
Generalizing Movements with Information

Theoretic Stochastic Optimal Control

Rudolf Lioutikov1, Alexandros Paraschos1, Jan Peters1,2 and

Gerhard Neumann1

1: Technische Universität Darmstadt, Intelligent Autonomous Systems Group, Darmstadt, Germany

2: Max Planck Institute for Intelligent Systems, Department Empirical Inference, Tübingen, Germany

Abstract

Stochastic Optimal Control (SOC) is typically used to plan a movement for a

specific situation. While most SOC methods fail to generalize this movement plan

to a new situation without re-planning, we present a SOC method that allows us to

reuse the obtained policy in a new situation as the policy is more robust to slight de-

viations from the initial movement plan. In order to improve the robustness of the

policy, we employ information-theoretic policy updates that explicitly operate on

trajectory distributions instead of single trajectories. To ensure a stable and smooth

policy update, we limit the ‘distance’ between the trajectory distributions of the old

and the new control policy. The introduced bound offers a closed form solution

for the resulting policy and extends results from recent developments in SOC. In

difference to many standard SOC algorithms, our approach can directly infer the

system dynamics from data points, and, hence, can also be used for model-based

reinforcement learning. This paper represents an extension of [16]. In addition

to revisiting the content, we provide an extensive theoretical comparison our ap-

proach with related work, discuss additional aspects of the implementation and

introduce further evaluations.

1

1 Introduction

The goal of Stochastic Optimal Control (SOC), see [26, 12, 31, 23], is to find the op-

timal control for a finite horizon of time steps. A common approach to solve the SOC

problem is dynamic programming, i.e. the value function is computed iteratively back-

wards in time. The value function estimates the expected future reward for a given state

and time step. Unfortunately, only few cases offer analytical solutions, e.g. discrete

systems and linear system with quadratic cost functions and Gaussian noise (LQG).

For more complex systems, many approaches rely on a linearisation of the underlying

system [30, 31]. However, while these approaches work for planning a single move-

ment, the resulting controller is hard to generalize to a new situation, e.g., a movement

task starting from a slightly different initial position. In this case, re-planning is of-

ten required as the used linearizations are not valid for the new initial position. The

second short coming of state of the art SOC methods is that the policy update might

by unstable. The used approximations of either the system dynamics [30, 31], or of

the value function [11, 19] cause these unstable updates. Due to such unstable policy

update, the resulting state distribution of the new policy might jump, leading the agent

into unexplored areas of the state space where the estimated policy might have poor

quality.

In this paper, we tackle both problems by introducing an information theoretic pol-

icy update for SOC that directly operates on trajectory distributions instead of single

nominal trajectories. We will use an information theoretic constraint in our optimiza-

tion to ensure that the new policy will stay close to our previously generated data. Such

’closeness to the data’ constraint can be formalized by limiting the Kullback-Leibler

(KL) KL(p||q) divergence between the distribution q that generated the data and the

resulting distribution p that is generated by the new policy. Such a constraint avoids

that the resulting state distribution of the new policy to jumps away from the data. Too

large update steps lead the agent into unexplored areas of the state space where we have

2

no guarantee about the estimated. Our method is inspired by policy search methods,

where similar constraints have already been used to find high quality parameters for

parametric policies [21, 7, 8]. However, SOC is a more challenging application as the

resulting policy has typically one to two orders of magnitude more parameters. We

address the complexity of the resulting optimization problem by dividing the problem

into two separate problems that can be solved independently and, thus, are easier to

solve.

As for most SOC methods, we focus on estimating locally optimal control policies

for a single type of movement. Hence, we do not aim to estimate a globally optimal

controller, but the controller should be robust to deviations from the nominal trajec-

tory. For example, if we want to estimate a back-hand swing in tennis, the resulting

controller should be applicable to many configurations of the incoming ball without

re-estimating the controller. Yet, we only aim for using the same controller for the

same type of movement, i.e., we do not want to generalize from backhand to forehand

strikes.

As in the LQG case, our goal is to estimate a time-dependent linear feedback con-

troller. Our approach is also model based. We learn a time dependent linear model

representation, which can be easily obtained from samples. Our approach is easily

applicable to model-based reinforcement learning, where the system dynamics are not

known beforehand but learned from data. Existing SOC methods differ from our ap-

proach in two important points. The first difference is the policy update; we bound

the change of the resulting, time-dependent, state distributions of the new policy to the

state distributions of the old policy for each time step. This bound assures that we stay

close to the data-generating distribution. As the data-generating distribution incorpo-

rates the exploration of the previous policy, the new policy will continue to explore

in a similar area of the state space as the old policy. Recent SOC approaches [23, 2]

penalize the deviation of the new policy from the previous policy, instead of penalizing

3

the deviation of the resulting state distributions. While such an approach continues to

explore in a similar action space as the previous policy, it does not limit the change of

the state distributions. Hence, the policy update might lead the agent into unseen areas

of the state space where the estimated policy typically performs poorly. Other SOC

approaches do not penalize any deviation from the data generating distribution, i.e, the

policy update is greedy. Such greedy policy updates are often unstable and do not con-

tinue to explore the state-action space of the agent, resulting in premature convergence.

The second important difference is that we can avoid value function approximation.

We replace it by matching average features of the resulting state distributions. Both

differences, namely the bound on the change of the state distributions and the aver-

age feature matching, allow to control which states are explored by the new policy. In

this paper, we will explain in more detail that many of the limitations of existing SOC

approaches are a consequence of the absence of such mechanism.

This paper is an extension of our results presented in [16]. We provide an extensive

theoretical comparison of our approach with related work, discuss additional aspects of

the implementation and introduce further evaluations. In the next section, we will dis-

cuss the related work. Subsequently, we will present an alternative formulation of SOC

based on constrained optimization that is the basis for our algorithm, called informa-

tion theoretic SOC (ITSOC). After introducing the information-theoretic constraints,

we will state our specific algorithm including the representation of the policy and the

state features. Finally, we will discuss the relation to existing approaches and present

experiments of our method on a simulated 4-link non-linear planar arm.

1.1 Preliminaries

In this paper, we consider systems with continuous state and action spaces. We will

denote the state of the robot as x and the control action as u. The robot follows its

stochastic system dynamics and transfers to state xt+1 from state xt with probability

4

pt(xt+1|xt,ut) when taking action ut. The goal of the robot is to find the optimal

policy π∗t (u|x) which maximizes the expected accumulative reward for a given time

horizon H

π∗ = arg max
π

J = arg max
π

Epπ(τ)

[
H−1∑
t=1

rt(xt,ut) + rH(xH)

]
, (1)

where the expectation is taken with respect to the trajectories τ = (x1:H ,u1:H−1),

rt(xt,ut) denotes the immediate reward signal for time step t and rH(xH) the final

reward for reaching state xH . Note that the optimal policy is typically not stationary

but depends on the time step t as we deal with a finite time horizon. The actions ut of

the agent are chosen by a policy πt(ut|xt) that in the finite horizon formulation is also

time-dependent. The trajectory distribution of policy π is given by

pπ(τ) = p1(x1)

H−1∏
t=1

pt(xt+1|xt,ut)πt(ut|xt),

where p(x1) is the initial state distribution. We will further denote µπt (xt) as the state

distribution of policy π. It represents the probability of being in state xt at time step t

when following policy π. Formally, the state distribution µπt (xt) can be defined as

µπt (xt) =

∫
. . .

∫
pπ(τ)dx1 . . . dxt−1dxt+1 . . . dxHdu1 . . . duH−1 (2)

as marginalization over the state-action space of all remaining time steps. Alternatively,

the state distributions µπt (xt) can also be expressed recursively in terms of the state

distribution from the previous time step, i.e.,

µπt (xt) =

∫∫
µπt−1(xt−1)πt−1(ut−1|xt−1)pt−1(xt|xt−1,ut−1)dxt−1dut−1. (3)

5

2 Related Work

Current SOC methods either use an approximate system model, e.g., by linearizing the

system, or they approximate the value function – also called approximate dynamic pro-

gramming (ADP). We will first review these two approaches and point out important

differences to our approach. Subsequently, we will discuss SOC control algorithms that

also use Kullback-Leibler divergence terms to determine the policy, e.g., dynamic pol-

icy programming [2], SOC by approximate inference [23] and path integral approaches

[27, 24]. We will also discuss the relation to approximate dynamic programming with

soft-max operators [19] and existing policy search algorithms [8].

2.1 Dynamic Programming

Dynamic Programming (DP) is a common approach to solve a SOC problem by itera-

tively estimating the value function [18, 5, 11, 3]. The value function V πt (xt) computes

the expected future reward when being in state xt at time step t and following policy

π. In its recursive form, the definition of the value function is given as

V πt (xt) =

∫
πt(ut|xt)

(
rt(xt,ut) +

∫
pt(xt+1|xt,ut)V πt+1(xt+1)dxt+1

)
dut,

(4)

for t ≤ H and V πH(x) = rH(x). The optimal value function V ∗t (xt) can be obtained

by iterating

V ∗t (xt) = maxuQ∗(xt,u), (5)

Q∗(xt,u) = rt(xt,u) +

∫
pt(xt+1|xt,u)V ∗t+1(xt+1)dxt+1 (6)

backwards in time. Similarly, the optimal policy can be obtained by

u∗t = π∗t (xt) = argmaxu (Q∗(xt,u)) (7)

6

Unfortunately, analytic solutions only exists in the case of discrete state and action

spaces or for linear systems with a quadratic reward function and Gaussian noise, which

we will denote as LQG system. It is well known that the optimal value function is in this

case given as quadratic function, i.e., V ∗t (x) = xTV tx+ xTvt + vt and the optimal

policy is given as time varying linear feedback controller, i.e., π∗(x) = st + Stx.

The parameters of the reward function as well as for the controller can be obtained

analytically [26].

