
Learning Robot Locomotion
from Diverse Datasets
Lernen der Roboterlokomotion aus vielfältigen Datensätzen
Master thesis by Lu Liu
Date of submission: February 18, 2025

1. Review: M.Sc. Michael Drolet
2. Review: Dr. Oleg Arenz
3. Review: Prof. Dr. Jan Peters
Darmstadt

Erklärung zur Abschlussarbeit gemäß §22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Lu Liu, dass ich die vorliegende Arbeit gemäß §22 Abs. 7 APB der
TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und
anderer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt. Die von mir
bei der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich benutzte
Literatur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet und gesondert
aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 18. Februar 2025
L. Liu

Mobile User

Abstract

Quadrupedal robots have significant potential in applications such as search and rescue,
exploration, and dynamic locomotion. While diverse motion datasets from animals and
robotic platforms offer opportunities to improve motion quality and diversity, effectively
learning locomotion from these datasets remains challenging. In this work, we address
two key challenges: motion retargeting and the synthesis of motion sequences with flexible
length.

For motion retargeting, we transfer motion sequences from sources with different sizes and
morphologies (e.g., horse or robot Solo8) to a target quadrupedal robot (e.g., Unitree Go2).
We adopt a spatial retargeting approach to ensure kinematic feasibility by maintaining
consistent contact phases and minimizing foot sliding. For motion synthesis, we leverage
existing frameworks, including a Vector Quantized Variational Autoencoder (VQ-VAE) and
autoregressive models like Transformers, to encode, reconstruct, and generate diverse
motion sequences of flexible length. These methods enable compact representations while
preserving temporal coherence and motion structure. For motion imitation, we use a
reinforcement learning approach inspired by DeepMimic, which employs time-step-based
tracking rewards for efficient imitation.

We evaluate our framework through extensive experiments and ablation studies, leveraging
a diverse dataset of dog, horse, and motion data from other robot platforms. Our results
demonstrate successful motion retargeting across platforms (Go2 and A1) and highlight
the potential for generalization. The generated dataset exhibits natural and diverse gaits,
serving as a motion prior to guide the low-level policy in imitating reference trajectories
from the high-level policy.

Zusammenfassung

Vierbeinige Roboter haben großes Potenzial in Anwendungen wie Such- und Rettungs-
missionen, Exploration und dynamischer Fortbewegung. Während verschiedene Bewe-
gungsdatensätze von Tieren und Robotern die Möglichkeit bieten, die Bewegungsqualität
und -vielfalt zu verbessern, bleibt das effektive Erlernen der Fortbewegung aus diesen
Datensätzen eine Herausforderung. In dieser Arbeit gehen wir zwei zentrale Herausfor-
derungen an: Bewegungsretargeting und die Synthese von Bewegungssequenzen mit
flexibler Länge.

Für das Bewegungsretargeting übertragen wir Bewegungssequenzen von Quellen mit un-
terschiedlichen Größen und Morphologien (z. B. Pferd oder Roboter Solo8) auf einen Ziel-
roboter mit vier Beinen (z. B. Unitree Go2). Wir verwenden einen räumlichen Retargeting-
Ansatz, um die kinematische Machbarkeit sicherzustellen, indem wir konsistente Kontakt-
phasen beibehalten und das Rutschen der Füße minimieren. Für die Bewegungssynthese
nutzen wir bestehende Frameworks, einschließlich eines Vector Quantized Variational
Autoencoders (VQ-VAE) und autoregressiver Modelle wie Transformer, um diverse Bewe-
gungssequenzen flexibler Länge zu codieren, zu rekonstruieren und zu erzeugen. Diese
Methoden ermöglichen kompakte Darstellungen, während sie die zeitliche Kohärenz
und die Struktur der Bewegung bewahren. Für die Bewegungsimitation verwenden wir
einen verstärkenden Lernansatz, inspiriert von DeepMimic, der auf zeitschrittbasierten
Tracking-Belohnungen für eine effiziente Imitation setzt.

Wir evaluieren unser Framework durch umfangreiche Experimente und Ablationsstudien
und nutzen einen vielfältigen Datensatz von Hund-, Pferd- und Bewegungsdaten anderer
Roboterplattformen. Unsere Ergebnisse zeigen erfolgreiches Bewegungsretargeting über
verschiedene Plattformen hinweg (Go2 und A1) und heben das Potenzial zur Generalisie-
rung hervor. Der erzeugte Datensatz zeigt natürliche und vielfältige Gangarten und dient
als Bewegungsprior, um die Low-Level-Policy bei der Imitation von Referenztrajektorien
der High-Level-Policy zu unterstützen.

Contents

1. Introduction 2

2. Foundations 4
2.1. Inverse Kinematics . 4
2.2. Vector Quantized Variational Autoencoder 5
2.3. Transformer . 8
2.4. Reinforcement Learning . 10
2.5. Sim-to-Real Transfer . 12
2.6. Related Work . 12

3. Methodology 15
3.1. Unit Vector Method . 15
3.2. Quantization-based Autoregressive Motion Synthesis 18
3.3. Proximal Policy Optimization with Imitation Objectives 23

4. Experimental Evaluation 25
4.1. Metrics for Evaluating Motion Retargeting Performance 26
4.2. Motion Synthesis: From Reconstruction to Generation 28
4.3. Imitation Performance on Unitree Go2 . 32

5. Conclusion 37

A. Appendix 44

Figures and Tables

List of Figures

2.1. VAE Structure. The encoder maps the input x to a latent vector z, which
is regularized by the prior distribution p(z). The decoder reconstructs the
input x from the latent vector z. 6

2.2. Left: A figure illustrating the VQ-VAE for image data x reconstruction.
Right: A visualization of the embedding space. The output of the encoder
ze(x) is mapped to the nearest point e2 from the embedding space. The
gradient ∇zL (in red) directs the encoder to modify its output, possibly
affecting the parameters in the subsequent forward pass. 7

2.3. Left: Scaled Dot-Product Attention layer structure. Right: Multi-Head
attention layer running in parallel . 9

2.4. Interaction between agent and environment.The agent takes actions in the
environment and receives rewards based on the actions taken. 10

3.1. Left: a common skeleton of the horse and dog. The blue points represent
the withers and hips, while the red points represent the toes. Right: a
common skeleton of the quadruped robot. The blue points represent the
shoulder and hip joints, and the red points represent the feet. 17

3.2. Embedding Space: A single codebook is divided into three distinct code-
books. The final embedding vector is obtained by concatenating the codes
from these individual codebooks. 20

3.3. VQ-VAE with Product Quantization. The input sequence {x1, x2, ..., xT } is
processed by the encoder, which includes convolutional layers and multi-
head self-attention. The encoded continuous latent vector sequence ze(X̃)
is then product-quantized into discrete codes using multiple codebooks.
The quantized representations zq(X̃) are passed through a decoder, which
mirrors the encoder’s structure to reconstruct the full sequence {x̂1, x̂2, ..., x̂T } 21

3.4. Autoregressive Prediction: Without autoregressive head, the model predicts
C targets in parallel. With autoregressive head, the model predicts C
targets sequentially. 22

4.1. Results from Motion Retargeting: From top to bottom, the retargeted mo-
tions are dog pace, horse walk, mpc bound, and solo8 wave on Unitree GO2.
The scaled original data are represented as nodes, providing a reference
for the retargeted motions . 28

4.2. Without Foot Regularizing (above) and With Foot Regularizing (below) . . 29

4.3. t-SNE Visualization of Latent Space with Four Codebooks 31

4.4. Reconstruction L2 Error by Gait and Motion Source: Comparison of models
without EMA . 33

4.5. Results of Gait Generation: From top to bottom, the generated motions are
dog pace, horse walk, mpc bound, and solo8 wave. 34

4.6. Policy Learning Performance on Different Datasets 35

4.7. Training Performance with Domain Randomization and without Domain
Randomization . 36

A.1. Results from Motion Retargeting on Unitree A1: From top to bottom, the
retargeted motions are dog trot, horse trot, mpc bound, and solo8 crawl . 44

A.2. t-SNE Visualization of Latent Space with One Codebook 45

A.3. t-SNE Visualization of the Latent Space Using a Single Codebook, Organized
by Gaits. 46

A.4. t-SNE Visualization of the Latent Space Using Four Codebooks, Organized
by Gaits. 47

A.5. t-SNE Visualization of the Latent Space Using a Single Codebook, Organized
by Sources. 48

A.6. t-SNE Visualization of the Latent Space with Four Codebooks, Categorized
by Data Sources: Dog, Horse, MPC, and Solo8. 49

A.7. Reconstruction L2 Error from model with EMA by Gait and Motion Source. 50

A.8. Visualization of codes in different codebooks: with EMA (above) and with-
out EMA (below). 51

List of Tables

4.1. Gaits Available in Each Dataset. 26

4.2. Metrics for Evaluating Motion Retargeting Performance 27

A.1. Summary of Configuration Parameters for VQ-VAE and Generator 52

A.2. Summary of PPO Training Parameters . 53

A.3. Penalty used in the reward function. 54

A.4. Observation Space.The height and trunk linear velocities are excluded from
the observation space during actor training. 55

A.5. Domain Randomization Parameters. 56

1

1. Introduction

Quadrupedal robots have been an active research topic in robotics due to their potential
applications in search and rescue, exploration, and dynamic locomotion. Recent advances
in model-based controllers and reinforcement learning have enabled these robots to exhibit
increasingly agile and adaptive behaviors. Moreover, diverse motion datasets from animals
and robotic platforms offer opportunities to enhance the flexibility and adaptivity of
quadrupedal motion. However, effectively learning robot locomotion from diverse datasets
presents several challenges, which we address in this work.

The first challenge we address is motion retargeting, which involves transferring motion
sequences from sources with different sizes and morphologies (e.g., an animal like a horse
or another robot like Solo8) to the target quadrupedal robot like Unitree Go2. This task is
nontrivial due to significant differences in kinematics, dynamics, and actuation constraints
between the source and target systems. In our work, we adopt a spatial motion retargeting
approach similar to [2][42], which ensures kinematic feasibility by maintaining consistent
contact phases and minimizing foot sliding.

