
Efficient Continuous-Time Reinforcement

Learning with Adaptive State Graphs

Gerhard Neumann, Michael Pfeiffer, and Wolfgang Maass

Institute for Theoretical Computer Science, Graz University of Technology
A-8010 Graz, Austria

{neumann, pfeiffer, maass}@igi.tugraz.at

Abstract. We present a new reinforcement learning approach for deter-
ministic continuous control problems in environments with unknown, ar-
bitrary reward functions. The difficulty of finding solution trajectories for
such problems can be reduced by incorporating limited prior knowledge
of the approximative local system dynamics. The presented algorithm
builds an adaptive state graph of sample points within the continuous
state space. The nodes of the graph are generated by an efficient princi-
pled exploration scheme that directs the agent towards promising regions,
while maintaining good online performance. Global solution trajectories
are formed as combinations of local controllers that connect nodes of
the graph, thereby naturally allowing continuous actions and continuous
time steps. We demonstrate our approach on various movement planning
tasks in continuous domains.

1 Introduction

Finding near-optimal solutions for continuous control problems is of great im-
portance for many research fields. In the weighted region path-planning problem,
for example, one needs to find the shortest path to a goal state through regions
of varying movement costs. In robotics specific reward functions can be used
to enforce obstacle avoidance or stable and energy-efficient movements. Most
existing approaches to these problems require either complete knowledge of the
underlying system, or are restricted to simple reward functions. In this paper we
address the problem of learning high quality continuous-time policies for tasks
with arbitrary reward functions and environments that are initially unknown,
except for minimal prior knowledge of the local system dynamics.

Reinforcement learning (RL) [1] is an attractive framework for the addressed
problems, because it can learn optimal policies through interaction with an un-
known environment. For continuous tasks, typical approaches that use paramet-
ric value-function approximation suffer from various problems concerning the
learning speed, quality, and robustness of the solutions [2]. Several authors have
therefore advocated non-parametric techniques [3, 4], where the value function
for the continuous problem is only computed on a finite set of sample states. In
this case stronger theoretical convergence and performance guarantees apply [3].
Still, few RL algorithms can cope with continuous actions and time steps.



Sampling-based planning methods [5, 6], on the other hand, can efficiently
construct continuous policies as combinations of simple local controllers, which
navigate between sampled points. Local controllers for small regions of the state
space are often easily available, and can be seen as minimal prior information
about the task’s underlying system dynamics. Local controllers do not assume
complete knowledge of the environment (e.g. location of obstacles), and are there-
fore not sufficient to find globally optimal solutions. Instead, a graph is built,
consisting of random sample points that are connected by local controllers. A
global solution path to the goal is constructed by combining the paths of several
local controllers.

Planning techniques are very efficient, but their application is limited to com-
pletely known environments. Guestrin and Ormoneit [6], e.g., have used combi-
nations of local controllers for path planning tasks in stochastic environments.
Their graph is built from uniform samples over the whole state space, rejecting
those that result in collisions. They also assume that a detailed simulation of the
environment is available to obtain the costs and success probabilities of every
transition. In this paper we address problems in which the exact reward function
is unknown, and the agent has no knowledge of the position of obstacles.

We propose an algorithm for efficiently exploring such unknown continu-
ous environments in order to construct sample-based models. The algorithm
builds an adaptive state graph of sample points that are connected by given local
controllers. Feedback from the environment, like reward signals or unexpected
transitions, is incorporated online. Efficiently creating adaptive state graphs can
be seen as an optimal exploration problem [7]. The objective is to quickly find
good paths from the start to the goal region, not necessarily optimizing the on-
line performance. Initial goal-directed exploration creates a sparse set of nodes,
which yields solution trajectories that are later improved by refining the sam-
pling in critical regions. Planning with adaptive models combines the advantages
of reinforcement learning and planning. We regard our algorithm more as a RL
method, in the spirit of model-based RL [1, 8], since the agent learns both its
policy and its world model from actual experience.