For non-LQG systems we have to resort to some type of approximations. Here, we

can distinguish between approaches based on approximating the system dynamics and

approaches approximating the value function.

Approximating the System Dynamics. Approaches based on approximating the

system dynamics, such as the iLQG [30] or the AICO [31] algorithm, linearise the

system at the current estimate of the trajectory. For each time step, a different lineari-

sation is used. The optimal controller is computed analytically by using the solution

for the LQG system and, subsequently, a new trajectory is estimated by simulating this

controller. This trajectory is used as a new linearisation point. Due to the used LQG

solution, the obtained policy is greedy with respect to the linearised system dynamics.

However, the linearisation of the model might change heavily in each iteration causing

jumps in the resulting update of the trajectory. These problems can be alleviated by

introducing heuristics such as regularizing the LQG solution [30] or using a learning

rate on the estimated trajectory [31], but the policy update remains difficult to control.

Moreover, in the case of small deviations from the nominal trajectory, the linearisation

of the model becomes less accurate. Hence, the robustness of the resulting policy typi-

cally degrades and re-planning is required if, for example, we slightly deviate from the

planned initial state. The advantage of linearisation approaches is their computational

efficiency.

7

Approximating the Value Function. Other approximate dynamic programming ap-

proaches approximate the value function. These approaches are sample-based and iter-

atively collect data with the currently estimated policy. The data is subsequently used

to improve the estimate of the value function that is approximated by supervised learn-

ing methods, such as linear function approximators [5, 23], locally-weighted regres-

sion [19] and regression trees [11]. The most common value function approximation

method is a linear value function approximation. Here, a common method is to use

the Least Squares Temporal Difference (LSTD) Algorithm [5, 9] to estimate the value

function of a given policy. LSTD is iteratively used by the Least-Squares Policy Iter-

ation (LSPI) algorithm [14] to obtain an estimate of the optimal policy. While there

has been an exhaustive theoretical analysis of this algorithm [15], LSPI is limited by

the linear function approximation which requires the knowledge of proper features for

representing the value function. If the value function of the policies evaluated during

learning is not representable, we might get poor estimates of the resulting policy. An

alternative algorithm that does not require a linear representation of the value function

is fitted Q-iteration [11, 19]. While convergence can only be proofed for a subset of

supervised regression algorithms, i.e., k-nearest neighbor or local averagers, weaker

theoretical results exists for more powerful regression algorithms such as regression

trees. In this case, at least no divergence to infinity can be proofed [11]. Due to the

improved flexibility of the value function representation the use of such regression al-

gorithms often leads to improved results in comparison to LSPI.

One fundamental problem of value function approximation is that the approxima-

tion may ‘damage’ the resulting trajectory distribution of the policy, causing jumps and

oscillations between subsequent iterations. Such behavior is in general not desirable

as uncontrolled jumps in the trajectory distribution might lead the agent in unexplored

areas of the state space. Consequently, the policy is likely to have a poor performance

in these areas.

8

Advantage Weighted Regression. One problem for value function approximation

approaches in continuous action spaces is the max-operator over the action space. This

operator is computationally costly to solve for continuous action spaces. Advantage

Weighted Regression [19] is a method to efficiently approximate the max-operator by

replacing it with a soft-max operator [19]. The soft-max operator is implemented by

using a stochastic policy

πt(ut|xt) ∝ exp

(
Qπt (xt,ut)− V πt (xt)

η

)
,

where Qπt (xt,ut) is the state-action value function of the current policy. These prob-

abilities are only evaluated on a finite set of samples and are subsequently used as

weighting term in a weighted regression algorithm to determine the new value func-

tion. As the term inside the exponential function denotes the advantage function, the

weighted regression is denoted as advantage weighted regression (AWR). From the

weighted samples, we can also obtain a new parametric policy with a similar advan-

tage weighted regression.

2.2 SOC based on Approximate Inference

An alternative view on SOC has been presented in [23] which is based on approximate

inference. The main idea is to transform the reward into probabilities by introducing

a binary reward event with probability p(Rt = 1|xt,ut) ∝ exp(rt(x,u)/η). The

parameter ηt has to be chosen by the user and denotes the temperature of the reward

distribution. Given a prior policy π0, the goal is to compute a policy π that produces a

trajectory distribution pπ(τ) which is most similar to posterior trajectory distribution

pπ0(τ |R1:H = 1) after conditioning on seeing the reward event in every time step.

More formally, we need to find a policy π which minimizes the KL-divergence between

the posterior pπ0(τ |r1:H = 1) and the trajectory distribution pπ(τ) induced by policy

9

π, i.e.,

π∗ = argminπKL(pπ(τ)||pπ0(τ |r1:H = 1)).

This minimization is performed iteratively. The policy exhibits a similar soft-max

structure as the one presented in this paper. However, the exponential transformation of

the reward is an assumption that is hard to justify in this approach. As we will see, the

most important difference to our approach is that the KL-divergence is directly used on

the trajectory distributions pπ(τ). Such a KL-formulation can be decomposed into the

sum of the Kullback Leibler divergences
∑
t KL(πt(u|x)||π0,t(u|x)) of the policies

for each time step. These KL-terms can be seen as additional cost terms in the imme-

diate reward function which punish deviations of the estimated policy from the prior

policy π0 [23]. Such a punishment term is also used in the dynamic policy program-

ming (DPP) algorithm [2] that is a special case of the approximate inference framework

introduced in [23]. Similar ideas of using the KL between the estimated policy and a

prior policy have also been introduced within the field of linear solvable MDPs [28, 29].

To solve these modified SOC problems, typically value function approximation meth-

ods are used. Some approaches approximate the desirability function [2, 23], but such

approaches suffer from similar problems as standard value function approximation as

the approximation errors can propagate backwards in time. Consequently, SOC based

on approximate inference suffers from the same deficits as ADP methods as the approx-

imation of the value function might damage the resulting policy update. In contrast, our

formulation of the KL-divergence acts on the marginals pπt (x,u) that also includes the

state distribution πµ(x) at each time step. Consequently, we can directly control the

change of the state distributions πµ(x), which results in a more stable policy update.

2.3 SOC based on Path Integrals

The path integral (PI) formulation of SOC [27] has recently gained a lot of attention

as it allows for computing the optimal policy without the use of dynamic program-

10

ming. The PI approach exponentially transforms the continuous-time value function

and computes the optimal value function and policy using the Feynman-Kac theorem

[27]. The optimal value function for time step t is then given by

V πt (x) = η log

∫
pπ0(τ |xt = x) exp

(∑H
t=1 rt(xt)

η

)
dτ , (8)

where pπ0
t (τ |xt = x) is the trajectory distribution of the uncontrolled process1 starting

at time step t in state x. The parameter η defines the temperature of the exponential

transformation of the value function and is chosen heuristically. The original PI ap-

proach is based on Monte-Carlo roll-outs and therefore requires a lot of samples, how-

ever, recently more efficient approaches based on value function approximation [24]

have been introduced that are essentially similar to the SOC by approximate inference

approaches. The PI approach suffers from two severe limitations. Firstly, it assumes

that the control costs are quadratic and the quadratic control cost matrix coincides with

the covariance matrix of the system noise. Moreover, it makes the assumption that all

the noise in the system only acts on state variables that can be controlled by the agent.

Both assumptions are a quite limiting.

2.4 Policy Search Methods

Our algorithm is inspired by policy search methods, where related information-theoretic

bounds have already been introduced to learn to select and improve movement primi-

tives for playing robot table-tennis [21], robot tether-ball [7] or robot hockey [8, 13].

The KL-bound has been originally introduced by the Relative Entropy Policy Search

(REPS) algorithm [21], which has been extended in [7] to hierarchical policies and in

[8] to learning sequential motor tasks. The most similar approach to our approach is

the time-indexed formulation of REPS that has been used in [8]. The algorithm was

designed for learning with movement primitives and can not be directly applied to the

1Or a process using a prior policy π0.

11

SOC formulation as it introduces a bias if the system is stochastic and the proposed

optimization algorithm is infeasible for the SOC domain. We will show in our ex-

periments that this algorithm quickly degrades in the presence of noise in the system

dynamics.

There has also been theoretical evidence that the information theoretic policy up-

date has beneficial properties. In the case of a so called adversarial Markov decision

process (MDP), the information theoretic policy update used in this paper achieves op-

timal regret bounds [33]. In an adversarial MDP, the reward function is chosen by an

adversary at each episode. Hence, the reward function can change slightly from trial to

trial. Such interpretation also fits well to our algorithm. While our reward function is

fixed for all episodes, the continuous state and action samples change in each episode,

and hence, the MDP defined on the discrete set of samples can be seen as adversary

MDP.

Another policy search approach that is highly related to our approach is the model-

based PILCO algorithm [10]. PILCO learns a Gaussian process (GP) model [22] of the

system dynamics and uses deterministic approximate inference methods for predicting

the trajectory distribution of the current policy with the learned models. The predicted

trajectory distribution is used to obtain the policy gradient. PILCO performs a greedy

policy update with the currently learned forward model, i.e., it searches for a local

optimum of the policy parameters. However, as the currently estimated model is likely

to be inaccurate, such greedy update might be dangerous as it might cause jumps in

the trajectory distribution. Hence, the new policy might visit areas of the state space

where we have little data, and hence, the learned forward models are of low quality.

PILCO also neglects the problem of exploration as it relies on a deterministic policy.

It is therefore likely to get stuck in a local minimum of the policy parameters. Such

problems can be alleviated by building an exploration mechanism in the optimization

criterion, such as an optimistic exploration with upper-confidence bounds [10]. In

12

difference to PILCO, we learn a much simpler model of the system dynamics, i.e.,

linear models. However, we learn an individual linear model for each time step and

hence. our models are of similar expressiveness. While such time dependent models

are less data efficient as time-independent GP models, they require considerably less

computation time and offer good generalization properties.