The second challenge lies in effectively representing motion sequences while preserving
their underlying structure. Motion data is inherently high-dimensional with complex
temporal dependencies, making it difficult to encode in a compact manner and reconstruct
accurately. To address this, we adopt the framework from [25], which employs a Vector
Quantized Variational Autoencoder (VQ-VAE) [27] to map motion sequences into discrete
latent codes. Compared to traditional Variational Autoencoders (VAEs), VQ-VAE uses a
discrete latent space instead of a continuous one. This design reduces the bit requirements
for encoding. Additionally, VQ-VAE provides a one-to-one mapping between trajectory
frames and latent codes. This design avoids the nondeterministic assignments of VAEs,
which can cause the latent space to fail in capturing meaningful structures, a phenomenon
known as posterior collapse. To capture temporal dependencies among tokens, the encoder
and decoder leverage self-attention mechanisms [41] with causal masking. This design
allows the model to focus on relevant temporal contexts while maintaining the sequential

2

nature of the data in the latent space. The codebook design enables the sampling of
different codes that can be combined in various ways to generate diverse motion sequences.
However, the diversity of the generated sequences is not solely determined by the VQ-
VAE framework. It also depends on the richness of the training data and the size of
the codebook. To further enhance diversity in latent space, the framework employs
product quantization [16]. This design divides the latent representation into multiple
subvectors, each of which is quantized into codes from different codebooks. Using this
approach, the size of embedding space grows exponentially, enabling the decoder to
produce higher-quality reconstructions with greater fidelity and detail. Moreover, for the
sampling process, we adopt autoregressive models, such as Transformers [41], which
make predictions of the next token via cross-entropy loss. This structure is well-suited for
discrete sequences, By employing VQ-VAE, the dataset is discretized into a vocabulary of
tokens, enabling seamless integration with the transformer framework. In contrast, VAEs
generate continuous output, they cannot be naturally integrated into such frameworks,
which limits their effectiveness for trajectory modeling.

To address motion imitation, where we adopt a reinforcement learning approach similar
to DeepMimic [31], which employs a time-step-based tracking reward to imitate reference
trajectories. An alternative method, such as Adversarial Motion Priors (AMP) [28], has
been explored in prior work [7][43][42]. AMP utilizes a discriminator as a style reward,
combining it with a task reward to accomplish various tasks while maintaining a specific
motion style. We choose DeepMimic for its strong empirical performance in imitation
tasks [2] [23], interpretability through explicit tracking rewards, higher sample efficiency
without adversarial training, and seamless integration with our framework.

Finally, we present extensive experiments and ablation studies to evaluate our framework.
We assess various network design choices. In contrast to other methods that rely on a
single dog dataset, we retarget a diverse and extensive dataset for quadrupeds, including
Matlab trot data [6], dog data [44], horse data [3], and Solo8 data [21]. This large, varied
dataset enhances the generalization of our approach. The experiments are conducted on
both the Go2 and A1 platforms, demonstrating a proof of concept that arbitrary platforms
can be retargeted to arbitrary robots, as long as their kinematics are sufficiently similar.
The quantization-based motion synthesis framework effectively reconstructs accurate
motion datasets and generates a vast array of natural and diverse data for downstream
low-level policy learning. We also apply domain randomization to the policy on a subset
of our dataset, enabling potential transfer to real robots. However, due to time constraints,
we were unable to evaluate the results on a real robot.

3

2. Foundations

In this chapter, we introduce the fundamental concepts and techniques utilized in this
thesis. We begin by discussing the concept of inverse kinematics, which enables us to solve
for the joint configurations, given desired task space positions. Next, we introduce the VQ-
VAE and Transformer employed for data representation and generation, specifically motion
sequences. Following that, we briefly introduce reinforcement learning, a technique used
to learn the robot’s control policy. Lastly, we cover sim-to-real transfer, which allows the
transfer of policies learned in simulation to a real robot. Finally, we introduce the related
work.

2.1. Inverse Kinematics

In robotics, forward kinematics is a technique used to compute the position of the end-
effector, given its joint configuration. Mathematically, it can be expressed as xe = f(q).
where q ∈ Rm represents the joint configuration, xe ∈ Rn denotes the position of the end
effector, and f is the function that maps the joint configuration to the task space. This is a
straightforward computation, compromised of a sequence of rigid body transformations,
given the Denavit-Hartenberg parameters of the system.

Conversely, inverse kinematics involves determining the joint configuration of a robot based
on the position of the end-effector. We will consider two popular approaches for robot
control using inverse kinematics. The first approach involves using numerical optimization
to solve for the joint configuration that satisfies a desired end effector pose. The second,
often referred to as operational space control, uses the Jacobian pseudo-inverse method.
We consider the latter approach for computational efficiency. Additionally, because we do
not have any further constraints that could be optimized numerically (aside from matching

4

end-effector positions), this controller is suitable for our purposes. In general, we solve
the following optimization problem:

min
q
∥x∗e − f(q)∥2 ,

where q is the joint configuration and x∗e represents the target position of the end-effector.

The Jacobian matrix J(q) ∈ Rn×m represents the linear mapping between joint veloci-
ties and end-effector velocities. The incremental changes in joint configuration can be
calculated as follows:

q̇t = J(q)†(x∗e − f(q))

where J(q)† = J(q)T (J(q)J(q)T + λI)−1 is the pseudo Jacobian, including a damping
term λ. The updated joint configuration is then computed as:

qt+1 = qt + q̇t ·∆t (2.1)

This process is repeated until the position of end-effector is sufficiently close to the desired
position. There are many other established optimization methods, each with different
constraints, to determine the changes in joint configuration. The details of these methods
will not be discussed here, but will be covered in the methodology section.

2.2. Vector Quantized Variational Autoencoder

Generative models are a class of statistical models designed to learn the underlying
distribution of data and generate new samples that resemble the original dataset. These
models have gained significant attention due to their ability to create realistic data across
various domains, including images, speech, video, and robotics. Among themost prominent
generative models are Generative Adversarial Networks (GANs) [9], which employ a
generator to produce samples and a discriminator to differentiate between real and
generated data; Diffusion Models [14], which generate samples by progressively adding
noise to data and learning to reverse this process; and Variational Autoencoders (VAEs)
[18], which learn a latent representation of the data and optimize a lower bound on the
data likelihood. In this work we focus on a particular adaptation of the VAEs, called the
VQ-VAE.

VAEs typically consist of two main components: an encoder and a decoder, as illustrated in
Figure 2.1.The input data x is first passed to the encoder, which compresses the information

5

from x into a latent space, represented as a latent vector z. This latent vector z is then fed
into the decoder, which reconstructs the information to produce an output x̂ that should
closely resemble the original data x. The goal of VAE is to maximize the evidence lower
bound (ELBO) on the data likelihood, as defined below.

LELBOϕ,θ = ExEz|x[log pϕ(x | z)]− βDKL(qθ(z | x)∥p(z))

where ExEz|x[log pϕ(x | z)] serves as reconstruction loss, encouraging accurate data
reconstruction,DKL(qθ(z | x)∥p(z)) is the Kullback-Leibler divergence, which measures the
distance between approximate posterior distribution qθ(z | x) and the prior distribution
p(z). By minimizing the KL divergence, the latent space is effectively regularized, which
prevents overfitting to the training data. The overall objective can be interpreted as a
trade-off between two goals.

Figure 2.1.: VAE Structure. The encoder maps the input x to a latent vector z, which is
regularized by the prior distribution p(z). The decoder reconstructs the input
x from the latent vector z.

VQ-VAE (Vector Quantized Variational Autoencoder) is a variant of the VAE. The key
distinction between VQ-VAE and traditional VAEs lies in the representation of the latent

6

space: VQ-VAE deterministically maps an embedding to a quantized encoding. The discrete
bootleneck design makes VQ-VAE more bit-efficient and scalable to high-dimensional
datasets, unlike the standard VAEs.

Figure 2.2.: Left: A figure illustrating the VQ-VAE for image data x reconstruction. Right:
A visualization of the embedding space. The output of the encoder ze(x) is
mapped to the nearest point e2 from the embedding space. The gradient
∇zL (in red) directs the encoder to modify its output, possibly affecting the
parameters in the subsequent forward pass.

In VQ-VAE, the latent variables are represented as a set of discrete code e, which collectively
form a codebook. Each index i in the codebook points to a unique code ei. This discrete
representation is achieved through vector quantization, a process that maps the continuous
latent variables ze(x) to their closest discrete code ek in the codebook. The decoder then
reconstructs the input x from the quantized latent representation zq(x) = ek, where
k = argmini ∥ze(x)− ei∥2. The entire process is depicted in Figure 2.2 right.

The training objective for VQ-VAE consists of the reconstruction loss, similar to that in
VAE , commitment loss and codebook loss. The overall training loss is defined as follows:

7

L = ∥x−D(zq(x))∥22 + ∥sg[ze(x)]− e∥22 + β∥ze(x)− sg[e]∥22 (2.2)

The reconstruction loss ∥x−D(zq(x))∥22 ensures that the decoded output D(zq(x)) closely
matches the original input. Meanwhile the commitment loss ∥ze(x)− sg[e]∥22 ensures that
the encoder commits to an embedding. Similarly, the codebook loss ∥sg[ze(x)]−e∥22 moves
the embedding table toward the encoder output. It is worth noting that the vector quan-
tization process is non-differentiable, because of the argmin operation, which performs
hard assignment. This non-differentiability poses challenges for gradient updates. To
address this, VQ-VAE employs the argmin operation during the forward pass but bypasses
it during the backward pass using the stop gradient operation. Specifically, the terms in
loss function with stop gradient operation sg[·] during the gradient backpropagation will
be treated as constant.

2.3. Transformer

The Transformer model was initially introduced for sequence-to-sequence tasks in natural
language processing [41]. It has proven to be highly effective for various generative tasks
[46, 25, 34, 45, 43, 37, 22].

The model typically follows an encoder-decoder structure, which is a popular architecture
for sequence-to-sequence tasks. However, it is worth noting that the encoder is not always
necessary. For certain tasks, for example, text or motion generation, a decoder-only model
can be sufficient. In such cases, the model relies solely on the decoder, which is composed
of multiple layers. Each layer typically includes a multi-head self-attention block and a
feed-forward network, with residual connections and layer normalization applied between
sub-layers. By chaining together multiple such layers, the decoder can effectively handle
tasks without requiring an encoder.

The self-attention mechanism primarily calculates the attention relationships among
tokens in the input sequence. Each token in the input is linearly mapped to three distinct
embeddings, referred to as the query, key, and value. The attention scores are computed
by taking the dot product of the query with all keys, dividing by the square root of the
key’s dimensionality dk, and applying a softmax function to obtain normalized weights, as
in Figure 2.3 left. These weights are then used to compute a weighted sum of the values.
For example, given a sequence of input embeddings X = (x1, x2, ..., xT), the self-attention

8

mechanism computes the attention scores as:

Attention(Q,K,V) = softmax(QK
T

√
dk

)V. (2.3)

where query Q ∈ RT×dk , key K ∈ RT×dk , and value V ∈ RT×dv .