The adaptive state graph transforms the continuous control problem into a
discrete MDP, which can be exactly solved e.g. by dynamic programming [1].
This results in more accurate policies and reduced running time in comparison
to parametric function approximation. The obtained policy still uses continu-
ous actions and continuous time steps, leading to smoother and more natural
trajectories than in discretized state spaces. In this paper we address primarily
deterministic and episodic tasks with known goal regions, but with small modi-
fications these restrictions can be relaxed. Prior knowledge of the goal position,
for example, speeds up the learning process, otherwise the agent will uniformly
explore the state space. We demonstrate in comparisons of our algorithm to stan-
dard RL and planning techniques that fast convergence and accurate solution
trajectories can be achieved at the same time.

In the next section we introduce the basic setup of the problem. We show the
structure of the algorithm in Section 3 and present the details of the adaptive



state graph construction in Section 4. In Section 5 we evaluate our algorithm
on a continuous path finding task and a planar 3-link arm reaching task, before
concluding in Section 6.

2 Graph Based Reinforcement Learning

We consider episodic, deterministic control tasks in continuous space and time.
The agent’s goal is to move from an arbitrary starting state to a fixed goal region,
maximizing a reward function, which evaluates the goodness of every action. In
the beginning, the agent only knows the locations of the start state and the goal
region, and can use local controllers to navigate to a desired target state in its
neighborhood.

Let X define the state space of all possible inputs x ∈ X to a controller. We
require X to be a metric space with given metric d : X × X → IR+

0 . Control
outputs u ∈ U change the current state x according to the system dynamics
ẋ = f(x, u). In this paper we assume that only an approximative local model

f̂(x, u) is known, which does not capture possible nonlinearities due to obstacles.
The objective is to find a control policy µ : X → U for the actual system
dynamics f(x, u) that returns for every state x a control output u = µ(x) such
that the agent moves from a starting state xS ∈ X to a goal region XG ⊂ X
with maximum reward.

Our algorithm builds an adaptive state graph G = 〈V , E〉, where the nodes
in V = {x1, . . . , xN} ⊂ X form a finite subset of sample points from X . We
start with V0 =

{

xS
}

, E0 = ∅ and let the graph grow in subsequent exploration
phases. The edges in E ⊆ V × V correspond to connections between points in
V that can be achieved by a given local controller. The local controller a(e)
for an edge e = (xi, xj) tries to steer the system from xi to xj , assuming that

the system dynamics along the path corresponds to f̂(x, u). If an edge can be
traversed with a local controller, it is inserted into E, and r(e), the total reward
obtained on the edge is stored. The combination of multiple edges yields globally
valid trajectories.

For a given graph G the actual task is to find an optimal task policy π from the
starting state xS to the goal region XG. We therefore have to find the optimal
sequence of edges 〈ei〉 in the graph from xS to XG such that the sum of rewards
Rπ :=

∑n

i=0 r(ei) is maximized. The problem is solved by calculating the optimal
value function V π through dynamic programming. This method is guaranteed
to converge to an optimal policy [1], based on the knowledge contained in the
adaptive state graph.

The quality of the resulting policy depends on the available edges and nodes
of the graph, but also on the quality of the local controllers. We assume here
that local controllers can compute near-optimal solutions to connect two states
in the absence of unforeseen events. Feedback controllers can compensate small
stochastic effects, but the presented algorithm in general assumes deterministic
dynamics. We restrict ourselves here to rather simple system dynamics, for which
controllers are easily available, e.g. straight-line connections in Euclidean spaces.



While the agent is constructing the graph it is following an exploration policy

πexp, which can be different from the task policy π. πexp does not always take
the best known path to the goal, but also traverses to nodes where the creation
of additional nodes and edges may lead to better solutions for the actual task.
Virtual exploration edges to unvisited regions with heuristic exploration rewards

are therefore inserted into the graph. This creates incentives for the algorithm to
explore new regions. Whenever such virtual edges are chosen by the exploration
policy, the graph is expanded to include new nodes and edges.