In our comparisons, we will evaluate a special version of PILCO that uses the

same time-dependent linear models as our approach. Instead of the gradient-based

policy update of PILCO, we will use the AICO optimal controller [31] for the linear

models. The difference to our approach is that PILCO computes the greedy policy with

respect to the reward function using linear models, while we stay close to the data by

the information theoretic policy update. As we will show, such greedy policy update

performs poorly for the time-depend linear models, due to the instabilities of the policy

update.

2.5 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) algorithms [32, 1, 20] try to estimate a reward

function such that the optimal policy with respect to that reward function matches the

features of the demonstrations on expectation. That is to say, they try to find a policy

that stays close to the demonstrations. In our approach we also want to find a policy that

stays close to the demonstrations while we use a given reward function that pulls the

policy away from the demonstrations. We also use average feature matching. However,

average feature matching is not used to reproduce the demonstrations but to ensure that

we estimate a valid trajectory distribution. Our SOC approach also shares another im-

portant similarity with a recent IRL method called Maximum-Entropy (Max-Ent) IRL

[32]. Max-Ent IRL estimates the maximum entropy policy such that the expected fea-

ture vector of this policy matches the average demonstrated features. As the entropy is

highly connected to the relative entropy, which is used by our approach, the solution for

13

the optimal policy looks very similar in both approaches. However, the parameters of

the policies are estimated differently as both algorithms try to solve different problems.

3 Information-Theoretic Stochastic Optimal Control

We will start our discussion by reformulating the SOC problem as constrained opti-

mization problem. This reformulation has the advantage that we can easily add more

constraints such as the information theoretic KL-bounds. Our approach exhibits two

important differences to existing SOC approaches. First, we bound the change of the

state-action distributions µπt (x)πt(u|x) that is induced by the policy update instead of

punishing solely the change of the policy πt(u|x) [2, 23]. Second, instead of using

value function approximation, we approximate the state distributions µπt (x) by match-

ing expected state features. Both differences allow an accurate control of the change in

the state distribution, given we choose appropriate state features.

We want to maximize the expected reward, which we will now write in terms of

the state distribution µπt (x) as

Jπµ =

H−1∑
t=1

∫∫
µπt (x)πt(u|x)rt(x,u)dxdu+

∫
µπH(x)rH(x)dx. (9)

For the first constraint, we require that π and µ jointly define a distribution, i.e.,∫
µπt (x)πt(u|x)dxdu = 1,∀t. Moreover, we can not freely choose our state dis-

tribution µπt (x), but µπt (x) has to comply with the policy and the system dynamics,

i.e.,

µπt (x′) =

∫∫
µπt−1(x)πt−1(u|x)pt−1(x′|x,u)dxdu,∀t > 1 ∧ ∀x′. (10)

Additionally, the state distribution µπ1 (x) for the first time step has to reproduce the

given initial state distribution of the problem, i.e., µπ1 (x) = p1(x),∀x. The optimiza-

14

tion problem defined in Equation (9), under the constraints of Equations (10) and the

initial state constraint is equivalent to the original SOC problem.

3.1 Approximate Constraints by Expected Feature Matching

The state distribution constraints given in Eq. (10) are infeasible in continuous state

spaces as we would have an infinite amount of constraints. Therefore, we resort to

matching expected feature averages [21], i.e.,

∫
µπt (x′)φ(x′)dx′ =

∫∫∫
µt−1(x)πt−1(u|x)pt−1(x′|x,u)φ(x′)dxdudx′ (11)

for t > 1 and ∫
µπ1 (x)φ(x)dx =

∫
p1(x)φ(x)dx = φ̂1 (12)

for t = 1, where φ is a feature function and φ̂1 is the mean observed feature vec-

tor of the initial state. A potential problem with such a feature matching is, that this

approximation does not guarantee a valid state-action distribution, as it introduces a

bias in the optimization if the features are poorly chosen. However, a similar bias is

introduced by the approximation error if we use value function approximation. As we

only aim for optimizing local policies where, due to the locality, the state distribution is

approximately Gaussian, all linear and squared terms of the state are a natural feature

representation. This choice of the feature representation corresponds to matching the

mean and the covariance of both distributions, i.e., the constraints would be accurate

if both distributions are Gaussians. Our experiments show that the bias induced by

the approximate feature constraints is considerably less severe compared to the bias

introduced by value function approximation.

15

3.2 Staying Close to the Data with Information-Theoretic Bounds

It is crucial for SOC methods to stay close to the data in order to achieve a stable policy

update. The data is given as state-action pairs (xt,ut) generated from the old state-

action distribution qt(xt,ut). As we want our new trajectory distribution pπ(τ) to stay

close to this old data distribution, we bound the Kullback-Leibler divergence between

the marginal distributions of the single time steps, i.e., pπt (xt,ut) = µπt (xt)πt(ut|xt)

and qt(xt,ut). For t < H the bound is given by

ε ≥
∫∫

µπt (x)πt(u|x) log
µπt (x)πt(u|x)

qt(x,u)
dxdu, (13)

and for t = H by

ε ≥
∫
µπH(x) log

µπH(x)

qH(x)
dx. (14)

We have now stated all ingredients for the full optimization problem that defines the

information theoretic SOC algorithm

argmaxπ,µπ
H−1∑
t=1

∫∫
µπt (x)πt(u|x)rt(x,u)dxdu+

∫
µπH(x)rH(x)dx,

s.t:
∫∫

µπt (x)πt(u|x)dxdu = 1 for t < H and
∫
µπH(x)dx = 1,

1 < t < H :

∫
µπt+1(x′)φ(x′)dx′ =

∫∫∫
µt(x)πt(u|x)p(x′|x,u)φ(x′)dxdudx′,

t = 1 :

∫
µπ1 (x′)φ(x′)dx′ = φ̂1,

1 ≤ t < H :

∫
µπt (x)πt(u|x) log

µπt (x)πt(u|x)

qt(x,u)
dxdu ≤ ε,

t = H :

∫
µπH(xH) log

µπH(xt)

qH(xH)
dx ≤ ε. (15)

Note that the constraints are always satisfiable as qt(x,u) has been generated from

roll-outs on our real system, and, hence, µπt (x)πt(u|x) = qt(x,u) is always a valid

solution, although not the optimal one.

16

The stated optimization problem can be solved by the method of Lagrangian mul-

tipliers. The state-action probability pπt (x,u) = µπt (x)πt(u|x) can be obtained for

each sample in closed form and is given by

pπt (x,u) ∝ qt(x,u) exp

(
At(x,u)

ηt

)
, (16)

At(x,u) = rt(x,u) + Ept(x′|x,u)[vt+1(x′)]− vt(x) (17)

where vt(x) = φ(x)Tθt. The parameters ηt and θt denote the Lagrangian multipliers

for the KL-constraints and the constraints for µπt (x), respectively. The Lagrangian

multipliers can be found by minimizing the dual function g(η1:H ,θ1:H), i.e.,

{η∗1:H ,θ
∗
1:H} = argminη1:H ,θ1:H

g(η1:H ,θ1:H), s.t : ηt > 0,∀t. (18)

The derivation of the dual function is given in the appendix. We can see that our old

data distribution qt(x,u) is weighted by an exponential function. The term At(x,u)

in the nominator strongly resembles the structure of an advantage function, if we would

assume that vt+1(x′) denotes a value function. However, such a relationship can not be

established. To improve our understanding of the meaning of the function vt, we exam-

ine the structure of the dual function in more detail. The dual function g(η1:H ,θ1:H)

is given by

g(η1:H ,θ1:H) = φ̂
T

1 θ +

H∑
t=1

ηtε+

H∑
t=1

ηt logZt, with (19)

Zt<H =

∫∫
qt(x,u) exp

(
At(x,u)

ηt

)
dxdu, (20)

ZH =

∫
qH(x) exp

(
rH(x)− vH(x)

ηH

)
dx. (21)

We can see that, due to the function At(x,u), each vt(x) is coupled with the function

vt−1(x) from the previous as well as with vt+1(x) from the next time step. Hence,

17

all functions vt(x) are connected and need to be optimized at once. While the opti-

mization of the dual function is more expensive than the traditional backwards iteration

for obtaining the value function, it is also the biggest strength of the information the-

oretic policy update. The vectors θt need to be optimized simultaneously as changing

the policy at time step t changes both, the state distributions µπk>t(x) for future time

steps and the expected reward for time steps in the past. In contrast to approximate

dynamic programming, the computation of the value function as intermediate step is

not necessary. In the ITSOC formulation, the function vt(x) and the policy are always

connected and we cannot compute one term without the other.

3.3 Sample-based ITSOC

While ITSOC offers an analytical solution for the policy, the dual function can in

general not be evaluated analytically due to the integrals over the state action space

where the analytical form of the reward function is unknown. However, the dual func-

tion can be straightforwardly approximated by samples obtained from the distributions

qt(x,u). The sample-based dual function is given in the Appendix A. As a conse-

quence, we can also only obtain the probabilities µπt (x)πt(u|x) for a discrete set of

samples.

In order to generalize these sample-based policy, we need to resort to a parametric

policy π̃t(u|x;ωt), where ωt denotes the parameters of the policy. The parameters ωt

can be found by approximating the sample-based distribution πt(u|x). We implement

this approximation by minimizing the Kullback-Leibler divergence KL(πt(u|x)||π̃t(u|x;ωt))

between πt(u|x) and π̃t(u|x;ωt) on the given set of samples [8], i.e.,

ω∗t = argminωtKL (πt(u|x)||π̃t(u|x;ωt)) , (22)

= argmaxωt
∑
x,u

exp

(
At(x,u)

ηt

)
log π̃t(u|x;ωt) + const. (23)

18

This optimization yields a weighted maximum likelihood estimate of ωt with the

weightings

di,t = exp(At(xi,ui)/ηt). (24)

Note that we dropped the distribution qt(x,u) from the weighting as the samples have

already been generated by qt. With the same trick, the distribution qt(x,u) can also

be dropped from the dual function g(η1:H ,θ1:H), and, hence, the distribution qt(x,u)

does not need to be known in its analytic form.