Figure 2.3.: Left: ScaledDot-Product Attention layer structure. Right: Multi-Head attention
layer running in parallel

The multi-head attention mechanism consists of multiple attention layers operating in par-
allel. Each layer independently generates an output, and these outputs are concatenated
and then projected into the final values, as illustrated in Figure 2.3 right. It dynamically
weights the importance of different positions in the input sequence, which is particularly
important for in the context of motion synthesis. This capability allows the model to
capture intricate temporal dependencies within the sequence, enabling it to generate
effective action vocabulary indices.

9

2.4. Reinforcement Learning

Figure 2.4.: Interaction between agent and environment.The agent takes actions in the
environment and receives rewards based on the actions taken.

Reinforcement Learning (RL) is a machine learning technique that enables an agent to
learn a policy by interacting with an environment.

The RL problem can be formulated as a Markov Decision Process (MDP), which is defined
by a tuple (S,A,P,R, γ). Here, S represents the state space, which contains all possible
states the environment can be in. A denotes the action space, including all possible
actions the agent can take. P is the transition probability function that describes all the
probability of transitioning from one state to another, given an action. The reward function
R computes the reward of being in a particular state and γ is the discount factor, which
controls how much the agent should prioritize the future.

The entire interaction process is depicted in Figure 2.4. The agent observes the current
state of the environment, denoted as state St, and receives a reward Rt. The agent
then selects the action At, then gets a new state St+1 from the environment and a new
reward Rt+1. The agent’s goal is to learn a policy π that can maximize the expected
cumulative reward. The policy can be deterministic or stochastic and can be represented
in various forms, such as lookup tables, decision trees, or neural networks. The choice of
RL algorithm depends on the problem setup, particularly whether the state and action
spaces are continuous or discrete. For instance, tabular RL uses tables to store state-
action values and is ideal for small, discrete spaces. Q-learning, a value-based method,
learns optimal policies by updating a Q-table. For continuous state spaces, its extension,

10

Deep Q-Networks (DQN), uses neural networks to approximate Q values and maximize
expected future rewards. Alternatively, Proximal Policy Optimization (PPO) and other
policy gradient methods are well suited for continuous spaces, balancing stability and
efficiency by clipping policy updates to avoid large deviations. In this work, we employ
policy gradient methods as our state and action spaces are both continuous.

In general, the expected cumulative reward can be mathematically stated as:

J(θ) = Eτ∼πθ

[︄
T∑︂
t=0

γtrt

]︄
where τ is the trajectory generated by the policy πθ. γ is the discount factor. and rt is the
reward at time step t.

To maximize J(θ), we use gradient ascent:

θ ← θ + α∇θJ(θ)

where α is the learning rate. The policy gradient theorem provides an expression for
∇θJ(θ):

∇θJ(θ) = Eτ∼πθ
[∇θ log πθ(at | st)At]

where At is the advantage function, which measures how much better an action at is
compared to the average action at state st.

To improve sample efficiency, we can use importance sampling to estimate the policy
gradient using trajectories collected from an older policy πθold:

∇θJ(θ) = Eτ∼πθ

[︃
πθ(at | st)
πθold(at | st)

∇θ log πθ(at | st)At

]︃
To stabilize training, we maximize a surrogate objective instead of directly maximizing
J(θ):

LCPI(θ) = Eτ∼πθ

[︃
πθ(at | st)
πθold(at | st)

At

]︃
where CPI stands for conservative policy iteration. However, this objective can lead to
large policy updates, which can destabilize training. To prevent large updates, Proximal
Policy Optimization (PPO) introduces a clipped surrogate objective:

LCLIP(θ) = Eτ∼πθ

[︃
min(

πθ(at | st)
πθold(at | st)

At, clip(
πθ(at | st)
πθold(at | st)

, 1− ϵ, 1 + ϵ)At

]︃
where ϵ is a hyperparameter that controls the clipping range. The clipping ensures that
the policy does not change too much in a single update, improving stability.

11

2.5. Sim-to-Real Transfer

Sim-to-Real transfer is a technique that enables the transfer of policies learned in simulation
to a real robot. In policy gradient methods, there is a need to collect a large number of
transitions, which is difficult in real physical systems but significantly easier and more
cost-effective to achieve in simulation. However, simulation environments inevitably differ
from reality. The goal of Sim-to-Real transfer is to bridge the gap between simulation and
reality, ensuring that policies learned in simulation can be effectively applied to real-world
scenarios.

Challenges in sim-to-real transfer often refer to the reality gap and the domain gap. The
reality gap refers to the discrepancy between simulation and reality, such as the dynamics
of the robot, the environment, and the sensors. The domain gap refers to the difference in
the distribution of the data between simulation and reality, such as the lighting conditions,
the textures, and the noise.

Domain randomization is one of the key techniques for sim-to-real transfer. The idea is to
introduce random variations in the simulation so that the policy becomes robust enough
to handle real-world variations. For example, in simulation MuJoCo, parameters like
friction, object masses, joint dynamics, and sensor noise can be randomly sampled in a
large range during training. The real-world environment and hardware can be seen as
just one specific configuration within this range.

2.6. Related Work

Motion synthesis, which refers to the generation of realistic motion sequences, has been a
prominent area of research. With the development of deep learning and generative models,
significant progress has been made, particularly in computer graphics. Researchers have
successfully employed generative models to synthesize human-like motion for animated
characters [11][40][39]. There are two main approaches in motion synthesis: kinematics
motion synthesis and physics-based motion synthesis.

Kinematics motion synthesis primarily relies on deep learning, machine learning, and
data-driven methods. These approaches learn motion patterns from large datasets and
generate new motion sequences without relying on physical simulations. The process is
often end-to-end, where the corresponding motion sequence is generated given labels

12

such as action and duration. This method is widely used for animated characters in
computer graphics, but the generated motions may not always adhere to physical laws. For
instance, [8] combines Long Short-Term Memory (LSTM) networks with autoencoders
to generate natural-looking human poses, leveraging the largest motion dataset at the
time, [15]. Similarly, [1] employs an adapted Generative Adversarial Network (GAN)
to predict future human poses based on previous frames, and validates their results on
datasets [15] and [36]. [32] introduces a framework based on Variational Autoencoder
(VAE) to generate realistic and diverse human motion sequences conditioned on actions,
with the help of datasets [36] and [17]. Later, [25] adapts a new framework based on
Vector-Quantized Variational Autoencoder (VQ-VAE) with a self-attention mechanism
to synthesize natural human motion sequences based on actions and duration, utilizing
multiple datasets, including BABEL [33], a newly introduced large-scale MoCap dataset
at the time. Meanwhile, [22] leverages a Transformer-based architecture to generate
diverse dance motions synchronized with music beats, using a massive collection of online
dance videos. More recently, [39] utilized periodic autoencoder to synthesize smooth
and natural motion transitions between two keyframes, supported by the dataset [13].
For some controllable characters, several works have explored combining reinforcement
learning with latent representations. For example, [24] adopts the continuous latent
space as the action space for downstream control algorithms in animated characters.
In [20], the authors adapts [39] framework to further synthesize humanoid motion on
MIT humanoid robot with the reatrgeted dataset from [31] and incorporates encoded
motion segmentation information into the observation space, enhancing the performance
of downstream motion learning algorithms.

Physics-based motion synthesis, on the other hand, employs forward dynamics and control
policies such as model-based control or reinforcement learning to generate dynamically
feasible motion sequences that adhere to the laws of physics. The motion representation
is often controlled by policies. like in work [29], [31], [30], [47] [12] etc. our work is
kinematics motion synthesis.

Quadrupedal locomotion learning has seenmany advancements in recent years, with works
such as [38] and [26] demonstrating the effectiveness of reinforcement learning in enabling
agile and robust behaviors. However, pure reinforcement learning is prone to generate
unnatural and stiff gaits. To achieve natural-looking gaits, various approaches have been
explored. For instance, [2] builds on their prior work [31], applying reinforcement
learning to train a robotic dog to successfully imitate reference animal gaits. Similarly,
[7] leverages their previous framework [28] along with motion capture data from [44],
enabling the Unitree A1 robot to perform natural gaits while meeting task requirements.
More recent work, such as [12], introduces a vector-quantized discrete latent space to

13

capture the temopral and dynamic information within motion capture data and robot.
Through multi-stage training, their method can be deployed on real robots, allowing them
to execute strategic gameplay with highly natural locomotion.

Unlike their approach, our dataset includes a diverse range of gaits from animals [44, 3]
and existing controllers across different robots [6, 21], providing a variety of gait options
for learning in different scenarios. Our work does not integrate motion representation
directly into the motion learning algorithm. Instead, motion synthesis is treated as a
pre-trained process that generates reference trajectories solely based on labels while
maintaining close similarity to the original data. These generated references then serve
as motion priors for the motion learning problem, following a design similar to [2].

14

3. Methodology

In this chapter, we first introduce the motion retargeting algorithm, which is used to map
motion data from diverse sources onto the target system. The motion data are sourced
from animal motion capture datasets (e.g., dogs and horses) as well as motion records
from existing controllers (e.g., a policy trained by reinforcement learning and model
predictive controller) for various robot platforms. These datasets cover a wide range of
gaits, such as trot, gallop, pace, and more. Using motion retargeting, we can convert
these motion datasets into robot-compatible motion data. Next, we introduce the learning
framework for motion representation. This framework employs vector quantization to
discretize the latent space and, through product quantization, further divides the discrete
latent vectors into multiple segments. This approach enlarges the latent space, enabling
richer and more diverse motion representations. Then, we present the autoregressive
prediction model using motion generation, which employs a multi-head self-attention
mechanism with causal masking, to capture the distribution over the discrete latent action
vocabulary indices, enabling diverse and coherent motion generation with flexible length.
Finally, we discuss the motion imitation method, namely the Proximal Policy Optimization
(PPO) algorithm with various imitation objectives.

3.1. Unit Vector Method

3.1.1. Datasets

The datasets used in this work can be divided into two main categories: motion capture
datasets and robot motion datasets.

