ϕ(qKS)

qKS
∈ R

m q ∈ R
n

f(q)

y ∈ R

linearity

Fig. 1. Scheme for the composition of the functionsϕ and f according to
(2) and (3) with the kinematic synergiesΦ.

Definition 2: A linearizing kinematic synergyis a kinematic
synergy according to (1) such that there exists a linear relation-
ship between its controlling parameters and the corresponding
(to be controlled) outputy.

y = (f ◦ ϕ ◦ Φ)(s) = k · s (4)

for some k ∈ R .

We restrict our attention in this article to suchlinearizing
KS, to which we simply refer asKS.

In practice we deal with dynamics, and we want to control
the robot to accomplish dynamical tasks. Let us take a closer
look at why it is still an advantage to use kinematic synergies:

Let q ∈ R
n be the positions (angles),̇q ∈ R

n be the
velocities andq̈ ∈ R

n be the accelerations of alln joints
of the robot. Then the state of the whole robot is defined
as p = [qT , q̇T , q̈T ]T and thereforep ∈ R

3n. Note that in
general any dynamical task will include the whole state space.
TheKS just controlsm of n joints and only maps on the joint
positionsqKS

∈ R
m. By definitions (1) and (2) we restrict

the joint space ofm joints. Loosely speaking we just allow
defined postures for the robot. This makes sense since most
of the possible postures are not valid due to stability issues,
crossing of limbs, etc. . If one assumes that thei = n − m

joints which are not dominated byΦ do not move at all,
then we can neglect the embeddingϕ for the subsequent
derivations. Any changeds

dt
:= ṡ of the control parameter

causes a corresponding change of joint positionsq̇KS

q̇KS =
∂Φ

∂t
=

∂Φ

∂s
·
∂s

∂t
=

∂Φ

∂s
· ṡ .

The same holds for the accelerationd2s

dt
2 := s̈

q̈KS =
∂2Φ

∂t2
=

∂2Φ

∂s2
· (ṡ)2 +

∂Φ

∂s
· s̈ .

Therefore the velocitieṡq and the accelerations̈q of the
joints are also restricted to a subspace. Obviously this strategy
facilitates the control of the system.

III. A PPLICATION TO THEHUMANOID ROBOT HOAP-2

We now test whether kinematic synergies provide an al-
ternative to existing methods (see e.g. [2], [3]) for balance
control of the humanoid robot HOAP-2 [9]. This robot has
n = 25 degrees of freedom (rotational joints). It’s structure
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Fig. 2. (a) The real HOAP-2 robot and(b) its schematic structure. Red
marked and labeled joint rotation axes are used forΦ. (c) Support polygon on
the support surface for the robot, with touch sensors that are used to estimate
the pseudo center of pressure (pCoP). Black arrows indicate thex dimension
(forward/backward: range9.5 cm) and z dimension (left/right: range:14.3
cm) for movements of the center of pressure.

is shown in Figure 2(b). The task is to balance dynamically
the HOAP-2 against external perturbations. Therefore a natural
choice for the output functionf could be any dynamic stability
point like the center of pressure (CoP), the zero moment point
(ZMP) or the foot rotation indicator (FRI) [1], [10]. We wantto
control the humanoid robot standing in double support phase.
In practice these stability points are estimated by pressure
sensors. HOAP-2 has four such sensors per foot, located at
the corners (see Figure 2(c)). We call the dynamic stability
point that one computes from the outputs of these sensors the
pseudo center of pressure(pCoP). The goal is to keep the
pCoPwithin the support polygon shown in Figure 2(c). Since
a KS presents a static mapping we are going to use the static
model (i.e. kinematic model and mass distribution) and the
PCoM to obtain theKS. Note at zero joint velocitieṡq and
zero joint accelerations̈q the PCoM coincides with thepCoP.

In one of our subsequently discussed experiments the robot
stands on a platform. If this platform tilts, the support polygon
moves with the platform, but the projection of the CoM and
the pCoP is no longer orthogonal to the support polygon (but
orthogonal to some ideal horizontal plane). Hence the PCoM

and thepCoPare likely to move within (and possibly beyond)
the support polygon when the platform tilts. We will assume
that the feet of the robot do not slip, and hence we can use the
same stability criterion as for the case of a horizontal platform.
The robot does not fall over as long as itspCoPstays within
the support polygon (even if the support polygon is now tilted).