4 Finding Locally Optimal Policies with Information

Theoretic Stochastic Optimal Control

In this section, we present our resulting algorithm for estimating robust, locally optimal

policies with ITSOC. We will also extend our algorithm with a local model-learning

algorithm. Using the learned models, we can use our approach for model-based re-

inforcement learning where the system dynamics are unknown. Additionally, we can

use the learned models as efficient simulator to create virtual roll-outs. We will first

introduce the algorithm and subsequently explain the sub-parts of the algorithm in the

following sub-section.

4.1 Algorithm

In each iteration, we use the currently estimated policy π̃t(u|x;ωt) to create Nreal

roll-outs. Since we assume the sampling to be an expensive process, we construct the

current set of samples D from the last L iterations. The samples from the real system

are now used to train the linear time-varying models, see Section 4.3. These models

are again used to generate a large amount of virtual samples D̃ that are finally used to

19

Input: KL-bound ε, number of iterations K, samples N and virtual samples M , L
last iterations to reuse
Initialize π̃0

t using Gaussians with zero mean and high variance.
for k = 1 to K . . . # iterations

Collect data on the real system following π̃k−1t :
Dk = {xi,t,ui,t}i=1...N,t=1...H

Re-use last L iterations: D = {Dl}l=max(1,k−L)...k
Estimate time-varying linear models using D
Collect data on the learned system following π̃k−1t :

D̃k = {x̃i,t, ũi,t}i=1...M,t=1...H

Minimize dual function on D̃k, see Sections 3.2 and Algorithm 2.
Estimate new policy π̃kt for each t:

Compute weighting dt,i, see Eq. (24)
Compute policy parameters kt,Kt,Σt using D̃k and weightings dt,i,
see Eq. (26)

Output: Policies π̃Kt (u|x) for all t = 1, . . . ,H

Table 1: The information-theoretic SOC algorithm. We collect data on the real system which
we use to estimate individual linear models for each time step. These models are used to generate
virtual samples by simulating whole roll-outs. We minimize the dual-function defined on these
virtual samples and, subsequently, compute a weighting for each data point. This weighting is
used to obtain new policy parameters by using a weighted maximum likelihood estimate.

update the policy. We then use these virtual samples D̃ to solve the ITSOC optimization

problem, see Eq. (15), and obtain a new sample-based policy, see Section 3.2 and

4.5. The feature representation we use is introduced in Section 4.4. In Section 4.2, we

generalize the sample-based policy to a new parametric policy by a weighted maximum

likelihood estimate. We start the algorithm with a rather large variance for the initial

policy π0
t . At each iteration, the policy improves towards the (locally) optimal policy.

The ITSOC algorithm decreases the exploration of the estimated policy automatically

in each iteration until it finally collapses to a deterministic policy. The amount of

reduction of the exploration is determined by the KL-bound ε. The resulting algorithm

is summarized in Algorithm 1.

20

4.2 Representation of the Policy

Inspired by optimal controllers in the LQG case [26, 30], we will use a linear represen-

tation for the policy, i.e.,

πt(u|x) = N (u|kt +Ktx,Σt).

The parameters kt,Kt and Σt of the policy can be efficiently estimated by a weighted

linear regression. Assuming a set of samples D = {xi,t,ui,t}i=1...M,t=1...H and the

weightings di,t, the parameters kt,Kt and Σt can be computed by

 kTt
KT
t

 = (XT
t DtXt)

−1XT
t DtU t, (25)

Σt =

∑
i di,t(µi,t − ũi,t)(µi,t − ũi,t)T∑

i di,t
, (26)

where

Xt =


1 xi,t

...

1 xM,t

 , U t =


ui,t

...

uM,t

 , Dt = diag([di,t]i=1...M) (27)

and

µi,t = kt +Ktxi,t. (28)

Note that we explicitly estimate a stochastic policy. The stochasticity of the policy is

used for exploration. The covariance matrix Σt is based on our weighted samples, and,

hence, the ‘exploration direction’ of our policy also adapts to our weighted samples.

The exploration of the policy can be controlled by the KL-bound parameter ε. With a

larger ε the policy will get more greedy and reduce exploration more quickly. With a

21

small ε, the new policy will continue to a explore a very similar state-action space as

the old policy.

4.3 Learning Local Models for Reinforcement Learning

Since we also want to use our approach for RL, we will learn the system dynamics

model pt(x′|x,u) from our generated samples. Following up our assumption of local-

ity, we will use simple linear Gaussian models for each time step, i.e., pt(x′|x,u) =

N (x′|at + Atx + Btu,Ct). We obtain the parameters at,At,Bt and Ct of the

models from our sampled data points (xi,t,ui,t) by a standard maximum likelihood

estimate. As our experiments show in Section 5, the representation as time-dependent

linear models also allows for a more efficient optimization of the policies, resulting in

policies of higher quality. In the RL formulation of our algorithm, we assume that the

reward function rt is known as prior knowledge and only the system dynamics need to

be learned.

The main difference to SOC approaches that are based on linearisations of the

model, is that we use stochastic policies and explicitly control the exploration of the

policy by estimating the covariance matrix Σt used for exploration. Hence, we also

do not work with a single trajectory as linearisation point, but we use a whole distri-

bution of trajectories to obtain the linear models. As we learn our models from data,

our algorithm is equally suited for model-based reinforcement learning and SOC. For

model-based RL, we only generate few samples on the real system and use the sam-

ples of the last L iterations to estimate the models. The stochastic policy estimated by

ITSOC provides an efficient exploration strategy while the KL-bounds ensure that the

ITSOC planner stays close to the data.

22

4.4 Local Feature Representation and Computation of Expected

Features

We will use a quadratic representation for the functions vt(x), i.e., vt(x) = xTV tx+

vTt x, where V t is an upper triangular matrix. The parameters θt = {vt,V t} of vt are

obtained by optimizing the dual function which is explained in more detail in Section

4.5.

The information-theoretic formulation requires estimating the expected feature vec-

tor Ept(x′|x,u)[vt+1(x′)] for each sample. Due to the representation of the system

dynamics as linear time-varying Gaussian models and the quadratic feature represen-

tation, this operation can be performed analytically by

Ept(x′|x,u)[vt+1(x′)] =

∫
N (x′|at +Atx+Btu,Ct)

(
xTV tx+ vTt x

)
dx′

= µt(x,u)TV tµt(x,u) + trace(CtV t) + vTt µt(x,u) (29)

with µt(x,u) = at+Atx+Btu. Equation (29) can be rewritten in the feature vector

representation Ept(x′|x,u)[φ(x′)T]θt+1 which we omit due to space constraints. The

computation of the expected features in closed form is an important extensions of the

policy search algorithm presented in [8]. In [8], a single sample estimate is used to

approximate the expectation, i.e., Ept(x′|xi,t,ui,t)[vt(x
′)] ≈ vt+1(xi,t+1). This ap-

proximation induces a bias in the resulting policy as the expectation appears in the

exponential function, see Equation (16), and due to the fact that exp
(
E[f(x)]

)
6=

E
[

exp(f(x))
]
. As we will show in our experiments, the bias grows with the stochas-

ticity in the system, making the policy search method proposed in [8] inapplicable in

the SOC setup.

23

4.5 Optimizing the Dual

In our ITSOC setup, we want to cope with time horizons as large as H = 50 or

H = 100 steps. Additionally, the quadratic feature representation results in 40 to 60

parameters per time step for a moderate number of state dimensions, e.g. ten state

variables. Hence, we easily end up with up to several thousands of parameters for the

minimization of the dual function. In comparison to the formulation in [8], which has

been used to optimize high-level policies, the number of parameters is increased by a

factor of 10 to 100. With such a high number of parameters, the constraint optimization

problem of the dual function runs into numerical problems and we could not use the

algorithm proposed in [8]. Hence, an efficient and numerically stable optimization

procedure is required.

In this section we will elaborate on the different techniques that we approached. In

all cases, we provided the algorithms with the analytic gradients and Hessians.

Constrained optimization Since the dual is constrained by the lower bound for

η1:T > 0, a constrained optimizer is the most intuitive approach. In our case we

used a trust-region-reflective algorithm [6, 17]. Unfortunately the optimizer was not

able to find reliable solutions in a suitable time, due to numerical instabilities and the

large amount of parameters.

Unconstrained optimization A common approach to circumvent lower bound con-

straints is to apply the exp-trick [25], in our case resulting in an unconstrained problem.

We substituted η by a non-negative function η = f(ζ) = exp(ζ) and optimize for ζ

instead of η. Again, the optimizer did not achieve satisfactory results. We suspect the

cause to be the introduction of additional non-linearities in combination with numeri-

cal instability. We also tried different sigmoidal substitution functions, e.g. arctangent,

logistic or algebraic functions. None of these methods showed any significant improve-

ments.

24

Iterative optimization A closer look at the dual reveals, that the Lagrangian param-

eters η and θ can be optimized separately using a coordinate descent [4] like method.

This separation is also desirable since the original dual function is convex in θ and

non-convex in η. It is convex in θ1:H as the dual function has a log-sum-exp struc-

ture, where the parameters θt show up linearly in the exp terms. First, we optimize

for each ηt individually while fixing the θt parameters. Next, we fix the η parameters

and optimize for all θt. We iterate over these two steps until we reach a satisfactory

solution. The optimization for θt is convex and unconstrained. Therefore, we used

a large-scale method [17] for this optimization, whereas we applied a trust-region-

reflective optimization [17] for each of the ηt. Both algorithms only run for a small

number of iterations, e.g, 10 iterations. Each optimization is initialized with the result

from the previous optimization, which increases the performance significantly. Using

this approach, we were able to find good solutions in a suitable amount of time.