The motion capture datasets include data from dogs and horses. The dog motion capture
dataset [44] contains various gaits such as walking, trotting, canter, and gallop. However,
the motion clips for dogs are often lengthy and include many idle states. In this work,

15

we manually extract specific gait clips, such as trot, gallop, and pace, for further use. In
contrast, the horse motion capture dataset [3] is well-structured, with each clip containing
only a single gait (e.g., walk or trot).

The robot motion datasets consist of motion data from two sources: The Solo8 robot [10],
a quadruped robot with an X-Type morphology [35], provides motion data generated by a
trained PPO policy [21], including gaits such as walk, trot, crawl, bound, wave, and stilt.
A model predictive controller (MPC) [6] provides motion data from a quadrupedal robot,
including gaits such as gallop, trot, walk, pace, and bound.

However, the horse dataset is provided in relative coordinates. To analyze the walking
velocity and trunk information, we first convert the data to absolute positions in the world
frame. The contact points play a crucial role in this process. When a foot is in contact with
the ground, its absolute position remains fixed. Based on this observation, we formulate
the whole-body position estimation as the following optimization problem. We first set a
threshold to determine whether a foot is in contact with the ground. The grounded feet
contribute primarily to the body velocity. The velocity of the foot is then computed by the
difference between the positions of the same foot in two consecutive frames. The problem
can be formulated as below:

min
vbase

T∑︂
t=1

4∑︂
i=1

∥(vi,t + vbase,t)∥22 · ci,t s.t. ∥vbase,t − vbase,t−1∥22 < ϵ

where i denotes the foot index, t is the time index, T is the total time frames in one
clip. vi,t represents the linear velocity of the i-th foot at time t, ci,t is the binary contact
indicator (e.g., 1 if the foot is in contact with the ground, 0 otherwise), vbase,t is the body
linear velocity at time t, and ϵ is the a threshold that ensures that the change in base
velocity between consecutive time steps remains bounded. vbase is the body velocity in
R3×T .

3.1.2. Spatial Retargeting

The retargeting method we use is similar to [2] [42] [5]. It refers to the unit vector
method [42]. Consider the keypoint position of the target system and source system are
denoted as ptar, psrc respectively. In a given kinematic tree as in Figure 3.1, the directional
vector between the key point jth and its parent can be described as:

dsrc
j = psrc

j − psrc
P(j)

16

where P(·) represents the parent function in the kinematic tree. The jth keypoint in the
target system is then defined as:

ptar
j = ptar

P(j) + αdsrc
j

where α is the scaling factor, determined by the height ratio between the target system
and the source system.

Figure 3.1.: Left: a common skeleton of the horse and dog. The blue points represent the
withers and hips, while the red points represent the toes. Right: a common
skeleton of the quadruped robot. The blue points represent the shoulder and
hip joints, and the red points represent the feet.

We extract key points (e.g., withers, hips, toes) from horse and dog skeletons, as shown in
Figure 3.1. We scaled the skeletons using the distance from the ground to the withers and
map the kerpoints to corresponding points on the robot. The robot base position is the
midpoint between the withers and the hips, and its orientation is derived from the hip to
the withers vector. Foot positions are determined by directional vectors from withers or
hips to toes.

Once the robot’s foot positions are determined, we use differential inverse kinematics
to compute the corresponding joint configurations. The problem can be formulated as
follows:

min
q̇t

(pt − FK(qt))T (pt − FK(qt)) + (q̇t − q̇0)TW(q̇t − q0̇)

Here, t is the time index, FK(qt) represents the forward kinematic process to get the current
position of the feet, pt is the target position of the feet, and qt is the joint configuration. The
term q̇0 is defined as K(qdefault−qt), where qdefault denotes the default joint configuration,

17

and K is a gain factor. In addition, W is the diagonal weight matrix. The solution to the
above optimization problem is given by:

q̇t = J†(pt − FK(qt)) + (I− J†J)q̇0

where J† is the pseudo-Jacobian matrix, J† = JT (JJT + λI)−1. λ is the damping factor
to help avoid singularity in the inverse of matrix JJT . Using Equation 2.1, we iteratively
update qt until the error in the task space converges to a sufficiently small value.

3.1.3. Foot Regularizing Constraint

We also consider the contact phase, as scaling all frames uniformly can distort it. For
example, the horse is typically around 1.5 meters tall, whereas our robot is only 0.4 meters
tall. This results in a scaling factor of approximately 0.3–0.4. After scaling, most of the
toe positions tend to be much lower than before. Moreover, we lack ground truth data
for the ground height to accurately determine the contact phase, as tracking points are
usually mounted on the animal’s ankle or other part of the foot, which are typically 1 to 2
cm above the ground. To maintain the consistency of the contact phase during spatial
motion retargeting, we introduce the following constraint in the optimization process:

ptar,zi,t =

{︄
psrc,zi,t , if ci,t = 1,

βpsrc,zi,t , otherwise,

where psrc,zi,t is the original height position data from i-th foot at time step t, and β is
the scaling factor. When the foot is in contact with the ground (ci,t = 1), we retain the
original height data. Otherwise, we use the scaled-down height.

3.2. Quantization-based Autoregressive Motion Synthesis

3.2.1. Self-Attention with Causal Mask

The autoregressive prediction mechanism is supported by a structure of self-attention with
a causal mask. In this setup, the causal mask ensures that each token in the sequence
can only attend to itself and the previous tokens, preventing information leakage from

18

future time steps. Given a sequence of input embeddings X = (x1, x2, ..., xT), the attention
equation from 2.3 can be rewrite as:

Attention(Q,K,V) = softmax(QK
T ·M√
dk

)V.

where query Q ∈ RT×dk , key K ∈ RT×dk , and value V ∈ RT×dv are linear projections of
the input sequencex.

√
dk is the scaling factor and M is the causal mask that assigns −∞

to future positions, ensuring that they do not contribute to the calculation of attention.

3.2.2. Discrete Latent Space Representation

The latent space is structured as a discrete embedding table that contains K embedding
vectors ei ∈ RD, where i ∈ 1, 2, ...,K. To further enhance the flexibility of the discrete
representations learned by the encoder E, product quantization [16] is introduced. Each
discrete latent vector ei in the codebook is divided into C sections (e1i , e2i , . . . , eCi) ∈ RD/C ,
each belonging to different codebooks, as illustrated in Figure 3.2.

Given an input sequence X = {x1, x2, . . . , xT }, the sequence is first processed through a
convolutional layer, reducing it to a compressed representation X̃ = {x̃1, x̃2, . . . , x̃Td

}. This
compressed sequence is then passed through multiple blocks, each consisting of a multi-
head attention mechanism with positional encoding and a linear projection layer. This
forms the encoder stage, where the output is denoted as ze(X̃) = {ze(x̃1), ze(x̃2), . . . , ze(x̃Td

)}.
Using self-attention with a causal mask, each encoded representation ze(x̃t′) encapsulates
information from previous frames, formally represented as:

q(ze(x̃t′) | x̃<t′).

where t′ denotes the timestep in compressed sequence 1, 2, ..., Td after the convolutional
layer, which differs from the original input sequence timesteps. Next, the encoded vector
ze(x̃) undergoes product quantization, producing a discrete representation zq(x̃). Each
element zq(x̃t) is assigned to a set of codebook indices:

zq(x̃t′) = E(i1t′ , i2t′ , . . . , iCt′)

where E denotes the lookup function, extracting the corresponding codes from codebooks
based on given indices i ∈ [1, 2, . . . ,K] and ict′ represents the index of the closest code in
the c-th codebook at timestep t′. The decoder decodes the latent vectors then upsamples
the compressed sequence using a convolutional layer again, reconstructing the entire

19

Figure 3.2.: Embedding Space: A single codebook is divided into three distinct codebooks.
The final embedding vector is obtained by concatenating the codes from
these individual codebooks.

sequence X̂ = {x̂1, x̂2, . . . , x̂T }. The whole process is depicted in Figure 3.3. This strategy
exponentially increases the size of the latent representaion toKTd·C possible combinations.

During training, a common issue occurs where some embedding vectors are updated
frequently and drift away, while others remain stagnant and underutilized. Similarly to
[25], we adopt an alternative codebook learning strategy based on exponential moving av-
erages [19]. However, we find that this technique does not lead to significant performance
improvements in our setup. Further details and analysis are discussed in the experimental

20

Figure 3.3.: VQ-VAE with Product Quantization. The input sequence {x1, x2, ..., xT } is
processed by the encoder, which includes convolutional layers and multi-
head self-attention. The encoded continuous latent vector sequence ze(X̃) is
then product-quantized into discrete codes using multiple codebooks. The
quantized representations zq(X̃) are passed through a decoder, which mirrors
the encoder’s structure to reconstruct the full sequence {x̂1, x̂2, ..., x̂T }

.

section. The updating process of the codes can be mathematically formulated as below:

Ni ← Ni · γ + ni(1− γ),

ei ←
1

Ni
(ei · γ +

ni∑︂
j

ze(x̃j)(1− γ)).

where each codebook vector ei is updated based on the previous one and the usage count
Ni and the current closest usage count ni. and γ denotes the discount factor.

Our framework builds on [25], but unlike the original work, which relies on extensive
datasets from the Skinned Multi-Person Linear Model (SMPL)—a parametric humanoid
model represented with meshes and requiring 80+ parameters to describe a pose—our
dataset is joint-based, where only 12 parameters are sufficient to define a robot pose. This
difference makes the original loss design incompatible with our data. To address this, we
adjust the loss function, using a simple L2 loss. This adaptation successfully handles all

21

tasks, including high-quality reconstruction and generation, without needing to remap
to a complex parametric space. This approach also extends the framework’s potential
application to humanoid robots and other robotic systems, as their data primarily consists
of simple joint angles. Additionally, we employ training techniques such as min-max
scaling and K-fold cross-validation.

3.2.3. Autoregressive Prediction over Discrete Latent Vector

Figure 3.4.: Autoregressive Prediction: Without autoregressive head, the model predicts
C targets in parallel. With autoregressive head, the model predicts C targets
sequentially.

Based on the learned latent space, generating new motion sequences reduces to modeling
the distribution over the action vocabulary indices. For example, consider a motion
sequence of quadrupedal locomotion encoded into a set of indices it′ ∈ {i1t′ , i2t′ , ..., iCt′ }
from different codebooks, where t′ ∈ 1, 2, ..., Td. The generator autoregressively predicts
the indices using a self-attention mechanism with a causal mask, conditioned on a given
gait label g and duration d. As the product quantization mechanism generates C targets,
each focusing on different dimensions. Depending on the presence of an autoregressive

22

head [25], the generator can predict these indices either sequentially or in parallel, as
illustrated in Figure 4.5.