3 Structure of the Algorithm

The adaptive state graph G is grown from the start state towards the goal re-
gion. We use the approximative model f̂(x, u) to generate new potential succes-
sor states from existing nodes, and rank them by a heuristic exploration score.
An exploration queue Q stores the most promising candidates for exploration,
and the exploration policy, defined via the value function V exp directs the agent
towards one of these targets. Since our goal is finding a good policy from the
start, not necessarily maximizing the online performance, the selection of the
exploration target involves an exploration-exploitation trade-off inherent to all
RL methods. Our method uses the information in the graph to efficiently con-
centrate on relevant regions of the state space. Whenever a new state is visited,
it is added as a node into the graph. We also add all possible edges to and from
neighboring nodes that can be achieved by local controllers. Initial optimistic
estimates for the reward come from the local controller, but are updated when
actual experience becomes available.

Algorithm 1 shows a pseudo-code implementation of the basic algorithm.
Details of the subroutines are explained in Section 4. Roughly the algorithm can
be structured into 3 parts: the first part in lines 5-11 deals with the generation
of new exploration nodes and is described in Sections 4.1-4.3. The second part
in lines 12-15 first updates the value functions, and then executes the local
controller to move to a different node (see Sections 4.4-4.5). In the remaining
part (lines 16-26) we incorporate the feedback received from the environment to
update the graph (see Section 4.6).

4 Building the Adaptive State Graph

A key for efficient exploration of the state space is the generation of sample states.
Previous approaches for sampling-based planning, e.g. [6, 5], have used uniform
random sampling of nodes over the whole state space. This requires a large
number of nodes, of which many will lie in irrelevant or even unreachable regions
of the state space. On the other hand, a high density of nodes in critical regions is
needed for fine-tuning of trajectories. The presented algorithm iteratively builds
a graph by adding states that are visited during online exploration. It thereby
fulfills two objectives: Firstly, the exploration is directed to search towards a goal



Algorithm 1 Graph-based RL

Input: Start xS, goal region XG, local controller a

1: Initialize V = {xS}, E = ∅, G = 〈V, E〉, Q = ∅
2: repeat (for each episode):
3: Initialize x = xS

4: repeat (for each step of the episode):
5: for i = 1 to Nt do

6: x̃i = sample new node()
7: [σ(x̃i), varσ(x̃i)] = exploration score(x̃i, V )
8: if varσ(x̃i) > θ

exp

min then

9: insert exploration node(x̃i)
10: end if

11: end for

12: [V, V exp,Q] =replan(G)
13: Select next edge e = (x, x′) stochastically (e.g. ε-greedy) from V exp

14: Execute local controller a(x, x′)
15: Receive actual state x̂′ and reward r of transition

16: if d(x′, x̂′) > δ then {different state than predicted was reached }
17: Delete edge (x, x′) from G and insert edge (x, x̂′)
18: Set x′ = x̂′

19: end if

20: if x′ was previously unvisited then

21: insert new node(x′)
22: update edge(x, x′, r)
23: [V, V exp,Q] =replan(G)
24: else

25: update edge(x, x′, r)
26: end if

27: until x is terminal

Output: Task policy π, derived from G and V

state, and secondly, it optimizes the current policy in regions where the number
of nodes is insufficient.

4.1 Generating Samples: sample new node

Whenever a node x in the graph is visited the algorithm stochastically creates
a number of potential exploration nodes for that state. New exploration nodes
are created uniformly in the neighborhood of the current node. We therefore
first uniformly sample an execution time ti ∈ [tmin, tmax], and a constant control

action ui in U . Then we simulate the local dynamics f̂(x, u) from x with action
ui for time ti, and reach a new node x̃i. For efficiency reasons the number
of generated samples Nt should be reduced over time. Similarly the minimum
and maximum execution time is reduced over time to create finer sampling and
achieve fine-tuning of the policy.