In definition (2) we defined the output to be one dimensional
(y ∈ R). Since dynamic stability points correspond to points
on the contact surface, and are therefore two dimensional, it is
natural to define twoKS’sΦx andΦz for corresponding output
dimensionsx andz. The output functionsfx andfz correspond
to the two dimensionsx and z of the PCoM. The kinematic
synergy Φx controls the movement forward/backward and
the kinematic synergyΦz left/right relative to the robot (see
Figure 2(c)).

The number of degrees of freedom controlled by the kine-
matic synergies ism = 12: three hip joints, one knee joint
and two ankle joints for both legs (see Figure 2(b)).

Sincen > m, not all joints of the robot are controlled by the
kinematic synergies. The additionali = n−m joints could be
used for other tasks (grasping, waving, tracking objects, etc.).
Their movement will change the outputsyx and yz to some
extent, but will be interpreted by the kinematic synergies as an
external perturbation. We will demonstrate in one experiment
(see section V) that our approach is capable to deal with this
type of disturbances too.

A. Obtaining Motion Primitives with Inverse Kinematics

The desired kinematic synergies are constructed via inverse
kinematics. They are constructed just once for the robot and
are fixed during control action. With the desired linearization
property (4) one still has an infinite number of possible
kinematic synergies. Therefore their construction can satisfy
extra constraints which depend on the set of tasks theKS
should accomplish. For our balancing task we want to assure
upright posture for the upper body and double support (both
feet have contact with the ground).

Based on the given kinematic model and the mass distri-
bution of the HOAP-2 the kinematic synergiesΦx and Φz

have been calculated as follows: An initial postureqinit has
been defined which results (for the case of a horizontal support
surface) in a PCoM at the center of the support polygonS.
By definition we set the origin of the coordinate system to
the center of the support polygon and therefore the resulting
outputs in the initial posture arefx(qinit) = fz(qinit) = 0. To
reflect the natural limit of static stability theKSparameters is
normalized such, that−1 and+1 correspond to the borders of
the support polygonS. Therefore the region of acting without
falling will be (for the case of a horizontal support surface) the
ranges ∈ [−1, +1] for both dimensionsx and z, see Figure
2(c).

The construction of eachKS consist of two optimization
steps, which we describe only forΦx. Similar steps lead to the
second kinematic synergyΦz . We divided arbitrarily the range
of the sx-parameter over the support polygon into80 points.
Therefore each step was9.5 cm

80
≈ 0.12 cm and correspond to



a step of∆sx = 0.025. From the starting postureqinit the
next postureq′ is calculated to get a desired outputy′

x, which
is one step (0.12 cm) away from the origin of the coordinate
system in thex-direction.

The first optimization step, which used all 12 joints of the
legs, was used to move the PCoM of the robot in thex-
direction and simultaneously tried to keep the upper part of
the body in an upright position. The coordinate system of the
left leg was always used as origin, all positions and rotations
of the remaining body parts were calculated relatively to the
left leg’s coordinate frame. In order to calculate the new joint
positions, a Jacobian Pseudo-Inverse approach was used [11].
The applied Jacobian matrix consisted of two3 × n sub-
matrices, the Jacobian for the CoM-Position and the Jacobian
for the rotation of the torso. Therefore, both constraints,
moving the CoM in the desired direction and keeping the upper
part of the body upright were fullfilled by the optimization.
The coordinate frame of the left foot was kept constant, but
the position of the right foot tended to change, so that it was
likely to loose ground contact.
Therefore the second optimization step was used to move the
right foot back into its original position. For this optimization
only the 6 joints relevant for the right foot were used and again
a Jacobian Pseudo-Inverse approach was applied.
These two steps were iterated until the output valuey′

x was
reached. The resulting new postureq′ was then set to be the
new starting point. The next postureq′′ was found by the
same procedure. This approach was applied iteratively until
the outputyx reached the border of the support polygon. The
same procedure was applied for the opposite direction (i.e.sx