Mathematically, the output of the generated sequence of indices probability is given by:

p(i) =
∏︂
j

p(ij | i<j , g, d)

The model is trained by maximizing the log-likelihood of this distribution. During the sam-
pling stage, the indices are drawn sequentially from the distribution. The corresponding
entries in the codebooks are then retrieved, passed through the decoder, and transformed
into a full motion sequence.

3.3. Proximal Policy Optimization with Imitation Objectives

To guide the robot to follow the reference gait trajectories from the generator, we in-
corporate imitation objectives in reward function, following the work [31]. Let τ g =
{g1, g2, ..., gT } be a reference gait trajectory of the generator. where the gt contains
the goal state information for the quadrupedal robot at time step t, including the joint
positions and velocities, the position and orientation of the trunk base, the linear velocities
of the trunk base and the angular velocities. The reference trajectory is also incorporated
into the observation space. For more details, please refer to Table A.4.

The joint position reward r
jp
t encourages the robot to minimize the difference between

the joint positions of the target qg. This reward is formulated as an exponential function
to penalize deviations from the desired joint configuration:

r
jp
t = exp(−5∥qgt − qt∥22)

where qgt denotes the target position of joints at time step t. qt represents the actual joint
positions at time step t.

Similarly, the joint velocity reward r
jv
t is calculated according to the joint velocities:

r
jv
t = exp(−0.1∥q̇gt − q̇t∥22)

The reward rtoest for the end-effectors, namely the toes:

rtoest = exp(−40∥xg,toest − xtoest ∥22)

23

where xtoest denotes the relative 3D position of toes with respect to the trunk base.

Finally, the trunk base position reward r
tp
t and trunk base velocity reward rtvt are fomulated

as:

r
tp
t = exp(−20∥xg,tpt − xtpt ∥22 − 10∥og,tpt − otpt ∥22)
rtvt = exp(−2||ẋg,tpt − ẋtpt ∥22 − 0.2∥ȯg,tpt − ȯtpt ∥22)

Here, xg,tpt and ẋg,tpt denote the goal global position and goal linear velocity of the robot’s
trunk base, respectively, while og,tpt and ȯg,tpt represent the goal orientation and goal
angular velocity. Similarly, xtpt and ẋtpt denote the actual global position and the actual
linear velocity of the trunk base, and otpt and ȯtpt represent the actual orientation and
actual angular velocity. Overall, the whole reward function is then defined as:

rt = wjpr
jp
t + wjvr

jv
t + wtoesrtoest + wtpr

tp
t + wtvrtvt

wjp = 0.5, wjv = 0.05, wtoes = 0.2, wtp = 0.15, wtv = 0.1

The exponential form ensures that the reward decreases sharply as the deviation between
the robot’s state and the goal state increases, encouraging effective tracking of the reference
trajectory. For more details on the training process, please refer to the Experimental
Evaluation section.

24

4. Experimental Evaluation

In this chapter, we evaluate the motion retargeting algorithm on the Unitree Go2 robot.
The Unitree Go2 has 12 joints in total, with 3 joints per leg: the hip, thigh, and calf.
Each leg is equipped with 3 revolute actuators, which control the corresponding joints.
For simulation, we use the MuJoCo environment. Additionally, we evaluated the motion
reconstruction performance of the VQ-VAE model enhanced with product quantization.
To optimize the model, we conduct a comprehensive hyperparameter search, exploring
variables such as the number of codebooks, with exponential moving average technique
or not.

Datasets Overview

We collect several datasets from publicly available sources to evaluate our motion retar-
geting algorithm. The datasets include:

• Mocap Dog Dataset: From [44], containing motions such as trot, gallop, and pace.

• Mocap Horse Dataset: From [3], including motions such as trotting and walking.

• MPC-Controlled Quadrupedal Robot Dataset: From [6], which we refer to as the
mpc dataset. It contains motions such as trot, gallop, pace, bound, walk, and crawl.

• Solo8 Robot Dataset: From [21], controlled by an RL-based controller. We refer to
this as the solo8 dataset, which includes motions like trot, bound, walk, crawl, stilt,
and wave.

Each combination of motion source and gait contains 10 trajectories, each approximately
2 seconds long, and all trajectories are resampled at a frequency of 50 Hz.

25

Motion Source Gaits

dog Trot, Gallop, Pace

horse Trot, Walk

mpc Trot, Gallop, Pace, Bound, Crawl

solo8 Trot, Bound, Walk, Crawl, Stilt, Wave

Table 4.1.: Gaits Available in Each Dataset.

4.1. Metrics for Evaluating Motion Retargeting Performance

To evaluate the performance of the motion retargeting algorithm, we use the following
metrics.

Froude Number is a dimensionless parameter that characterizes dynamics similarity in
legged locomotion, calculated as:

Fr =
v2

gL

where v is the velocity of the robot, g is the gravitational acceleration, and L is the leg
length of the robot. According to previous research [4], two quadrupeds of different sizes
exhibit similar dynamic movements when their Froude numbers are comparable. However,
the Froude number alone is not a sufficient condition for dynamic similarity. It is included
here as a reference indicator.

Joint limits error, which ensures that the retargetted motion adheres to the robot’s physical
constraints. The errors for joint position and velocity limits are calculated as:

eJoint Pos =
1

N

N∑︂
i=1

1

Ti

Ti∑︂
j=1

K∑︂
k=1

max(
⃓⃓⃓
qi,j,k − q

′
k

⃓⃓⃓
, 0.0)

eJoint Vel =
1

N

N∑︂
i=1

1

Ti

Ti∑︂
j=1

K∑︂
k=1

max(
⃓⃓⃓
q̇i,j,k − q̇

′
k

⃓⃓⃓
, 0.0)

26

where N is the total number of trajectories for a specific gait. and Ti is the length of ith
trajectory, K is the number of the joints. qi,j,k and q̇i,j,k represent the joint positions and
velocities, respectively, for the k-th joint at the time step j on the trajectory i, and q

′
k and

q̇
′
k are their corresponding joint limits.

Below is a table summarizing the metrics and their values for the evaluated gaits:

Gait
Froude Number Violation

original retarget Joint Pos Joint Vel

dog pace 0.260 ± 0.159 0.245 ± 0.050 0.0 0.000 ± 0.000

dog trot 0.781 ± 0.170 0.736 ± 0.160 0.0 0.001 ± 0.026

dog gallop 2.494 ± 1.160 2.350 ± 1.093 0.0 0.028 ± 0.434

horse walk 0.537 ± 0.237 0.133 ± 0.059 0.0 0.014 ± 0.247

horse trot 2.320 ± 0.159 0.580 ± 0.037 0.0 0.210 ± 1.059

mpc bound 0.106 ± 0.043 0.095 ± 0.038 0.0 0.036 ± 0.812

mpc trot 0.255 ± 0.081 0.227 ± 0.072 0.0 0.000 ± 0.000

mpc crawl 0.062 ± 0.029 0.055 ± 0.026 0.0 0.001 ± 0.014

mpc gallop 0.767 ± 0.280 0.685 ± 0.250 0.0 0.016 ± 0.173

mpc pace 0.131 ± 0.033 0.117 ± 0.029 0.0 2.980 ± 3.748

solo8 stilt 0.097 ± 0.085 0.071 ± 0.063 0.0 0.000 ± 0.000

solo8 bound 0.288 ± 0.178 0.213 ± 0.132 0.0 0.000 ± 0.000

solo8 wave 0.249 ± 0.055 0.184 ± 0.041 0.0 0.000 ± 0.009

solo8 crawl 0.096 ± 0.043 0.071 ± 0.032 0.0 0.000 ± 0.000

solo8 walk 0.101 ± 0.068 0.074 ± 0.051 0.0 0.000 ± 0.000

solo8 trot 0.106 ± 0.103 0.079 ± 0.076 0.0 0.000 ± 0.000

Table 4.2.: Metrics for Evaluating Motion Retargeting Performance

During retargeting, we apply foot regularizing constraints 3.1.3 to ensure the contact

27

Figure 4.1.: Results fromMotion Retargeting: From top to bottom, the retargeted motions
are dog pace, horse walk, mpc bound, and solo8 wave on Unitree GO2. The
scaled original data are represented as nodes, providing a reference for the
retargeted motions

phases stay consistent with the reference motion. An example of this is shown in Figure 4.2.
The ground truth is represented by the light color and dashed line, while the retargetted
data is indicated by the solid block and line. With foot regularization, the contact phase
is maintained. Additionally, due to heavy violations of joint velocity limits in the pace
gait generated by the MPC, we excluded this gait from the evaluation in the motion
representation and motion learning sections. The retargeting process is performed at the
kinematic level, with simulation used for visualization. As shown in Figures 4.1 and A.1,
the method successfully adapts the motion to different platforms and gaits.

4.2. Motion Synthesis: From Reconstruction to Generation

In this section, we assess the performance of the model in three key dimensions: latent
space representation, motion reconstruction, and motion generation. We begin by demon-
strating the effectiveness of our approach in clustering samples of the same gait and
preserving the temporal structure of motion data, leading to high-quality reconstructions.

28

Figure 4.2.: Without Foot Regularizing (above) and With Foot Regularizing (below)

29

Next, we showcase the model’s ability to produce realistic and diverse motion sequences.

4.2.1. Latent Space Representation

To visualize and analyze the structure of the learned latent space, we employ t-SNE
(t-Distributed Stochastic Neighbor Embedding), a dimensionality reduction technique that
projects high-dimensional data into a 2D or 3D space while preserving local relationships
between points. Using t-SNE, we can easily analyze different design structures and their
impact on latent space construction.

As shown in Figure 4.3, with four codebooks, the 15 different gaits are well clustered. In
contrast, using a single codebook (Figure A.2 in the appendix) results in fewer distinct
clustering. These results can be explained through the use of product quantization. By
splitting the latent vector into subvectors and quantifying each separately, we effectively
expand the latent space. A larger latent space captures hidden information within motion
sequences, ultimately enabling more accurate motion reconstruction in the next step.