4.2 Evaluating Exploration Nodes: exploration score

Efficient exploration preferentially visits regions where an improvement of the
task policy is possible, but avoids creating unnecessary nodes in already densely
sampled regions. We estimate the utility of every potential exploration target x̃

by an exploration score σ(x̃), and direct the agent towards the most promising
such nodes. Informed search methods like A* [9] estimate the utility of x̃ as the
expected return of a path from the start xS to the goal region XG via x̃. This
can be decomposed into the path costs c(xS , x̃) from xS to x̃ plus the estimated
value V̂ (x̃), i.e. the estimated rewards-to-goal. Therefore σ(x̃) = c(xS , x̃)+ V̂ (x̃).

 

 

x̃1

x̃2

Exploration Node
Start
Goal
Graph Node
Graph Edge
Direct Path to Goal
Path to x̃i

−1 −0.5 0 0.5 1

−1.6

−1.4

−1.2

−1

−0.8

Pr
ed

ict
ed

 V
al

ue

x

 

 

Mean Prediction
Training Points
Variance
Optimistic Value

(a) (b)

Fig. 1. (a) Illustration of the exploration process. Exploration node x̃1 is preferred
over x̃2, because the reward to reach x̃2 is strongly negative. (b) Illustration of value
prediction with Gaussian processes on an artificial 1-D dataset. The prediction ap-
proaches the optimistic value and has larger variance for points that are farther away
from training points.

For calculating the path costs c(xS , x̃) we use only visited edges of the state
graph. Otherwise the optimistic initialization of edge rewards will almost always
lead to an underestimation of the path costs, and therefore all exploration nodes
will appear similarly attractive. V̂ (x̃) must be an optimistic estimate of the value,
e.g. the estimated costs of the direct path to the goal in the absence of obstacles.
If the goal is not known, a constant value must be used. This prior estimate for
the value of a new node x̃ can be improved by considering also the task-policy
values V (x′) of nearby existing nodes x′. Gaussian process regression [10] is a
suitable method to update predictions of a prior function by taking information
from a finite set of training examples into account, thereby creating a more-
exact posterior. The contributions of individual training examples are weighted
by a kernel k(x, x′), which measures the similarity between a training point x′

and test point x. Typical kernels monotonically decrease with growing distance
to a training point. Therefore the prediction for a new node that is far away
from existing points approaches the optimistic prior estimation, whereas a point
close to existing nodes will receive a prediction similar to the weighted mean of
values from neighboring nodes. The range in which training points contribute to
predictions can be controlled by a bandwith parameter β of the kernel, which is



task dependent and needs to be chosen in advance. In our experiments we use a

standard squared exponential kernel k(x, x′) = exp
(

−d(x,x′)2

2β2

)

.

Since the prior estimate is an optimistic estimation of the true value, the
predictions for an exploration node will usually increase the further the new
node is away from existing nodes (see Figure 1(b)). Therefore this approach
enforces exploration into unvisited areas. Additionally to the value estimate V̂ (x̃)
the Gaussian process returns the variance varσ(x̃) of the prediction. Since the
variance increases with distance to training points, we can use varσ(x̃) as a
measure for the sampling density around x̃. To control the number of nodes
we reject exploration nodes with variance lower than θ

exp
min. This threshold may

be lowered over time, to ensure refinement of the adaptive state graph in later
episodes.

4.3 Integrating New Exploration Nodes: insert exploration node

Newly generated exploration nodes x̃i are placed on the exploration queue Q,
which is a priority queue ranked by the exploration scores σ(x̃i). The highest
scored exploration targets in Q are the most promising candidates for explo-
ration. If σmax is the best score of a node on the queue, we consider all explo-
ration nodes with a score not worse than σmax − θσ , with θσ ≥ 0 as targets for
the exploration policy πexp. Virtual and terminal exploration edges are added
to the graph for each such node x̃, originating from the node from which x̃ was
created. The rewards of these edges are the estimated rewards-to-goal, given by
V̂ . The exploration policy may then either choose an exploration edge, thereby
adding a new node to the adaptive state graph, or move to an already visited
node. The latter indicates that exploring from other nodes seems more promising
than continuing the exploration at the current node.