We experienced that using the progress of the dual value as a termination criteria

for the optimization is rather ineffective as both constraints can be already satisfied

with quite high accuracy while the dual value is still far from converging. Therefore,

we introduced a new termination criteria which relaxes the KL and the feature con-

straints. At each iteration, we compute the maximum absolute error MAEε between

the current KL divergence of each time step and the desired KL divergence ε. If the

error is smaller then a certain threshold ∆ε, we assume the constraint as approximately

satisfied. Additionally, we compute the maximum absolute error MAEθ for the aver-

age state features, where we normalize the errors with the standard deviation of the

corresponding state feature. We again regard the feature constraint as sufficiently sat-

isfied if MAEθ is beneath the threshold ∆θ. If both constraints are satisfied, we stop

the iterations. Applying these termination criteria, we experienced only small penalties

in the performance of the algorithm while benefiting greatly in terms of computation

time. The resulting algorithm for optimizing the dual is given in Algorithm 2.

25

Input: Initial estimate for all θ, initial estimates for all η, dataset D
Compute initial MAE(ε) and MAE(θ)
while MAE(ε) > ∆ε || MAE(θ) > ∆θ

Optimize g for each ηt: ηt = arg minηt g(η1:H ,θ1:H ;D),∀t (Eq. 38)
Optimize g for all θt: θ1:H = arg minθ1:H

g(η1:H ,θ1:H ;D) (Eq. 38)
Compute MAE(ε) and MAE(θ)

Output: optimized θ1:H and η1:H

Table 2: Iterative optimization of the dual function. We decompose the optimization problem in
finding the single ηt values while keeping the θ value fixed. Subsequently, we optimize for the
θ1:H values, which is an unconstrained optimization problem. Both algorithms are only run for
a small number of internal optimization steps to avoid oscillations in the parameter updates. As
termination criteria for our iterative optimization procedure, we check whether our constraints
are approximately met. If this is the case, the optimization is stopped.

4.6 Discussion of different KL-bounds

There are tight connections but also important differences to SOC algorithms that use

KL-terms [23, 2]. The KL-terms in these approaches act on the trajectory distribution

p(τ) instead of on the marginal distributions pt(x,u). The KL on the trajectory distri-

bution results in a sum over the KL’s of the policies πt(u|x) for each time step as the

transition model cancels out in the log terms. A consequence of the KL acting on the

policy is that these approaches have to rely on value function approximation or related

approximations. Hence, they suffer from the drawbacks of an unstable policy update

that comes with the value function approximation. [23, 2] use the KL as punishment

term that is traded-off with the traditional cost function. As a consequence, the tem-

perature parameter η has to be chosen by the user or set by heuristics [27] while in

ITSOC it is given from the optimization problem. In ITSOC, the user has to choose the

ε parameter, that is typically much easier to choose and can stay constant during the

iterations.

The path integral (PI) formulation of SOC [27] also shares a lot of similarities

with the ITSOC formulation. We can clearly see that the value function given for

the path integrals in Eq. 8 and the dual function for ITSOC share the same structure.

However, in ITSOC, the integral is performed over the state-action space while in the PI

26

formulation, the integral is only performed over the future trajectory space conditioned

on the starting state x0. In theory, such formulation requires that we restart the process

for many times at state xt to obtain the optimal controls for state xt. This requirement

is typically neglected in common PI implementations [27], which is, however, only

a heuristic that can be used for learning open-loop controllers but not for feedback

controllers. Furthermore, the PI approach also does not control the damage on the state

distributions by the policy update. It is based on Monte-Carlo roll-outs and therefore

requires a lot of samples. The temperature parameters ηt are also chosen by heuristics

in the PI approach.

Our algorithm was inspired by the policy search community, where related information-

theoretic bounds have already been introduced to learn high-level policies [8]. The

algorithm given [8] did not use a model for estimating the expected next state features

and, therefore, produced biased solutions. Moreover, the optimization problem in [8]

could be solved straightforwardly, as the number of parameters was much lower. In

order to apply the information-theoretic policy updates for SOC, we needed to develop

our more efficient and numerically stable optimization strategy.

In order to evaluate the benefits of the KL term acting on the state action distribution

we implemented two more algorithms that are variants of existing algorithms, but use

different KL-based penalty terms. The first approach directly optimizes the reward on

the learned linear models, i.e., it jumps to the greedy solution without penalizing any

deviation from the KL-bound. The second approach uses a KL-bound on the policy,

i.e., KL
(
π(u|x)||q(u|x)

)
≤ ε. Here, we adapt an existing dynamic programming

based method to work with similar model assumptions as we use, i.e., a quadratic,

time-dependent value function, and time-dependent linear policies.

Removing the KL-bound This approach is strongly related to the model-based PILCO

algorithm where we use the same time-dependent linear models in order to obtain a fair

comparison. At each iteration, we obtain the learned models in a similar fashion as for

27

the ITSOC algorithm. The objective of PILCO can be summarized by

π1:H = argmaxπ1:H
Ep̃,π

[
H−1∑
t=1

rt(x,u) + rH(x)

]
,

i.e, it greedily optimizes the expected reward where the expectation is performed with

respect to the learned system dynamics p̃(x′|x,u). In difference to the standard

PILCO algorithm, we do not use a gradient-based optimizer to obtain the optimal

policies but an optimal control algorithm called AICO [31], that uses second order

expansions of the reward function and the learned linear models to obtain the new pol-

icy. Note that this variant of PILCO can also be seen as a variant of AICO, where the

linearizations are not obtained from a known system model along a given trajectory, but

learned from data. The resulting policy is optimal with respect to the learned model

and is therefore a deterministic policy. Hence, we added a fixed noise to the policy to

mimic exploration. We optimized for the noise parameter by cross validation.

KL-bound on the trajectory distribution For comparisons, we will use a variant

of the advantage weighted regression (AWR) algorithm [19] to compare the effects of

the KL-bound on the trajectory distribution versus the KL-bounds on the state action

distribution marginals. As discussed in Section 2.2, a KL penalizing term on the tra-

jectory distribution results in the expected KL between the policies for each time step.

Hence, The objective of the algorithm can be summarized as

π1:H = argmaxπ1:H
Ep̃,π

[
H−1∑
t=1

rt(x,u) + rH(x)

]
, (30)

s.t: Eµt(x)[KL
(
πt(u|x)||qt(u|x)

)
] ≤ ε, ∀t (31)

In our variant of AWR, we also use a time-dependent quadratic value function and

time-dependent linear feedback controllers as policy representation. We reformulate

AWR such that we can optimize the temperature of the soft-max distribution with a

28

similar information-theoretic bound. Therefore, we formulate a similar optimization

problem for ITSOC, which can, however, be solved independently for each time step.

In time step t, we want to maximize the expected advantage-function while we keep

the KL between the new and old policy bounded, i.e.,

max
πt

∫
x,u

qt(x)πt(u|x)At(x,u), s.t:
∫
x

qt(x)KL(πt(u|x)||qt(u|x))dx ≤ ε.

(32)

The solution for πt(u|x) can be obtained similarly by the method of Lagrangian mul-

tipliers and is given by

πt(u|x) = qt(u|x) exp

(
At(x,u)

ηt

)
. (33)

We compute the advantage of the given samples xi,t and ui,t by

At(x,u) = rt(x,u) + Ex′ [Vt+1(x′)]− Vt,old(x)), (34)

where Vt(x) is obtained by an advantage weighted regression. For the advantage

weighted regression, we use the states xt as inputs and the Q-values Qt(x,u) =

rt(x,u) + Ex′(Vt(x
′) as target values. The value function Vt,old(x) for the current

time step is approximated by using the samples without weighting, i.e., we compute

the value function when using the old policy for the current time step while following

the new policy for the future time steps. Since our KL-bound does not act on the state

distributions, the optimization problem becomes much simpler, and it can be solved

in a dynamic programming fashion where we compute V- and Q-functions. However,

the policy update also becomes less stable as the state distributions are now allowed to

jump in the policy update and the policy is additionally distorted by the value function

approximation errors.

29

4.7 Contribution

By Reformulating the SOC framework as a constrained optimization, we are able to in-

troduce additional bounds into the SOC framework which lead to more efficient policy

updates. The used bounds on the state action distributions pt(x,u) allow to learn high

quality policies while ensuring a reliable and stable learning progress.

In this paper, we extended information-theoretic policy search in several ways such

that it becomes applicable to the SOC scenario. To mimic the Linear Quadratic Regu-

lator case, we use locally valid features for feature matching and time-dependent linear

controllers. We learn the models in terms of time-dependent linear models and use

these models to compute the expected next state features as well as to generate a vast

amount of virtual samples, which also considerably speed up the convergence of the

algorithm. All these steps are essential ingredients for SOC when we have to deal with

stochastic dynamics. Finally, we extended the optimization procedure of the dual func-

tion in order to make it solvable with the large amount of parameters that come with the

application of the method for SOC. Without this improved optimization, the algorithm

could not finish in a reasonable amount of time.

Furthermore, we compare in the experiment section the different KL-bounds that

can be used for the policy update, i.e., no KL-bound, KL-bound on the policy and

KL-bound on the state-action distribution. We believe that this comparison provides

important insights on how to construct stable and computationally efficient policy up-

dates in the future.

5 Experiments

We evaluate our information-theoretic SOC algorithm on a 2-link planar arm and on a

4-link non-linear planar arm in different scenarios. The links of the arm have a length

of one meter and a mass of one kilogram. The maximum torque is set to 25Nm and

30

we also implement a simple friction model for the joints. We use 50 time steps and the

duration of the time step is dt = 0.066s. In addition to the control noise used in some

experiments, we always use a Gaussian distribution for the initial state distribution

p1(x). Hence, we do not want to estimate a single nominal trajectory but a controller

which works well in a broader area for the initial state.