Additional diagrams are provided in the appendix, Figure A.3,A.4, A.5, A.6, where the
latent codes are clustered by sources and gaits. This also demonstrates that using four
codebooks leads to better clustering of various datasets in latent space. A visualization of
the discrete latent space is illustrated in Figure A.8

4.2.2. Motion Reconstruction

For the motion reconstruction, our motion sequences dataset for training here includes
trunk base velocity in the x-y plane while preserving the absolute z position, as the height
varies across different gaits. For example, Solo8 tends to have a lower trunk position
compared to most other gaits. Retaining this height information ensures that specific
gait characteristics are preserved. Additionally, we include joint velocities and trunk base
rotation, which is represented using the first two axes of the rotation matrix in a 6D
format. To enhance reconstruction performance, we normalize the data to a range of
[-1,1] using Min-Max scaling. We further divide the dataset into five subsets for K-fold
cross-validation, which helps to improve the model accuracy in motion reconstruction.

The reconstruction error is measured using the L2 norm and is illustrated in Figure
4.4. Violin plots are used because they provide a more comprehensive view of the data
distribution, capturing not only the mean, median, and quartiles, but also the spread and

30

Figure 4.3.: t-SNE Visualization of Latent Space with Four Codebooks

31

density of the data, including potential outliers. This makes them more informative than
quartile-based summaries alone. For example, motion capture datasets from animals like
dogs and horses exhibit greater variation in reconstruction error compared to MPC and
Solo8 datasets. In the dog dataset, the reconstruction error for the gallop gait is noticeably
larger and more variable than for other gaits. This is because the dog dataset contains
a wider variety of gaits with greater diversity and natural variations. In contrast, the
reconstruction error in the MPC and Solo8 gaits is more uniform, as they are designed
manually or generated by controllers rather than being captured from real animals.

The original framework uses the exponential moving average (EMA) to stabilize the
training. From the visualization of the codebook in A.8, it is evident that EMA effectively
restricts all codes to a relatively small range of updates. However, in our experiments,
training with EMA does not improve performance, as demonstrated in A.7. One potential
reason for this could be that the datasets used to evaluate the method, which contains a
large SMPL data set [15], covering more than a million pose samples, whereas our dataset
is smaller. This difference may explain why EMA is not necessary to balance the training
process in our context.

4.2.3. Motion Generation

In motion generation experiments, we demonstrate the ability of our model to synthesize
realistic and diverse motion sequences from the learned latent space. By sampling from
the discrete latent representation autoregressively, the generated motions such as dog
trot and horse walk exhibit natural behaviors. Qualitative evaluations show that the
generated motions with autoregressive head prediction are visually plausible and capture
the essential characteristics of the original data, part of generated gaits is shown in Figure
4.5. The relevant training parameters are listed in Table A.1.

4.3. Imitation Performance on Unitree Go2

The low-level policy on Unitree Go2 is trained in the Mujoco, with training parameters
detailed in Table A.2. The observation space is listed in Table A.4. The high-level policy
generates reference trajectories, which the low-level policy is trained to track.

To accommodate different gaits, we use two one-hot encoders: one for the motion source
(e.g., reference trajectories from horses, dogs, etc.) and another for the gait type (e.g., trot,

32

Figure 4.4.: Reconstruction L2 Error by Gait and Motion Source: Comparison of models
without EMA

33

Figure 4.5.: Results of Gait Generation: From top to bottom, the generated motions are
dog pace, horse walk, mpc bound, and solo8 wave.

pace, walk, etc.). We construct a buffer including 360 generated reference trajectories
from 15 distinct gaits, each lasting approximately 2 seconds. At the start of each episode,
a reference trajectory is randomly sampled from the buffer and integrated into the reward
function defined in Chapter 3.3. The penalty reward terms are detailed in Table A.3.

Without domain randomization, training performance begins to converge after approxi-
mately 80 million steps. The agent successfully reproduces all buffer gaits and generalizes
to newly generated gaits from the high-level policy, as shown in Figure 4.6. When domain
randomization is introduced (with parameters listed in Table A.5), the agent is trained on
a subset of gaits, such as trot and wave. A comparison of the results is presented in Figure
4.7.

34

Figure 4.6.: Policy Learning Performance on Different Datasets

35

0 20 40 60 80 100
Steps (million)

20

30

40

50

60

70

80

90

Ep
iso

de
 re

tu
rn

w DR
wo DR

Figure 4.7.: Training Performance with Domain Randomization and without Domain Ran-
domization

36

5. Conclusion

In this work, we presented a framework for motion retargeting, synthesis, and control
that builds on existing methods. We demonstrated the effectiveness of our retargeting
pipeline by successfully transferring motions from diverse sources—including various
animal gaits and other robotic systems—onto a quadrupedal robot. These retargeted
motion sequences serve as a structured motion dataset. Building upon existing frameworks,
we encode the dataset into a discrete latent space. This discrete representation enables
natural and diverse motion generation of arbitrary lengths by autoregressively sampling
from learned action encoding indices. Unlike the original framework, we implement an
alternative reconstruction loss to learn arbitrary (non-human-based) kinematics while still
achieving high-quality motion generation (without the need for mapping into a higher-
dimensional parametric space). The generated dataset is then used for downstream policy
learning, where a single policy is trained to imitate 15 different gaits using a large set of
generated trajectories as imitation objectives. The trained policy is able to imitate diverse
gait behaviors while maintaining stability and natural motion. To help bridge the gap
between simulation and reality, we incorporate domain randomization with the intention
of deploying our work in real-world environments. Overall, our work advances robotic
motion generation by providing an effective, scalable, and adaptable approach for motion
retargeting and control across different robotic platforms.

37

Bibliography

[1] Emad Barsoum, John Kender, and Zicheng Liu. HP-GAN: Probabilistic 3D human
motion prediction via GAN. Nov. 27, 2017. doi: 10.48550/arXiv.1711.09561.
arXiv: 1711.09561[cs]. url: http://arxiv.org/abs/1711.09561.

[2] Xue Bin Peng et al. “Learning Agile Robotic Locomotion Skills by Imitating Animals”.
In: Robotics: Science and Systems XVI. Robotics: Science and Systems 2020. Robotics:
Science and Systems Foundation, July 12, 2020. isbn: 978-0-9923747-6-1. doi: 10.
15607/RSS.2020.XVI.064. url: http://www.roboticsproceedings.
org/rss16/p064.pdf.

[3] University of Bonn. HORSE Project. Accessed: 2024-02-09. 2024. url: http:
//horse.cs.uni-bonn.de/index.html.

[4] Sharon R. Bullimore and J. Maxwell Donelan. “Criteria for dynamic similarity in
bouncing gaits”. In: Journal of Theoretical Biology 250.2 (Jan. 21, 2008), pp. 339–
348. issn: 0022-5193. url: https://www.sciencedirect.com/science/
article/pii/S0022519307004730%7D.

[5] Sungjoon Choi and Joohyung Kim. “Towards a Natural Motion Generator: a Pipeline
to Control a Humanoid based on Motion Data”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). ISSN: 2153-0866. Nov. 2019,
pp. 4373–4380. doi: 10.1109/IROS40897.2019.8967941. url: https:
//ieeexplore.ieee.org/document/8967941/?arnumber=8967941.

[6] Yanran Ding et al. “Representation-Free Model Predictive Control for Dynamic Mo-
tions in Quadrupeds”. In: IEEE Transactions on Robotics 37.4 (Aug. 2021), pp. 1154–
1171. issn: 1552-3098, 1941-0468. doi: 10.1109/TRO.2020.3046415. arXiv:
2012.10002[cs]. url: http://arxiv.org/abs/2012.10002.

[7] Alejandro Escontrela et al. Adversarial Motion Priors Make Good Substitutes for
Complex Reward Functions. Mar. 28, 2022. doi: 10.48550/arXiv.2203.15103.
arXiv: 2203.15103[cs]. url: http://arxiv.org/abs/2203.15103.

38

https://doi.org/10.48550/arXiv.1711.09561
https://arxiv.org/abs/1711.09561 [cs]
http://arxiv.org/abs/1711.09561
https://doi.org/10.15607/RSS.2020.XVI.064
https://doi.org/10.15607/RSS.2020.XVI.064
http://www.roboticsproceedings.org/rss16/p064.pdf
http://www.roboticsproceedings.org/rss16/p064.pdf
http://horse.cs.uni-bonn.de/index.html
http://horse.cs.uni-bonn.de/index.html
https://www.sciencedirect.com/science/article/pii/S0022519307004730%7D
https://www.sciencedirect.com/science/article/pii/S0022519307004730%7D
https://doi.org/10.1109/IROS40897.2019.8967941
https://ieeexplore.ieee.org/document/8967941/?arnumber=8967941
https://ieeexplore.ieee.org/document/8967941/?arnumber=8967941
https://doi.org/10.1109/TRO.2020.3046415
https://arxiv.org/abs/2012.10002 [cs]
http://arxiv.org/abs/2012.10002
https://doi.org/10.48550/arXiv.2203.15103
https://arxiv.org/abs/2203.15103 [cs]
http://arxiv.org/abs/2203.15103

[8] Partha Ghosh et al. Learning Human Motion Models for Long-term Predictions. Dec. 3,
2017. doi: 10.48550/arXiv.1704.02827. arXiv: 1704.02827[cs]. url:
http://arxiv.org/abs/1704.02827.

[9] Ian J. Goodfellow et al. Generative Adversarial Networks. June 10, 2014. doi: 10.
48550/arXiv.1406.2661. arXiv: 1406.2661[stat]. url: http://arxiv.
org/abs/1406.2661.

[10] Felix Grimminger et al. “An Open Torque-Controlled Modular Robot Architecture
for Legged Locomotion Research”. In: IEEE Robotics and Automation Letters 5.2
(Apr. 2020), pp. 3650–3657. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.
2020.2976639. arXiv: 1910.00093[cs]. url: http://arxiv.org/abs/
1910.00093.

[11] Chuan Guo et al. “Action2Motion: Conditioned Generation of 3D Human Mo-
tions”. In: Proceedings of the 28th ACM International Conference on Multimedia.
Oct. 12, 2020, pp. 2021–2029. doi: 10 . 1145 / 3394171 . 3413635. arXiv:
2007.15240[cs]. url: http://arxiv.org/abs/2007.15240.

[12] Lei Han et al. “Lifelike agility and play in quadrupedal robots using reinforcement
learning and generative pre-trained models”. In: Nature Machine Intelligence 6.7
(July 2024). Publisher: Nature Publishing Group, pp. 787–798. issn: 2522-5839.
doi: 10.1038/s42256-024-00861-3. url: https://www.nature.com/
articles/s42256-024-00861-3.