The threshold parameter θσ has an interesting interpretation in the context
of the exploration-exploitation dilemma. If θσ = 0 then the agent will always
choose the most promising exploration target, similar to A* search [9] on a
partially unknown graph. This will however yield a bad online performance,
because the agent may have to travel all the way through the state space if it
discovers that another node promises better solutions. θσ = ∞ will lead to greedy
search, and ultimately to inefficient uniform sampling of the whole state space.
By adjusting θσ > 0 one can balance the trade-off between online performance
and finding near-optimal start-to-goal paths as soon as possible.

4.4 Re-planning within the Graph: replan

The adaptive state graph yields a complete model of the reduced MDP, which
can be solved by dynamic programming methods. In practice we use efficient
re-planning techniques like Prioritized Sweeping [8] to minimize the number of
updates in every iteration. In most steps this requires only a very small number
of iterations on a small set of nodes. Only when important connections are found,
and the value of many states changes, we need to compute more iterations.



Re-planning is run twice: once on the graph that includes only exploration
targets in Q with score larger than σmax − θσ as terminal states. This yields the
value function V exp for the exploration policy πexp. We also compute the value
function V for the task policy π, using all available targets from Q as terminal
nodes. This policy attempts to reach the goal optimally, without performing
exploratory actions. It is therefore used in the computation of exploration scores,
because there we are only interested in the optimistic rewards-to-goal.

4.5 Action Selection and Incorporation of Actual Experience

At the current node x the agent selects an outgoing edge e = (x, x′) through
its exploration policy πexp, which is derived stochastically (e.g. ε-greedy) from
V exp. The local controller a(x, x′) then moves towards x′. If the agent reaches
a small neighborhood around x′ the controller is deactivated, and the reward
of the traversed edge in G is updated. If the local controller does not reach the
vicinity of x′ within a given maximum time, the controller stops at a state x̂′. We
then delete the edge e = (x, x′) from the graph G, since it cannot be completed
by a local controller, and insert an edge from x to x̂′ instead.

4.6 Inserting New Nodes: insert new node

When a node x′ is visited for the first time, it is inserted as a new node into the
graph. Local controllers to and from all nodes in a certain neighborhood around
x′ are simulated to create incoming and outgoing edges. If a connection seems
possible we insert the edge into G and store an optimistic estimate of the reward,
e.g. the negative estimated transition time of the local controller in absence of
obstacles. Inserting a new node x′ also invalidates existing exploration nodes
in the neighborhood, if their exploration score variance would fall below the
threshold θ

exp
min (see Section 4.2).

If a newly inserted edge e = (x′, x′′) with estimated reward r̂(e) reduces the
path costs from xS to x′′, the edge becomes an attractive target for exploration.
We then insert e as an exploration edge into the queue Q. The exploration score
is σ(e) = c(xS , x′) + r̂(e) + V (x′′), which is the estimated return of a path from
xS to XG that uses e. For the exploration policy the agent may then equally
select exploration nodes or edges as its best exploration targets.

4.7 Practical Implementation Issues

Efficient data structures like kd-trees reduce the search time for neighbors during
the training phase. The CPU time is still higher than for model-based RL meth-
ods with fixed discretizations, e.g. Prioritized Sweeping [8]. The construction of
an adaptive state graph is an overhead, but on the other hand, it permits better
solutions and faster learning.



5 Experiments

In this section we show that our algorithm can solve several continuous control
problems that are challenging for standard reinforcement learning techniques. We
show that the algorithm requires less actual experience than existing methods
and finds more accurate trajectories.

5.1 Static Puddle World

The puddle world task is a well-known benchmark for reinforcement learning
algorithms in continuous domains. The objective is to navigate from a given
starting state to a goal state in a 2-dimensional environment which contains
puddles, representing regions of negative reward. Every transition inflicts a re-
ward equal to the negative required time, plus additional penalties for entering a
puddle area. The puddles are oval shapes, and the negative reward for entering
a puddle is proportional to the distance inside the puddle. The 2-dimensional
control action u = (vx, vy) corresponds to setting velocities in x and y directions,
leading to the simple linear system dynamics (ẋ, ẏ) = (vx, vy). We can safely as-
sume to know this dynamics, but planning a path to the goal state and avoiding
the unknown puddles remains a difficult task.