We compare our algorithm against our variants of advantage weighted regression

(AWR), see [19] and PILCO [10], which we both adapted to use the same learned mod-

els, features and policies. A description of these algorithms can be found in Section

4.6. We also compare against the AICO algorithm [31] that uses linearisation of the

underlying system dynamics. We evaluate the robustness of these algorithms to system

noise and non-linearities in the dynamics. Moreover, we evaluate our approach in a

model-based RL setup where we want to minimize the amount of real-robot interac-

tions. Here, we compare our time-varying linear model to a constant linear model for

which we use the data from all time steps for estimating the parameters.

5.1 Scenarios

In order to show the advantages and characteristics of ITSOC we evaluated the algo-

rithm on various experiments, where we used a total of five scenarios. If not stated

differently, we used for all scenarios an initial state distribution with a standard devia-

tion of 0.1 for each joint position.

2-link reaching. The goal of this scenario is to reach a desired target position with

the end-effector of a 2-Link planar arm at certain via-point at a certain time step. The

reward function is given as a squared punishment term for the torques at each time

step and a via-point reward rv(x) at time steps t1 = 25 and t2 = 50. The via-point

reward rv(x) is proportional to the negative squared distance in task space rv(x) =

−(y − v)TH(y − v), where y = f(x) is the end-effector position for state x and

H is set to 104I . The state vector of the robot is 4 dimensional, resulting in a 14

31

dimensional feature vector.

2-link swing-up. In the second scenario for the 2-link arm, we learn a swing-up

movement to evaluate the approaches on highly non-linear tasks. The goal is to swing-

up and balance the pendulum such that it reaches the upright position with zero velocity

at t = 50. In order to simplify the learning problem, we also punish the agent if the

joints leave a pre-defined area of q1 ∈ [2/3π, 3π] and q2 ∈ [−π, π]. This punishment

term allows us to penalize overturning of the pendulum and to pre-select one of the

two possible swing-up solutions. Hence, we simplify the learning problem by avoiding

multi-modalities that are inherent in the solution space.

4-link non-gravity. In the first 4-link scenario, the arm has to reach two via-points

in task space while we disable gravity. We use this task as a baseline to see the perfor-

mance of the algorithms in case of a almost linear system dynamics. The state vector

x of the robot is 8 dimensional containing all joint positions and velocities. A d = 8

dimensional state vector results in a 44 dimensional feature vector φ(x), consisting of

8 linear and d(d+ 1)/2 = 36 squared terms.

Table 3: Experiments and scenarios

Evaluation Scenarios

KL-bounds

4-link non-gravity

4-link reaching

4-link tennis

State-distributions 2-link reaching

Non-linearities 2-link swing-up

Robustness 4-link reaching

Model-based RL 4-link reaching

Feature Constraints 4-link reaching

4-link reaching. In this scenario, we test

the robustness against non-linearities by en-

abling gravity. However, in order to sim-

plify the search problem, we additionally add

a high punishment term if the joint angles

leave a pre-specified area. Hence, we limit

the search space and avoid multi-modal so-

lutions due to overturning of the arm. The

larger the pre-specified area is, the more dif-

ficult the problem gets.

32

4-link tennis. Finally, we extend the 4-link arm scenario to the task of playing robot

tennis. We add the position and velocity of a ball into our state space. The ball starts

with random initial x-position and velocity. The ball moves with constant velocity,

however, at time step 25 it bounces against the floor, introducing a perturbation. At

the bounce, the velocities are perturbed by a significant amount of multiplicative noise,

changing the incoming position of the ball. The agent has to hit the ball at time step

50. To do so, it has to reach a vicinity of 20cm of the ball position at t = 50. If it

succeeds, it gets a positive reward proportional to the velocity of the end-effector in

y-direction. Otherwise, the reward is proportional to the negative squared distance to

the ball location. We add the position and the velocity of the ball in our state space,

resulting in a 12 dimensional state vector and 90 dimensional feature vector.

Comparison of the different types KL-bounds.

In order to illustrate the effects of the different KL-bounds we compared our approach

(KL-bound on the state-action marginals) to the AWR approach (KL-bound on trajec-

tory distribution) and PILCO (no KL-bounds) on this scenario. The results are shown

in Figure 1. While ITSOC and AWR found good solutions, PILCO showed even in

the non-gravity task a highly unstable learning process. We optimized the fixed explo-

ration rate for PILCO. If the exploration rate was too low, the policy update became

very unstable. While the algorithm found good solutions in most trials, the average re-

ward was poor as even the trials with good solutions tended to jump back again to bad

solutions for one or two iterations. For high exploration rates, the quality of the final

policy also degraded. With the additional non-linearity of gravity, PILCO performed

even worse and could not find good solutions. When the KL bound was increased,

we experience significant instabilities in the learning progress of AWR, while ITSOC

showed a smooth learning curve with an improved convergence speed, as shown in

Figure 2.

33

iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le
-10y

0 5 10 15 20 25 30 35 40 45 50
9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

ITSOC
KL-bound on policy
No KL-bound

(a) 4-link reaching.No Gravity. ε = 0.3

iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25 30 35 40 45 50
9.00

8.00

7.00

6.00

5.00

4.00

3.00

ITSOC
KL-bound on policy
No KL-bound

(b) 4-link reaching.With Gravity. ε = 0.3

Figure 1: Evaluation of the different Algorithms on the 4-link reaching task without gravity
and ε = 0.3 (a), with gravity and ε = 0.3 (b). Our ITSOC algorithm uses the KL-bound on the
state-action marginals, while AWR uses the KL-bound on the policies and linear PILCO does
not use any KL-bound. While linear PILCO suffers from instabilities in the policy update, AWR
and ITSOC perform well. In the task without gravity, AWR and ITSOC converge to solutions of
equal quality. However, in the case with gravity, AWR produces policies of less quality due to
the additional non-linearities.

Evolution of the State-Distributions To illustrate the behavior of different algo-

rithms, we show subsequent trajectory distributions during the iterations of the algo-

rithms in Figure 3 for the two-link reaching task. We show the distributions of our

ITSOC algorithm, the approximate dynamic programming based AWR algorithm and

the linear PILCO method. We can see that the distributions change smoothly for our

approach, allowing the algorithm to efficiently find an optimal solution. In contrast,

the distributions jump for AWR and it quickly converges to a deterministic, but sub-

optimal policy. Linear PILCO jumps to good solutions already after a few iterations,

however, as it exploits the models greedily, already small inaccuracies in the model can

cause jumps in the trajectory distribution.

Evaluation on a highly Non-linear Task To show that learning time-dependent lin-

ear models also works for highly non-linear tasks, we learn to swing-up a two-link pen-

dulum. As reward function, we punish the squared distance of the end-effector to the

up-right position in the last 10 time steps. The two-link pendulum is able to directly go

to the upright position, however, due to the torque punishment factor, such behavior is

34

iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le
-10y

0 5 10 15 20 25 30 35 40 45 50
9.00

8.00

7.00

6.00

5.00

4.00

3.00

bound 0.3
bound 0.6
bound 0.9

ITSOC

iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25 30 35 40 45 50
9.00

8.00

7.00

6.00

5.00

4.00

3.00

bound 0.3
bound 0.6
bound 0.9

KL-bound on policy (AWR)

Figure 2: Evaluation of different KL-bounds ε for ITSOC and the modified AWR ap-
proach. We can see that while AWR only works well for a very small ε, ITSOC al-
lows for the use of much higher ε values as it also ensures that the distance in the
state-distributions stays bounded. As a consequence, ITSOC needs less iterations to
converge to the optimal solution.

suboptimal. The optimal reward can only be reached by performing a swinging move-

ment. An illustration of the learned movement can be seen in Figure 4. The agent was

able to swing up the pendulum while smoothly controlling its torques. The resulting

torque trajectories are shown for the ITSOC algorithm as well as for the value-based

AWR method. AWR only found a suboptimal solution that exhibits considerably more

jerk in the torque profile.

Robustness

We evaluated the robustness of our algorithm in terms of system noise as well as the

variance of the initial state distribution. We use the 4-link reaching task and compare

our algorithm to the model-free variant of our algorithm. The model-free version,

originally proposed in [8] for policy search applications, does not estimate the expected

features of the next state correctly2, see Section 2.4. Hence, it can only be applied for

deterministic systems.

We used additive control noise with a standard deviation of 0% and 60% of the
2A single sample xi,t+1 is used to estimate the expectation E[φ(xt+1)|xi,t,ui,t]

35

Ite
ra

tio
n

01

-10
-3.25

3.5
10.25

17

Ite
ra

tio
n

02

-10
-3.25

3.5
10.25

17

Ite
ra

tio
n

03

-10
-3.25

3.5
10.25

17

Ite
ra

tio
n

08

-5
-2.5

0
2.5

5

Ite
ra

tio
n

13

-5
-2.5

0
2.5

5

Ite
ra

tio
n

16

-1
-0.25

0.5
1.25

2

Ite
ra

tio
n

25

0
0.5

1
1.5

2

Ite
ra

tio
n

40

0
0.5

1
1.5

2

0 5 10 15 20 25 30 35 40 45 50

Ite
ra

tio
n

50

0 5 10 15 20 25 30 35 40 45 50
0

0.5
1

1.5
2

0 5 10 15 20 25 30 35 40 45 50

Figure 3: The plot shows the trajectory distributions for the last joint q2 of a two link planar arm
with ITSOC (left), linear PILCO (middle) and AWR (right). The x-axis depicts the time steps
while in the rows we can see the distribution for subsequent iterations. While the AWR approach
shows a jumping behavior and a resulting limited learning progress, the information-theoretic
approach smoothly transforms the initial exploratory distribution into a goal-directed movement.
PILCO quickly jumps to a good solution, but fails to further improve the policy. The average
reward of ITSOC is −11.2, while for AWR it is −52.4 and PILCO oscillates between −3 and
−2000.

maximum torques which can be applied by the robot. We use N = 500 samples per

iteration and do not keep samples from old iterations to avoid effects from the sampling

process. The results are shown in Figure 5. For the evaluation without noise, both, the

model-free and model-based version of our algorithm estimated good policies. With an

increasing level of the control noise, the performance of the model-free method quickly

degraded due to the bias.