from 0 to −1). The process leads to a look up table for the
rangesx ∈ [−1, +1]. Joint positions in between the steps, if
needed, are calculated by linear interpolation.
Figure 3 shows the kinematic synergiesΦx and Φz which
result from this procedure. One can clearly see that (anal-
ogously as their biological prototypes, see Figure 4 in [6])
these twoKS’s primarily affect disjoint set of joints, thereby
supporting linearity of superpositions. Figure 4(a) showsthe
mapping from the parametersx that controls theKS Φx to
the coordinatesyx = PCoMx and yz = PCoMz of the
PCoM. Note the linear relationship, and that the other output
dimensionyz = PCoMz is unaffected bysx. Figure 4(b)
shows the same for theKS Φz.
Since we have two kinematic synergies which are mapping
to the same12 joints, we are not able to use joint positions
directly for the encoding of eachKS. Therefore only joint
offsets∆qKS from the initial positionqinit are stored in the
look up table. When both kinematic synergies are applied, the
resulting target joint positions are calculated by summingup
the initial position and the two offsets at every single joint.
This is possible since the joints mainly responsible for the
movement inx-direction are orthogonal to the joints mainly
responsible for thez-direction (see Figure 3). Figure 5 shows
the results of an empirical evaluation of the approximate
linearity of theKS’sΦx andΦz. Except for cases where both
of the variablessx and sz reach their extremal values (these
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Fig. 4. (a) TheKSΦx maps the control variablesx linearly onto thex- and
z-coordinates of the PCoM. It strongly affects thex-coordinates, but keeps
the x-coordinates of the PCoM approximately constant. (b) The same holds
for the secondKS Φz.

are the cases when the PCoM is moved into a corner of the
support polygon) the deviation from linearity is quite small.

IV. BALANCE CONTROL WITH K INEMATIC SYNERGIES

The kinematic synergiesΦx and Φz were constructed
to control the output function PCoM. However the robot
can estimate from its pressure sensors in the feet only the
pCoP, which is also affected by the dynamics of the robot.
Similarly, values from simulated pressure sensors are usedin
our simulations of the HOAP-2 to estimate the PCoM.

Assumption: The robot moves sufficiently slowly so that
one can assume that approximately

pCoP ≈ PCoM . (5)

We will show in section V that external forces that change
on a time scale of seconds, such as wind, can be handled
by movements of the HOAP-2 which satisfy this assumption.
With this assumption we are able to control the humanoid
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Fig. 5. Empirical evaluation of the approximate linearity of the superposition
of the KS’sΦx andΦz. For every point< yx, yz > in the support polygon
we applied theKS’s with values sx, sz that were supposed to produce a
posture where the coordinates of the PCoM are< yx, yz > (based on the
linearity assumption 2 for eachKS, and the assumption of linearity of the
superposition). The Euclidean distance between< yx, yz > and the resulting
actual position of the PCoM is shown in color code. One clearly sees the
the error caused by nonlinearity is in the mm-range for most of the support
polygon, and only becomes larger in the corners. The white dotted lines depict
the contours of the feet.

robot with simple linear controllers in conjunction with the
KS’s. Note that even if this assumption does not hold, one can
use KS’s for balance control. But then, instead of a simple
linear controller, a more sophisticated controller has to be
applied.

We now show how the kinematic synergyΦx can be used to
construct a linear control loop for balancing the robot in thex-
dimension. TheΦz is analogous. If the assumption holds, the
function from the time derivativėsx of the KS-parametersx

to the valuepCoPx of the estimatedpCoP in thex-dimension
can be sufficiently represented by a linear transfer function of
the form:

P (z) =
K

(z − 1)
with K ∈ R

+ , (6)

with z being the time shift operator for discrete systems [12].
The denominator polynomial represents an integrator (one pole
at z = +1) which integrates the velocitẏsx of the KS-
parameter to obtainsx.