Figure 2 shows various stages of the exploration process in a maze-like puddle
world with multiple puddles. As optimistic value estimate V̂ (x̃) we use the nega-
tive time needed for the direct path to the goal (ignoring any puddles). In Figure
2(a) it can be observed that the agent directs its initial exploration towards the
goal, while avoiding paths through regions of negative reward. Less promising
regions like the upper left part are avoided. When the agent has reached the
goal the first time (Figure 2(b)) the agent knows a coarse path to the goal. With
continuing learning time, the agent refines the graph and adds more nodes in
relevant regions, which is illustrated in Figure 2(c). The path is almost optimal
and avoids all puddles on the way to the goal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Fig. 2. Static Puddle World: (a) and (b) shows the graph at the beginning of learning
and when the agent has found the goal for the first time. (c) results from further
optimization of the graph. The red line indicates the best known policy to the target.



0 500 1000 1500 2000 2500 3000
−15

−10

−5

Training Time [s]

Su
m

 o
f R

ew
ar

ds
 

 

Graph−based RL
PS 20x20
PS 50x50
Uniform 500
Uniform 1000

0 500 1000 1500 2000 2500 3000
−15

−10

−5

Training Time [s]

Su
m

 o
f R

ew
ar

ds

 

 

Graph−based RL
Stochastic 10%
Unknown Target

(a) (b)

Fig. 3. Learning performance on static puddle world from Figure 2. (a) Comparison
of RL with adaptive state graphs to prioritized sweeping (PS), and greedy search on
uniformly sampled nodes (Uniform) with different discretization densities. (b) Influence
of stochasticity (10% movement noise) and unknown target states on performance of
graph-based RL. (Average over 10 trials.)

Standard TD-learning [1] with CMAC or RBF function approximation needs
several thousands of episodes to converge on this task, because a rather fine
discretization is required. It is therefore not considered for comparison. Better
results were achieved by Prioritized Sweeping [8], a model-based RL algorithm
which discretizes the environment and learns the transition and reward model
from experience. In Figure 3 we compare the performance of RL with adaptive
state graphs to prioritized sweeping with different discretization densities. We
also compare the performance of a greedy search method on a graph with 500
and 1000 uniformly sampled nodes, which updates its reward estimates after
every step. We evaluate the performance of the agent by measuring the sum of
rewards obtained by its greedy policy at different training times. The training
time is the total amount of time spent by the agent for actually moving within the
state space during the training process. Figure 3(a) shows that the graph-based
RL algorithm achieves reasonable performance faster than prioritized sweeping
(even with coarse discretization), and the best found policy slightly outperforms
all other methods. Our refined graph in the end contains about 730 nodes, which
is approximately a fourth of the number of states used by prioritized sweeping on
the fine grid. Greedy search on estimated edges initially finds the goal faster, but
it either converges to a suboptimal policy, which is due to the uniform sampling,
or needs longer to optimize its policy.

In Figure 3(b) we added small Gaussian movement noise (variance is 10%
of movement velocity), and used local feedback-controllers. Our algorithm still
converges quickly, but due to the stochasticity it cannot reach the same per-
formance as in the deterministic case. We also investigated the (deterministic)
problem in which the goal state is unknown. Since the agent has to explore uni-
formly in the beginning, it needs longer to converge, but ultimately reaches the
same performance level.



COMX

CO
M

Y

−0.4 −0.2 0 0.2 0.4
−0.2

0

0.2

Fig. 4. Arm reaching task with stability constraints. Left: Solution trajectory found by
our algorithm. The agent must reach the goal region (red) from the starting position
(green), avoiding the obstacles. Right: Trajectory of the CoM of the robot (red) inside
the neutral zone (green).