We also illustrate the resulting postures for different time points in Figure 6 for the

setting with 60% noise. The robot manages to reach the via-points (illustrated by pink

circles) in task space while it still exhibits a large variance in joint space. In between

the via-points, also the variance in task space grows.

Finally, we evaluated the robustness of the ITSOC and the AWR algorithm with

36

x-axis [m]

y-
ax

is
 [m

]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

(a)

Iterations

to
rq

ue

0 5 10 15 20 25 30 35 40 45 50
-15

-10

-5

0

5

10

15

20

25
ITSOC
AWR

(b)

Iterations

to
rq

ue

0 5 10 15 20 25 30 35 40 45 50
-20

-15

-10

-5

0

5

10

15

20
ITSOC
AWR

(c)

Figure 4: (a)Two-Link Pendulum Swing-Up solution found by ITSOC. (b,c) The resulting
torque trajectories are shown for the ITSOC algorithm as well as for the value-based AWR
method. AWR only found a suboptimal solution that exhibits considerably more jerk in the
torque profile.

Iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25 30 35 40 45 50
9.00

8.00

7.00

6.00

5.00

4.00

3.00

time-varying
model-free

(a) Noise = 0%

Iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25 30 35 40 45 50
9.00

8.00

7.00

6.00

5.00

4.00

3.00

time-varying
model-free

(b) Noise = 60%

Figure 5: Comparison of ITSOC with learned models and without learned models where we
use a single sample estimate for the expectation of the next features, which results in a bias in
our optimization. The evaluations are done for different noise levels of additive control noise.
Model-based ITSOC shows the best performance while the biased version of ITSOC quickly
degrades with an increasing noise level. Note that all plots are in log-scale for the y-axis.

respect to the standard deviation of the initial joint configuration. The results are shown

in Figure 7. As we can see, the ITSOC algorithm only slightly degraded with the

increased variance in the initial state while the AWR algorithm was not able to learn

high quality policies for the setting with the highest variance.

Accuracy of the Feature Constraints and Computation Time

Next, we demonstrate the influence of the threshold MAE(θ) for the state feature con-

straints as described in Algorithm 2. Figure 8(a) shows how the average reward de-

creases with a higher threshold, since the state feature constraint is further relaxed.

Interestingly, the average reward is hardly affected until MAE(θ) = 1.5, but then

37

x-axis [m]

y-
ax

is
[m

]

-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

x-axis [m]
-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5

x-axis [m]
-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5

x-axis [m]
-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5

x-axis [m]
-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5

time step 1 time step 12 time step time step time step 5025 37

Figure 6: Illustration of the resulting postures for the via-point task in task space. The non-
linear planar arm has to reach the via-points at t = 25 and t = 50 illustrated by pink circles.
The plot shows for each time step samples from the resulting distribution of postures. The mean
of the postures is shown in red. The robot managed to reach the via-point while exhibiting a
significant amount of variance in joint space.

Iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25
9.00

8.00

7.00

6.00

5.00

4.00

3.00

std 0.05
std 0.50
std 1.00

(a) ITSOC

Iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25
9.00

8.00

7.00

6.00

5.00

4.00

3.00

std 0.05
std 0.50
std 1.00

(b) AWR

Figure 7: Evaluation of the robustness of ITSOC and AWR to deviations of the initial state. We
varied the standard deviation of the initial joint configuration from 0.05 to 1.0. While the learned
policies of ITSOC only slightly degrade, the AWR algorithm could not handle the situations with
a large deviations in the initial state.

quickly drops with an increasing value of MAE(θ). As we can see in Figure 8(b), the

time needed to compute the optimization decreases exponentially with the increasing

relaxation of the feature constraints. We conclude that a value of MAE(θ) between 0.5

and 1.0 is a reasonable choice, at least for this example.

We also compared the computation time of our algorithm to AWR and Linear

PILCO and also evaluated the computation time of our algorithm with an increasing

number of time steps. The results can be seen in Figure 9. While the other two algo-

rithms clearly outperform our algorithm in terms of computation time, our algorithm

runs in several hours which is still acceptable. We can also see a moderate increase of

computation time if we increase the number of time steps. Improving the scalability of

the approach in terms of computation time is part of future research.

38

Threshold

av
er

ag
e

re
w

ar
d

af
te

r 5
0

ite
ra

tio
ns

State Feature Threshold

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-6500
-6000
-5500
-5000
-4500
-4000
-3500
-3000
-2500
-2000

(a)

Thresholdav
er

ag
e

tim
e

fo
r 5

0
ite

ra
tio

ns
 [i

n
se

co
nd

s]

State Feature Threshold

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

× 10
4

(b)

Figure 8: (a) The effect of increasing relaxation of the feature constraints MAE(θ) on the av-
erage reward. (b) Computation time for different MAE(θ). While the performance of ITSOC is
almost unaffected for MAE(θ) ≤ 1.0, the computation time depends exponentially on MAE(θ).
Hence, a reasonable choice for MAE(θ) ≤ 1.0 in this example is 1.0.

algorithm

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

9593.00

1350.00
1749.00

ITSOC AWR PILCO
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a)

number of time steps

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

6683

9594

16649

30 50 70
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(b)

Figure 9: (a) Comparison of the computation time of the different algorithms. The bars show
the average time needed for 50 iterations on the quad-link reaching task. (b) Computation time
of ITSOC for an increasing number of time steps.

Because of the computational complexity of our method, AWR can perform many

more iterations than ITSOC in the same amount of computation time. Therefore, if the

amount of computation time is equal for both methods, AWR will produce policies of

much higher quality. However, Figure 1(b) shows that ITSOC is able to outperform

AWR after a certain number of iterations and converges to a better solution than AWR.

Consequently, if the limiting factor is the data collection and not the computation time,

as it is often the case for real robot experiments, ITSOC will find a better solution than

AWR in a shorter amount of time.

39

Model-Based Reinforcement Learning

In this experiment, we evaluate the ability of our approach for model-based reinforce-

ment leaning. We use the 4-link pendulum task with gravity and two via-points in

joint space. For our evaluation, we use a different number of new samples N = 5 and

N = 10 and we always keep the data of the last L = 10 iterations. Since we stay close

to the data we can discard older iterations without the risk of sampling from completely

unknown or badly rewarded areas. At the same time the KL bound ensures a certain

exploration while narrowing down to the optimal solution. With the collected data we

learn either a time-varying or a constant linear model. The constant linear model has

the advantage that it can use more data points, however, it can not capture the sys-

tem dynamics as well as the time-varying linear models. The comparison is shown in

Figure 10. We can see that for a small number of samples, the time-varying models

have too little data-points and consequently the constant model outperforms the time-

varying model. However, for an increasing number of new samples, the time-varying

model is still slower in the beginning, but outperforms the constant model in the end. It

converges to a summed reward of−300 in comparison to a summed reward of−10000

for the constant model. In comparison to other reinforcement learning approaches the

results are promising and the movement could be learned within 200 to 300 episodes,

however, we can not keep up with state of the art model-based RL approaches [10]

as it learns time-independent GP models, which is more data-efficient. Yet, the per-

formance of our approach could be drastically improved by using more sophisticated

model learning methods, for example, learning an hierarchical prior which connects

the models of the single time steps.

Robot Tennis

In the robot tennis example, we used 100 samples per iteration and learned the time-

varying models with the last 500 samples. The robot could reliably hit the incoming

40

Iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25 30 35 40
7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

time-varying N= 5
constant N= 5

(a) N = 5

Iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25 30 35 40
7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

time-varying N= 10
constant N= 10

(b) N = 10

Iterations

av
er

ag
e

re
w

ar
d

in
 lo

gs
ca

le

-10y

0 5 10 15 20 25 30 35 40
7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

time-varying N= 20
constant N= 20

(c) N = 20

Figure 10: Comparison of learning constant linear models against learning time-varying linear
models with a different number of collected roll-outsN = 5, 10, 20. For a small number of roll-
outs, the constant model works better as it can use much more data-points. However, the constant
model can not capture the non-linearity in the system and therefore converges to a worse solution
(−10000) than the solution found by the time-varying model (−300). This evaluation clearly
shows that our approach can be used for data-efficient reinforcement learning.

ball at different positions with a high velocity in the y-direction. An illustration of

the resulting posture time-series for two different hitting movement is shown in Fig-

ure (11). The range of the incoming balls is approximately 1.5m in the x-direction and

0.5m in the y-direction. We can see that the robot already adapts its movement in the

beginning to the predicted incoming position of the ball, but it quickly adapts its move-

ment when the ball changes its velocity when bouncing at the floor at time step t = 40.

The performance of the policy with an increasing number of iterations is shown in Fig-

ure (11)(c). We also compared our approach to AWR on this more complex task. The

results show that AWR again can not cope with the more complex reward function and

converges slowly.

6 Conclusion and Future Work

In this paper, we presented a novel information theoretic stochastic optimal control al-

gorithm. The key idea of our approach is that we want to stay close to the generated

data such that we can ensure a stable learning progress. To our knowledge, this notion

of closeness to the data is missing in all other stochastic optimal control algorithms.

However, we believe it is a key ingredient for save approximation of the value function

41

x-axis [m]

y-
ax

is
 [m

]

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

(a)

x-axis [m]

y-
ax

is
 [m

]

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

(b)

Iterations

av
er

ag
e

re
w

ar
d

0 5 10 15 20 25 30
-16
-14
-12
-10

-8
-6
-4
-2
0
2

× 10
4

ITSOC
AWR

(c)

Figure 11: (a,b) Illustration of the robot playing tennis for two different configurations of the
incoming ball. The ball has been simulated with constant velocity but bounces off the floor in
a stochastic way, such that the robot needs to sensory feedback to adapt its movement. The
robot can react to this perturbation and reliably hits the ball. (c) Comparison of ITSOC and
AWR on the tennis task. While ITSOC learns shows a smooth learning process and converges to
good solutions, the value function approximation of AWR causes jumps in the state distributions
which results in a worse performance.

or the corresponding function vt(x), respectively. We show that our method can sig-

nificantly outperform traditional approximate dynamic programming methods in terms

of sample efficiency as well as quality of the final policy.