By the assumption this approach has a natural limit, but as
long as the dynamical effects are small enough they can be
seen as uncertainties in the linear model. Already a simple
linear controller can deal with these small uncertainties.To
get a closed control loop with feedback we define a feedback
error

ex := ỹx − yx (7)

with ỹx being the desired output value andyx being the
corresponding valuepCoPx that is computed from the pressure
sensors. The goal is to prevent the robot from falling over.
Therefore thepCoPx should stay close to the center of the
support polygonS. Since we have defined the center ofS at
the origin, see Figure 2(c), the desired value isỹx = 0 (and
ỹz = 0 for the z-dimension).

Now we can formulate a standard PID-controller with the

_

ỹx = 0 ex ṡx sx

Φx

∫

d

pCoPx

RobotPID

yx

P (z) = K
z−1

Fig. 6. Closed control loop for one kinematic synergyΦx. The reference
point is set toỹx = 0 since we want to have thepCoPx at the center of the
support polygon. External perturbationd is a change ofpCoPx not introduced
by the kinematic synergy control loop.

following equation for the controller outputux:

ux = KP · ex + KI

∫

exdt + KD

dex

dt
= ṡx (8)

Figure 6 shows the closed control loop for one kinematic
synergy (Φx). Note that the structure of the control loop is
a standard feedback control loop which has the property to
suppress perturbationsd.

The formulation of the control loop is very general. The
previously described control scheme is designed to control
around an set point (̃yx = ỹz = 0). Of course one could use the
same control loop to move thepCoPon any desired trajectory
(time varyingỹx,z(t)) as we show later in an experiment. This
is useful for example to initiate a walking cycle. The robot has
to move thepCoP under the future supporting foot in order
to be able to raise the other leg without falling.

A. Controller Design

To find appropriate values for the PID-controller (8) we
can use the rich set of tools which are offered by linear
control theory. The valuesKP = 15, KI = 0 and KD =
0.0001 we used, were empirically found to have a reasonable
performance. There exist of course a number of possible
improvements to get better controllers: adaptive control or
robust control approaches, optimal control or different trial
and error approaches to find good control parameters. Even
higher order controllers or different control structures than
in Figure 6 are possible. Here we just present a very simple
and straightforward implementation with a PID controller to
illustrate the new strategies for balance control which become
feasible through the use of kinematic synergies.

B. Balance Control Task

We consider three tasks. First we investigate the capability
of the approach under static conditions. Second we balance the
humanoid robot HOAP-2 on a randomly moving platform (i.e.
surfboard) with additional external forces (winds). Thirdwe
demonstrate the capability to follow a generalCoP trajectory
and to deal with movements of joints not under the regime of
the KS’s.
A detailed dynamical model of the HOAP-2 robot based on
data from the vendor Fujitsu has been implemented in the
robot simulation software Webots [13] and has been used for
our simulations. The basic simulation time step has been set
to 1 ms. The time step for the control has been set to8 ms.



x-direction z-direction
forward backward left right

without control +10.6◦ −8.6◦ −14.3◦ +14.3◦

with control +20.1◦ −22.3◦ −26.4◦ +26.4◦

improvement 89.6% 159.3% 84.6% 84.6%

TABLE I
THE FIRST TWO ROWS SHOW THE TILT ANGLE(OF THE PLATFORM ON

WHICH THE HOAP-2WAS STANDING) AT WHICH THE ROBOT LOOSES ITS

BALANCE , BOTH WITHOUT A CONTROLLER WHICH CHANGES THE
POSTURE OF THE ROBOT IN ORDER TO COMPENSATE FOR THE TILTED

PLATFORM, AND WITH THE LINEAR CONTROLLER BASED ON KINEMATIC

SYNERGIES THAT IS DESCRIBED IN SECTIONIV. T HE CONTROLLER
ENABLES THE ROBOT TO TOLERATE ABOUT TWICE THE TILT ANGLE.

The surfboard can rotate about thex-axis with angleΘx

and also about thez-axis with the angleΘz. Trajectories for
Θx and Θz are generated independently for each dimension.
These were found by following procedure: We just generated
a random trajectory of jumps with random amplitude and
random durations. In order to get a smooth trajectory we
applied additionally a discrete smoothing FIR-filter with three
poles at0.997. Typical resulting trajectories are presented in
Figures 7(a) and 7(b).