[13] Félix G. Harvey et al. “Robust Motion In-betweening”. In: ACM Transactions on
Graphics 39.4 (Aug. 31, 2020). issn: 0730-0301, 1557-7368. doi: 10.1145/
3386569.3392480. arXiv: 2102.04942[cs]. url: http://arxiv.org/
abs/2102.04942.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models.
Dec. 16, 2020. doi: 10.48550/arXiv.2006.11239. arXiv: 2006.11239[cs].
url: http://arxiv.org/abs/2006.11239.

[15] Catalin Ionescu et al. “Human3.6M: Large Scale Datasets and Predictive Methods
for 3D Human Sensing in Natural Environments”. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 36.7 (July 2014). Conference Name: IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1325–1339. issn:
1939-3539. doi: 10.1109/TPAMI.2013.248. url: https://ieeexplore.
ieee.org/document/6682899/?arnumber=6682899.

39

https://doi.org/10.48550/arXiv.1704.02827
https://arxiv.org/abs/1704.02827 [cs]
http://arxiv.org/abs/1704.02827
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.1406.2661
https://arxiv.org/abs/1406.2661 [stat]
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://doi.org/10.1109/LRA.2020.2976639
https://doi.org/10.1109/LRA.2020.2976639
https://arxiv.org/abs/1910.00093 [cs]
http://arxiv.org/abs/1910.00093
http://arxiv.org/abs/1910.00093
https://doi.org/10.1145/3394171.3413635
https://arxiv.org/abs/2007.15240 [cs]
http://arxiv.org/abs/2007.15240
https://doi.org/10.1038/s42256-024-00861-3
https://www.nature.com/articles/s42256-024-00861-3
https://www.nature.com/articles/s42256-024-00861-3
https://doi.org/10.1145/3386569.3392480
https://doi.org/10.1145/3386569.3392480
https://arxiv.org/abs/2102.04942 [cs]
http://arxiv.org/abs/2102.04942
http://arxiv.org/abs/2102.04942
https://doi.org/10.48550/arXiv.2006.11239
https://arxiv.org/abs/2006.11239 [cs]
http://arxiv.org/abs/2006.11239
https://doi.org/10.1109/TPAMI.2013.248
https://ieeexplore.ieee.org/document/6682899/?arnumber=6682899
https://ieeexplore.ieee.org/document/6682899/?arnumber=6682899

[16] Herve Jégou, Matthijs Douze, and Cordelia Schmid. “Product Quantization for
Nearest Neighbor Search”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 33.1 (Jan. 2011). Conference Name: IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 117–128. issn: 1939-3539. doi: 10.1109/
TPAMI.2010.57. url: https://ieeexplore.ieee.org/document/
5432202/?arnumber=5432202.

[17] Yanli Ji et al. A Large-scale Varying-view RGB-D Action Dataset for Arbitrary-view
Human Action Recognition. Apr. 24, 2019. doi: 10.48550/arXiv.1904.10681.
arXiv: 1904.10681[cs]. url: http://arxiv.org/abs/1904.10681.

[18] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. Dec. 10,
2022. doi: 10.48550/arXiv.1312.6114. arXiv: 1312.6114[stat]. url:
http://arxiv.org/abs/1312.6114.

[19] Adrian Łańcucki et al. “Robust Training of Vector Quantized Bottleneck Models”. In:
2020 International Joint Conference on Neural Networks (IJCNN). July 2020, pp. 1–7.
doi: 10.1109/IJCNN48605.2020.9207145. arXiv: 2005.08520[cs]. url:
http://arxiv.org/abs/2005.08520.

[20] Chenhao Li et al. FLD: Fourier Latent Dynamics for Structured Motion Representation
and Learning. Feb. 21, 2024. arXiv: 2402.13820[cs,eess]. url: http://
arxiv.org/abs/2402.13820.

[21] Chenhao Li et al. Versatile Skill Control via Self-supervised Adversarial Imitation of
Unlabeled Mixed Motions. Feb. 11, 2023. doi: 10.48550/arXiv.2209.07899.
arXiv: 2209.07899[cs]. url: http://arxiv.org/abs/2209.07899.

[22] Jiaman Li et al. Learning to Generate Diverse Dance Motions with Transformer.
Aug. 18, 2020. doi: 10.48550/arXiv.2008.08171. arXiv: 2008.08171[cs].
url: http://arxiv.org/abs/2008.08171.

[23] Zhongyu Li et al. Reinforcement Learning for Robust Parameterized Locomotion
Control of Bipedal Robots. Mar. 26, 2021. doi: 10.48550/arXiv.2103.14295.
arXiv: 2103.14295[cs]. url: http://arxiv.org/abs/2103.14295.

[24] Hung Yu Ling et al. “Character Controllers UsingMotion VAEs”. In: ACM Transactions
on Graphics 39.4 (Aug. 31, 2020). issn: 0730-0301, 1557-7368. doi: 10.1145/
3386569.3392422. arXiv: 2103.14274[cs]. url: http://arxiv.org/
abs/2103.14274.

[25] Thomas Lucas et al. PoseGPT: Quantization-based 3D Human Motion Generation
and Forecasting. Oct. 19, 2022. arXiv: 2210.10542[cs]. url: http://arxiv.
org/abs/2210.10542.

40

https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2010.57
https://ieeexplore.ieee.org/document/5432202/?arnumber=5432202
https://ieeexplore.ieee.org/document/5432202/?arnumber=5432202
https://doi.org/10.48550/arXiv.1904.10681
https://arxiv.org/abs/1904.10681 [cs]
http://arxiv.org/abs/1904.10681
https://doi.org/10.48550/arXiv.1312.6114
https://arxiv.org/abs/1312.6114 [stat]
http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/IJCNN48605.2020.9207145
https://arxiv.org/abs/2005.08520 [cs]
http://arxiv.org/abs/2005.08520
https://arxiv.org/abs/2402.13820 [cs, eess]
http://arxiv.org/abs/2402.13820
http://arxiv.org/abs/2402.13820
https://doi.org/10.48550/arXiv.2209.07899
https://arxiv.org/abs/2209.07899 [cs]
http://arxiv.org/abs/2209.07899
https://doi.org/10.48550/arXiv.2008.08171
https://arxiv.org/abs/2008.08171 [cs]
http://arxiv.org/abs/2008.08171
https://doi.org/10.48550/arXiv.2103.14295
https://arxiv.org/abs/2103.14295 [cs]
http://arxiv.org/abs/2103.14295
https://doi.org/10.1145/3386569.3392422
https://doi.org/10.1145/3386569.3392422
https://arxiv.org/abs/2103.14274 [cs]
http://arxiv.org/abs/2103.14274
http://arxiv.org/abs/2103.14274
https://arxiv.org/abs/2210.10542 [cs]
http://arxiv.org/abs/2210.10542
http://arxiv.org/abs/2210.10542

[26] Gabriel B. Margolis et al. Rapid Locomotion via Reinforcement Learning. May 5,
2022. doi: 10.48550/arXiv.2205.02824. arXiv: 2205.02824[cs]. url:
http://arxiv.org/abs/2205.02824.

[27] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu koray. “Neural Discrete
Representation Learning”. In: Advances in Neural Information Processing Systems.
Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.neurips.
cc/paper_files/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-
Abstract.html.

[28] Xue Bin Peng et al. “AMP: Adversarial Motion Priors for Stylized Physics-Based
Character Control”. In: ACM Transactions on Graphics 40.4 (Aug. 31, 2021), pp. 1–
20. issn: 0730-0301, 1557-7368. doi: 10.1145/3450626.3459670. arXiv:
2104.02180[cs]. url: http://arxiv.org/abs/2104.02180.

[29] Xue Bin Peng et al. “ASE: Large-Scale Reusable Adversarial Skill Embeddings
for Physically Simulated Characters”. In: ACM Transactions on Graphics 41.4 (July
2022), pp. 1–17. issn: 0730-0301, 1557-7368. doi: 10.1145/3528223.3530110.
arXiv: 2205.01906[cs]. url: http://arxiv.org/abs/2205.01906.

[30] Xue Bin Peng et al. “DeepLoco: dynamic locomotion skills using hierarchical deep
reinforcement learning”. In: ACM Transactions on Graphics 36.4 (Aug. 31, 2017),
pp. 1–13. issn: 0730-0301, 1557-7368. doi: 10.1145/3072959.3073602. url:
https://dl.acm.org/doi/10.1145/3072959.3073602.

[31] Xue Bin Peng et al. “DeepMimic: example-guided deep reinforcement learning of
physics-based character skills”. In: ACM Transactions on Graphics 37.4 (Aug. 31,
2018), pp. 1–14. issn: 0730-0301, 1557-7368. doi: 10.1145/3197517.3201311.
url: https://dl.acm.org/doi/10.1145/3197517.3201311.

[32] Mathis Petrovich, Michael J. Black, and Gül Varol. Action-Conditioned 3D Human
Motion Synthesis with Transformer VAE. Sept. 19, 2021. doi: 10.48550/arXiv.
2104.05670. arXiv: 2104.05670[cs]. url: http://arxiv.org/abs/
2104.05670.

[33] Abhinanda R. Punnakkal et al. BABEL: Bodies, Action and Behavior with English
Labels. June 23, 2021. doi: 10.48550/arXiv.2106.09696. arXiv: 2106.
09696[cs]. url: http://arxiv.org/abs/2106.09696.

[34] Aditya Ramesh et al. Zero-Shot Text-to-Image Generation. Feb. 26, 2021. arXiv:
2102.12092[cs]. url: http://arxiv.org/abs/2102.12092.

41

https://doi.org/10.48550/arXiv.2205.02824
https://arxiv.org/abs/2205.02824 [cs]
http://arxiv.org/abs/2205.02824
https://proceedings.neurips.cc/paper_files/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://doi.org/10.1145/3450626.3459670
https://arxiv.org/abs/2104.02180 [cs]
http://arxiv.org/abs/2104.02180
https://doi.org/10.1145/3528223.3530110
https://arxiv.org/abs/2205.01906 [cs]
http://arxiv.org/abs/2205.01906
https://doi.org/10.1145/3072959.3073602
https://dl.acm.org/doi/10.1145/3072959.3073602
https://doi.org/10.1145/3197517.3201311
https://dl.acm.org/doi/10.1145/3197517.3201311
https://doi.org/10.48550/arXiv.2104.05670
https://doi.org/10.48550/arXiv.2104.05670
https://arxiv.org/abs/2104.05670 [cs]
http://arxiv.org/abs/2104.05670
http://arxiv.org/abs/2104.05670
https://doi.org/10.48550/arXiv.2106.09696
https://arxiv.org/abs/2106.09696 [cs]
https://arxiv.org/abs/2106.09696 [cs]
http://arxiv.org/abs/2106.09696
https://arxiv.org/abs/2102.12092 [cs]
http://arxiv.org/abs/2102.12092

[35] Leanne Raw, Callen Fisher, and Amir Patel. “Effects of Limb Morphology on Tran-
sient Locomotion in Quadruped Robots”. In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). ISSN: 2153-0866. Nov. 2019,
pp. 3349–3356. doi: 10.1109/IROS40897.2019.8968206. url: https:
//ieeexplore.ieee.org/document/8968206/?arnumber=8968206.