5.2 3-Link Arm Reaching Task

The joints of a simulated planar 3-link robot arm are steered under static sta-
bility constraints in an environment with several obstacles (see Figure 4). The
objective is to reach a goal area with the tip. The robot consist of a body (point
mass with 1 kg), around which the arm - modeled as upper arm (length 0.5m /
weight 0.2 kg), fore arm (0.5m / 0.1 kg) and hand (0.2m / 0.05kg) - can rotate.
The center of mass (CoM) of the robot needs to be kept inside a finite support
polygon. If the CoM leaves a neutral zone of guaranteed stability ([−0.2, 0.2] in
x and [−0.1, 0.1] in y), the agent receives negative reward that grows quadrati-
cally as the CoM approaches the boundary of the support polygon. Under these
constraints the trivial solution of rotating the arm around the top left obstacle
achieves lower reward than the trajectory that maneuvers the arm through the
narrow passage between the obstacles.

The 3-dimensional state space consists of the three joint angles, and the
control actions correspond to setting the angular velocities. The approximative
model f̂ is a simple linear model, but the true system dynamics f contains
nonlinearities due to obstacles, which are not captured by f̂ . The optimistic
value estimate V̂ (x) is the negative time needed by a local controller to reach
a target configuration, calculated by simple inverse kinematics. Figure 5 shows
that graph-based RL converges much faster to more accurate trajectories than
prioritized sweeping with different levels of discretization.

6 Conclusion and Future Work

In this paper we introduced a new efficient combination of reinforcement learning
and sampling-based planning for continuous control problems in unknown envi-
ronments. We use minimal prior knowledge in the form of approximative models
and local controllers to increase the learning speed. Our algorithm builds an
adaptive state graph through goal-directed exploration. We demonstrated on
various movement planning tasks with difficult reward functions that RL with
adaptive state graphs requires less actual experience than existing methods to



0 1 2 3 4
x 104

−7
−6
−5
−4
−3
−2
−1

0

Training Time [s]

Su
m

 o
f R

ew
ar

ds

 

 

Graph−based RL
PS 20x40x40
PS 10x20x20

Fig. 5. Learning performance on the 3-link arm reaching task for RL with adaptive
state graphs and prioritized sweeping (PS) with different discretization densities. (Av-
erage over 10 trials)

obtain high quality solutions. The approach is particularly promising for com-
plicated tasks that can be projected to low dimensional representations, such as
balancing humanoid robots using motion primitives [11]. In the future we will
extend the approach to non-deterministic and non-episodic, discounted tasks.
Extending the approach to non-linear dynamics or even learning the local con-
trollers for more complex dynamical systems is also part of future work.

Acknowledgments This work was supported in part by the Austrian Science
Fund FWF under project number P17229 and PASCAL Network of Excellence,
IST-2002-506778. This publication only reflects the authors’ views.

References

1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
2. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely ap-

proximating the value function. In: NIPS 7. (1995) 369–376
3. Ormoneit, D., Sen, S.: Kernel-based reinforcement learning. Machine Learning

49(2-3) (2002) 161–178
4. Jong, N., Stone, P.: Kernel-based models for reinforcement learning. In: ICML

Workshop on Kernel Machines and Reinforcement Learning. (2006)
5. Kavraki, L., Svestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for

path planning in high-dimensional configuration spaces. IEEE T-RA 12(4) (1996)
6. Guestrin, C.E., Ormoneit, D.: Robust combination of local controllers. In: Proc.

UAI. (2001) 178–185
7. Simsek, Ö., Barto, A.: An intrinsic reward mechanism for efficient exploration. In:

ICML. (2006) 833–840
8. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with

less data and less real time. Machine Learning 13 (1993) 103–130
9. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination

of minimum cost paths. IEEE Trans. SSC 4 (1968) 100–107
10. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT

Press (2006)
11. Hauser, H., Ijspeert, A., Maass, W.: Kinematic motion primitives to facilitate

control in humanoid robots. In: submitted for publication. (2007)