Since we have two kinematic synergies (Φx and Φz)
we have two control loops. They react independently from
each other on their corresponding output dimensionx and z

respectively. Both linear controllers calculate, depending on
their errorsex and ez, the velocitiesṡx and ṡz of their KS-
parameters. These are integrated tosx andsz, which result via
the look up table into joint angle offsets. They are summed
up as described in section (III-A) to get the actual joint target
positions. Local PD-controllers at the servos transform then
the desired angles into torques.

V. RESULTS

In a first test of the capability of the linear controller based
on KS’s (that was described in the preceding section) we
tilted the platform on which the HOAP-2 was standing, and
determined at which tilt angle the robot falls over. This tilting
was carried out very slowly in this first test, and separatelyfor
the two tilt axes that move the CoP in thex andz direction.
Table I shows that our control strategy allows the robot to
tolerate about twice the tilt angle without loosing its balance
– compared with a robot which does not change its posture in
an adaptive manner.

We next considered the case where the platform on which
the robot stands is tilted dynamically in random directions
according to the stochastic process described in the preceding
section – as one might have for example on a surfboard – (see
Figure 7(a), 7(b)), and the previously described controllers
based on kinematic synergies for thex- and z-direction are
simultaneously active. In addition random external forces
(which might for example arise from wind or contact with
other objects) were applied to theCoM (at the torso) of the
robot at various points in time. These external forces change
the dynamic model of the robot in an online manner, and
therefore make control strategies that require knowledge of

0 5 10 15 20
−10

−5

0

5

10

time [sec]

an
gl

e 
[d

eg
]

W1 W2

(a) tilt angleΘx

0 5 10 15 20
−10

−5

0

5

10

time [sec]

an
gl

e 
[d

eg
]

W1 W2

(b) tilt angleΘz

0 5 10 15 20
−10

−5

0

5

10

time [sec]

[c
m

]

 

 

W1 W2

*
UNcontrolled
controlled

(c) x-coordinate of thepCoP

0 5 10 15 20
−10

−5

0

5

10

time [sec]

[c
m

]

 

 

W1

W2
UNcontrolled
controlled

(d) z-coordinate of thepCoP

0 5 10 15 20
−10

−5

0

5

10

time [sec]

[c
m

]

 

 

W1 W2

*UNcontrolled
controlled

(e) error signalex

0 5 10 15 20
−10

−5

0

5

10

time [sec]

[c
m

]

 

 

W1 W2

UNcontrolled
controlled

(f) error signal forez

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

time [sec]

[]

W1 W2

(g) activationsx of KS Φx

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

time [sec]

[]
W1 W2

(h) activationsz of KS Φz

Fig. 7. Result from the test with a moving support platform (”surfboard”) and
unexpected external forces (”wind”)W1 andW2. The balance of the HOAP-
2 is controlled by two linear controllers, based on two kinematic synergies.
Without balance control (red dashed line in(c) and (d) shows trajectory
of pCoP without active balance control) thepCoP would leave the support
polygon at time point16 s (in response to the windW2), and the robot would
fall over. With balance control the stability of the robot ismaintained in spite
of unexpected external forces.

the dynamic model of the robot inapplicable. Figure (7) shows
the results when an external forceW1 of

[

0, 0, −5
]

N

(a force from the right side) is applied at the torso of the
robot during the interval[5s, 10s], and another external force
W2 of

[

5, 0, −5
]

N (a force from the right and the
back) is applied during the interval[15s, 20s] (these two time



(a) at 3 second (b) at 7 second

(c) at 12 second (d) at 16 second

Fig. 8. Snapshots of the posture of the (simulated) HOAP-2 at4 time points
during the balancing experiment of Fig. 8. In(b) the wind W1 is blowing
from the right side of the robot, and the robot is leaning against the wind
in order to move itspCoP back into the middle of the support polygon. In
(d) another windW2 is assumed to come diagonally from the right side and
the back, and the robot also responds properly to this onlinechange in its
dynamic model.