[36] Amir Shahroudy et al. NTU RGB+D: A Large Scale Dataset for 3D Human Activity
Analysis. Apr. 11, 2016. doi: 10.48550/arXiv.1604.02808. arXiv: 1604.
02808[cs]. url: http://arxiv.org/abs/1604.02808.

[37] Li Siyao et al. Bailando: 3D Dance Generation by Actor-Critic GPT with Choreographic
Memory. Mar. 25, 2022. doi: 10.48550/arXiv.2203.13055. arXiv: 2203.
13055[cs]. url: http://arxiv.org/abs/2203.13055.

[38] Laura Smith, Ilya Kostrikov, and Sergey Levine. A Walk in the Park: Learning
to Walk in 20 Minutes With Model-Free Reinforcement Learning. Aug. 16, 2022.
doi: 10.48550/arXiv.2208.07860. arXiv: 2208.07860[cs]. url: http:
//arxiv.org/abs/2208.07860.

[39] Paul Starke et al. “Motion In-Betweening with Phase Manifolds”. In: Proceedings
of the ACM on Computer Graphics and Interactive Techniques 6.3 (Aug. 16, 2023),
pp. 1–17. issn: 2577-6193. doi: 10.1145/3606921. url: https://dl.acm.
org/doi/10.1145/3606921.

[40] Sebastian Starke, Ian Mason, and Taku Komura. “DeepPhase: periodic autoencoders
for learning motion phase manifolds”. In: ACM Transactions on Graphics 41.4
(July 2022), pp. 1–13. issn: 0730-0301, 1557-7368. doi: 10.1145/3528223.
3530178. url: https://dl.acm.org/doi/10.1145/3528223.3530178.

[41] Ashish Vaswani et al. Attention Is All You Need. Aug. 1, 2023. arXiv: 1706.03762[cs].
url: http://arxiv.org/abs/1706.03762.

[42] Taerim Yoon et al. Spatio-Temporal Motion Retargeting for Quadruped Robots. Apr. 17,
2024. arXiv: 2404.11557[cs]. url: http://arxiv.org/abs/2404.11557.

[43] Fatemeh Zargarbashi et al. RobotKeyframing: Learning Locomotion with High-Level
Objectives via Mixture of Dense and Sparse Rewards. July 16, 2024. arXiv: 2407.
11562[cs]. url: http://arxiv.org/abs/2407.11562.

[44] He Zhang et al. “Mode-adaptive neural networks for quadruped motion control”.
In: ACM Transactions on Graphics 37.4 (Aug. 31, 2018), pp. 1–11. issn: 0730-0301,
1557-7368. doi: 10.1145/3197517.3201366. url: https://dl.acm.org/
doi/10.1145/3197517.3201366.

42

https://doi.org/10.1109/IROS40897.2019.8968206
https://ieeexplore.ieee.org/document/8968206/?arnumber=8968206
https://ieeexplore.ieee.org/document/8968206/?arnumber=8968206
https://doi.org/10.48550/arXiv.1604.02808
https://arxiv.org/abs/1604.02808 [cs]
https://arxiv.org/abs/1604.02808 [cs]
http://arxiv.org/abs/1604.02808
https://doi.org/10.48550/arXiv.2203.13055
https://arxiv.org/abs/2203.13055 [cs]
https://arxiv.org/abs/2203.13055 [cs]
http://arxiv.org/abs/2203.13055
https://doi.org/10.48550/arXiv.2208.07860
https://arxiv.org/abs/2208.07860 [cs]
http://arxiv.org/abs/2208.07860
http://arxiv.org/abs/2208.07860
https://doi.org/10.1145/3606921
https://dl.acm.org/doi/10.1145/3606921
https://dl.acm.org/doi/10.1145/3606921
https://doi.org/10.1145/3528223.3530178
https://doi.org/10.1145/3528223.3530178
https://dl.acm.org/doi/10.1145/3528223.3530178
https://arxiv.org/abs/1706.03762 [cs]
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2404.11557 [cs]
http://arxiv.org/abs/2404.11557
https://arxiv.org/abs/2407.11562 [cs]
https://arxiv.org/abs/2407.11562 [cs]
http://arxiv.org/abs/2407.11562
https://doi.org/10.1145/3197517.3201366
https://dl.acm.org/doi/10.1145/3197517.3201366
https://dl.acm.org/doi/10.1145/3197517.3201366

[45] Zhanjie Zhang et al. Rethink Arbitrary Style Transfer with Transformer and Con-
trastive Learning. Apr. 21, 2024. arXiv: 2404.13584[cs]. url: http://arxiv.
org/abs/2404.13584.

[46] Haoyi Zhou et al. Informer: Beyond Efficient Transformer for Long Sequence Time-
Series Forecasting. Mar. 28, 2021. arXiv: 2012.07436[cs]. url: http://arxiv.
org/abs/2012.07436.

[47] Qingxu Zhu et al. Neural Categorical Priors for Physics-Based Character Control.
Oct. 6, 2023. arXiv: 2308.07200[cs]. url: http://arxiv.org/abs/2308.
07200.

43

https://arxiv.org/abs/2404.13584 [cs]
http://arxiv.org/abs/2404.13584
http://arxiv.org/abs/2404.13584
https://arxiv.org/abs/2012.07436 [cs]
http://arxiv.org/abs/2012.07436
http://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2308.07200 [cs]
http://arxiv.org/abs/2308.07200
http://arxiv.org/abs/2308.07200

A. Appendix

Figure A.1.: Results from Motion Retargeting on Unitree A1: From top to bottom, the
retargeted motions are dog trot, horse trot, mpc bound, and solo8 crawl

44

Figure A.2.: t-SNE Visualization of Latent Space with One Codebook

45

Figure A.3.: t-SNE Visualization of the Latent Space Using a Single Codebook, Organized
by Gaits.

46

Figure A.4.: t-SNE Visualization of the Latent Space Using Four Codebooks, Organized
by Gaits.

47

Figure A.5.: t-SNE Visualization of the Latent Space Using a Single Codebook, Organized
by Sources.

48

Figure A.6.: t-SNE Visualization of the Latent Space with Four Codebooks, Categorized
by Data Sources: Dog, Horse, MPC, and Solo8.

49

Figure A.7.: Reconstruction L2 Error from model with EMA by Gait and Motion Source.

50

Figure A.8.: Visualization of codes in different codebooks: with EMA (above) and without
EMA (below).

51

Hyperparameters VQ-VAE Gen

Number of training epochs 400 500

Learning rate for the optimizer 1e−3 1e−3

Batch size for training 32 32

Batch size for validation 4 4

Dropout rate for the model 0.1 0.1

Number of Blocks in the model 2 1

Embedding dimension 128 128

Number of attention heads 2 4

Block size for the model 1024 1024

Dropout rate for attention 0.3 0.3

Positional encoding for all Blocks True True

Number of embeddings in the codebook 512 −

Dimension of each embedding in the codebook 128 −

Number of codebooks 4 −

Autoregressive head enabled − True

Table A.1.: Summary of Configuration Parameters for VQ-VAE and Generator

52

Parameter Value

Total timesteps 1, 000, 000, 000

Number of steps per rollout 2, 720

Minibatch size 10, 880

Number of epochs 5

Number of Environments 16

Start learning rate 0.0004

End learning rate 0.0

Entropy coefficient 0.0

Discount factor 0.99

GAE lambda 0.9

Critic coefficient 1.0

Maximum gradient norm 5.0

Initial action standard deviation 1.0

Clip range for action standard deviation 1e−8, 2.0

Clip range for action mean −10.0, 10.0 (Before applying σa)

Clip range 0.1

Kp 20

Kd 0.5

Table A.2.: Summary of PPO Training Parameters

53

Term Equation

Joint accelerations penalty −|q̈|2

Joint torques penalty −|τ |2

Action rate penalty −|ȧ|2

Collisions penalty −ncollisions

Table A.3.: Penalty used in the reward function.

54

Observation Space Dimensions

Joint Positions 12

Joint Velocities 12

Current Actions 12

Trunk Linear Velocities 3

Trunk Angular Velocities 3

Projected Gravity 3

Height 1

Goal Trunk Linear Velocity 3

Goal Trunk Quaternion 4

Goal Trunk Angular Velocities 3

Goal Joint Positions 12

Goal Joint Velocities 12

Goal Relative Toe Positions 12

One-Hot Source Encoder 4

One-Hot Gait Encoder 8

Table A.4.: Observation Space.The height and trunk linear velocities are excluded from
the observation space during actor training.

55

Term Min Max

Friction Tangential 0.001 2.0

Friction Torsional Ground 0.00001 0.01

Friction Torsional Feet 0.0001 0.04

Friction Rolling Ground 0.00001 0.0002

Friction Rolling Feet 0.00001 0.02

Damping 30 130

Stiffness 500 1500

Gravity 8.81 10.81

Add Trunk Mass −2.0 2.0

Add Com Displacement −0.01 0.01

Foot Size 0.020 0.024

Joint Damping 0.0 2.0

Joint Armature 0.0008 0.05

Joint Stiffness 0.0 2.0

Joint Friction 0.0 1.0

Table A.5.: Domain Randomization Parameters.

56

	Introduction
	Foundations
	Inverse Kinematics
	Vector Quantized Variational Autoencoder
	Transformer
	Reinforcement Learning
	Sim-to-Real Transfer
	Related Work

	Methodology
	Unit Vector Method
	Quantization-based Autoregressive Motion Synthesis
	Proximal Policy Optimization with Imitation Objectives

	Experimental Evaluation
	Metrics for Evaluating Motion Retargeting Performance
	Motion Synthesis: From Reconstruction to Generation
	Imitation Performance on Unitree Go2

	Conclusion
	Appendix