The information theoretic formulation provides several advantages over traditional

approaches. We can get a closed-form solution for the estimated policy, at least on

a finite set of samples. Furthermore, we can control the exploration of the policy in a

principled manner without heuristics or fine-tuning. Moreover, we can use the roll-outs

to learn simple local models which allow us to also use our algorithm for reinforcement

learning. We use time-varying linear models to approximate the real system dynamics,

however, the linear models are not computed at a single point of linearisation but on our

current distribution of samples. Consequently, the estimated models are more robust

then linear models obtained from linearisation.

The biggest disadvantage of our approach is the computation time. While methods

based on linearisation can be computed in several seconds, and approximate dynamic

programming methods need several minutes, our approach needs several hours to op-

timize the dual-function for 40 iterations. The main problem is the dimensionality of

the dual function, as we have one θt per time step and θt can have easily up to 80

42

parameters. For future work, we will investigate dimensionality reduction techniques

to reduce the dimensionality of the feature space. We will also investigate the combi-

nation of our locally linear policies with learned inverse dynamics controllers and learn

more complex system dynamics models.

Acknowledgements

The research leading to these results has received funding from the European Com-

munity’s Seventh Framework Programme (FP7-ICT-2013-10) under grant agreement

610878 (3rdHand), and (FP7-ICT-2009-6) under grant agreement 270327 (ComPLACS).

References

[1] P. Abbeel and A. Ng. Apprenticeship learning via Inverse Reinforcement Learn-

ing. In Proceedings of the 21st International Conference on Machine Learning

(ICML), 2004.

[2] M. Gheshlaghi Azar, V. Gómez, and H. J. Kappen. Dynamic Policy Program-

ming. Journal of Machine Learning Research, 13(Nov):3207–3245, 2012.

[3] D. Bertsekas and J. Tsitsiklis. Neuro Dynamic Programming. Athena Scientific,

1998.

[4] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

[5] J. Boyan. Least-Squares Temporal Difference Learning. In In Proceedings of the

Sixteenth International Conference on Machine Learning, pages 49–56, 1999.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

43

[7] C. Daniel, G. Neumann, and J. Peters. Hierarchical Relative Entropy Policy

Search. In International Conference on Artificial Intelligence and Statistics (AIS-

TATS), 2012.

[8] C. Daniel, G. Neumann, and J. Peters. Learning Sequential Motor Tasks. In IEEE

International Conference on Robotics and Automation (ICRA), 2013.

[9] C. Dann, G. Neumann, and J. Peters. Policy Evaluation with Temporal Dif-

ferences: A Survey and Comparison. Journal of Machine Learning Research

(JMLR), 2014.

[10] M. Deisenroth and C. Rasmussen. PILCO: A Model-Based and Data-Efficient

Approach to Policy Search. In 28th International Conference on Machine Learn-

ing (ICML), pages 465–472, 2011.

[11] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement

Learning. Journal of Machine Learning Resource, 6:503–556, 2005.

[12] H. J. Kappen. An Introduction to Stochastic Control Theory, Path Integrals and

Reinforcement Learning. In Cooperative Behavior in Neural Systems, volume

887 of American Institute of Physics Conference Series, pages 149–181, February

2007.

[13] A. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann. Data-Efficient Con-

textual Policy Search for Robot Movement Skills. Submitted to the Journal of

Artificial Intelligence, 2014.

[14] M. Lagoudakis and R. Parr. Least-Squares Policy Iteration. Journal of Machine

Learning Research (JMLR), 4:1107–1149, December 2003.

[15] A. Lazaric and M. Ghavamzadeh. Bayesian Multi-Task Reinforcement Learn-

ing. In Proceedings of the 27th International Conference on Machine Learning

(ICML), 2010.

44

[16] R. Lioutikov, A. Paraschos, G. Neumann, and J. Peters. Sample-based

information-theoretic stochastic optimal control. In Proceedings of 2014 IEEE

International Conference on Robotics and Automation (ICRA), 2014.

[17] The Mathworks. Matlab Optimization Toolbox User’s Guide.

[18] J. Morimoto and C. Atkeson. Minimax differential dynamic programming: An

application to robust bipedwalking. Neural Information Processing Systems

(NIPS), 2002.

[19] Gerhard Neumann and Jan Peters. Fitted q-iteration by advantage weighted re-

gression. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou,

editors, Advances in Neural Information Processing Systems 21, Proceedings of

the Twenty-Second Annual Conference on Neural Information Processing Sys-

tems, Vancouver, British Columbia, Canada, December 8-11, 2008, pages 1177–

1184. Curran Associates, Inc., 2008.

[20] A. Ng and M. Jordan. PEGASUS: A Policy Search Method for large MDPs

and POMDPs. In Proceedings of the International Conference on Uncertainty in

Artificial Intelligence (UAI), pages 406–415, Palo Alto, CA, 2000.

[21] J. Peters, K. Mülling, and Y. Altun. Relative Entropy Policy Search. In Proceed-

ings of the 24th National Conference on Artificial Intelligence (AAAI). AAAI

Press, 2010.

[22] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-

ing. The MIT Press, 2006.

[23] K. Rawlik, M. Toussaint, and S. Vijayakumar. On Stochastic Optimal Control and

Reinforcement Learning by Approximate Inference. In Proceedings of Robotics:

Science and Systems, Sydney, Australia, July 2012.

45

[24] K. Rawlik, M. Toussaint, and S. Vijayakumar. Path Integral Control by Repro-

ducing Kernel Hilbert Space Embedding. In IJCAI, 2013.

[25] F. Sisser. Elimination of bounds in Optimization Problems by Transforming Vari-

ables. Mathematical Programming, 20(1):110–121, 1981.

[26] R. Stengel. Stochastic Optimal Control: Theory and Application. John Wiley &

Sons, Inc., 1986.

[27] E. Theodorou, J. Buchli, and S. Schaal. Reinforcement Learning of Motor Skills

in High Dimensions: a Path Integral Approach. In Robotics and Automation

(ICRA), 2010 IEEE International Conference on, 2010.

[28] E. Todorov. Linearly-solvable markov decision problems. In Neural Information

Processing Systems, pages 1369–1376, 2006.

[29] E. Todorov. Efficient Computation of Optimal Actions. Proceedings of the Na-

tional Academy of Sciences, 106(28):11478–11483, 2009.

[30] E. Todorov and Weiwei L. A generalized Iterative LQG Method for Locally-

Optimal Feedback Control of Constrained Nonlinear Stochastic Systems. In Pro-

ceedings of the 24th American Control Conference, volume 1 of (ACC 2005),

2005.

[31] M. Toussaint. Robot Trajectory Optimization using Approximate Inference. In

Proceedings of the 26th International Conference on Machine Learning, (ICML),

2009.

[32] B. Ziebart, A. Bagnell, and A. Dey. Modeling Interaction via the Principle of

Maximum Causal Entropy. In Proceedings of the 27th International Conference

on Machine Learning (ICML), 2010.

46

[33] A. Zimin and G. Neu. Online learning in episodic Markovian decision processes

by relative entropy policy search. In Neural Information Processing Systems

(NIPS), 2013.

A Derivation of the Dual-Function

We start the derivation of the dual with the Lagrangian of the optimization problem.

For the sake of clarity, we will treat all time steps the same and neglect the initial state

distribution constraint as well as the final KL-bound. The Lagrangian is given as

L =

T∑
t=1

∫∫
ptxu

(
rtxu − ηt log

ptxu
qtxu

+ E[φTx′]θt+1 − φTxθt − λt
)
dxdu+ ηtε+ λt,

where ptxu = pπt (x,u) and we chose a similar subscript notation for qt and φ. Differ-

entiating the Lagrangian w.r.t. ptxu

∂L

∂ptxu
= rtxu − ηt

(
log

ptxu
qtxu

+ 1

)
+ E[φTx′]θt+1 − φTxθt − λt

and setting the result to zero yields the closed form solution for ptxu,

ptxu = qtxu exp

(
rtxu + E[φTx′]θt+1 − φTxθt

ηt

)
exp

(
1− λt

ηt
.

)
(35)

Out of our normalization constraint we follow that

exp

(
1− λt

ηt

)
=

(∫∫
qtxu exp

(
rtxu + E[φTx′]θt+1 − φTxθt

ηt

)
dxdu

)−1
. (36)

Setting Equation (35) back into the Lagrangian, results after some transformations in

the following equation

g(η1:H , λ1:H) =

T∑
t=1

ηtε− ηt + λt =

T∑
t=1

ηtε− ηt log (exp(1− λt/ηt)) .

47

We can now use Equation (36) to determine the dual function in terms of η1:H and

θ1:H ,

g(η1:H ,θ1:H) =

T∑
t=1

ηtε+ηt log

(∫
qtxu exp

(
rtxu + E[φTx′]θt+1 − φTxθt

ηt

)
dxdu

)
.

(37)

Including the KL-bound of the last time step as well as the initial state constraint, the

dual function is given as

g(η1:H ,θ1:H ;D) =

H−1∑
t=1

ηt log

 1

N

∑
x,u∈Dt

exp

(
rtxu + E[φTx′]θt+1 − φTxθt

ηt

)
+

T∑
t=1

ηtε+ ηH log

(
1

N

∑
x∈DH

exp

(
rTx − φ

T
xθH

ηH

))
+ φ̂

T

1 θ1,

(38)

where we replaced the distribution qt by 1/N as we now use samples D which have

been generated from qt. The set Dt denotes all samples for time step t.

48