intervals we shaded in gray). Note the onsets of the winds are
abrupt and represent a highly dynamical perturbation to the
system. The trajectory of thepCoP is shown in Figure 7(c),
7(d) for the case of random movements of the platform in
combination with external forces, both for the case with the
described controller, and without. Without controller therobot
lost balance after 16s (see black star in Figures 7(c), 7(e)),
whereas with controller the balance is maintained. This was
typical for the random movements of the platform and external
forces that we have specified in the preceding text. Note that
these external movements and forces were interpreted by the
controller as external perturbationsd (compare Figure 6), and
were automatically counteracted. Resulting error signalswhich
were fed back in the control loop for both dimensionsx and
z can be seen in Figures 7(e) and Figure 7(f) respectively.
In a third task we demonstrate that the setup as described
can be used to follow any desired trajectory (i.e. time varying
ỹx,z(t)) in contrast to the preceding experiments where the
robot has been controlled around a set point (yx = yz = 0).
The robots stands now on flat ground. It should follow a
desired trajectory of the shape of a figure ”eight” (Figure
9(a)). The desired trajectory (gray;dash-dotted) splitted up in
its corresponding dimensionsx andz can be seen in Figures
9(b) and 9(c) respectively. Additionally the robot manipulates
a heavy weight (20% of the robot’s weight) with his left arm.
The trajectory of the extended left arm over the simulation
time of is shown in the first row of Figure 10. Note the arm
joints are not under the regime of theKS’sbut their movement
change thepCoP. This can be clearly seen in an offset of the
red dashed line in Figures 9(b) and 9(c) (when no control
action is applied). For the control loop this is a disturbance
d as any other external force and our proposed setup is able

to counteract it. Figures 9(b) (green line) and 9(c) (blue line)
show that the robot is able to follow the desired trajectories
despite the arm movement. The control loops react properly
with sinusoidal movements of theKS-parameter to follow
the desired trajectory and with an offsets to counteract the
disturbance (see 9(d)). The second row of Figure 10 shows a
series of screenshots. Note at the final position (last screenshot
on the right) the robot leans to the right in order to get the
pCoP in the center of the support polygon.
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Fig. 9. Results of the trajectory following task:(a) presents the desired figure
eight trajectory from bird view. The gray shaded areas depict the contact areas
of the feet with the ground.(b) and (c) present thepCoP trajectories splitted
up into its two corresponding dimensionsx andz respectively. Our approach
is able to follow the desired trajectory (gray;dash-dotted). The red dashed
lines depict the trajectory of thepCoP if no control action is applied.(d) The
system reacts properly with an offset in theKS-parameters to cope with the
disturbances introduced by manipulating the weight.

VI. D ISCUSSION ANDGENERAL REMARKS

We demonstrated that biologically inspired kinematic syner-
gies give rise to interesting new control methods for humanoid
robots. We showed in experiments that our proposed setup
is able to balance the humanoid robot HOAP-2 even under
unknown external disturbances. The general strategy is to
modularize and approximately linearize the control task for a
robot with many degrees of freedom, so that simple controllers
can be applied to the resulting virtual low-dimensional and
approximately linear control problem. Linear control theory
provides a large set of tools for improving the performance.
One can also target the remaining nonlinearity and apply
nonlinear control techniques [14].

The use of kinematic synergies of the type that we have
discussed in this article may have an additional benefit for
the control of humanoid robots, that needs to be explored
in subsequent research: They make it feasible to apply pow-
erful methods from machine learning such as reinforcement
learning [15] to robot control, which typically require a low-



Fig. 10. Screenshots of the simulation for the trajectory following task: The corresponding times are from left to right0 (start), 12.5 ,15, 17.5, and25

sec (end). In the first row no control action is applied. The plainarm trajectory of manipulating a heavy weight (20% of the robot’s mass) is visible. The
second row presents a series of screenshots when control is active. Note at the final position the robot leans to the right to cope with the heavy weight in his
extended left arm. This results in apCoPat the center of the support polygon.

dimensional action space in order to escape thecurse of
dimensionality.

Another interesting new research direction suggested by
the results of this article is the design of suitable kinematic
synergies for a variety of movement tasks of humanoid robots.
Besides the simple and straightforward design method that we
have applied in this article, one can apply PCA to motion
capture data of humans. In addition an interesting new research
direction is the design of mathematical optimization methods
for the construction of kinematic synergies with particular
properties.
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