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Abstract

Contextual policy search algorithms are black-box optimizers that learn to improve policy parameters and simultane-
ously generalize these parameters to different context or task variables. However, defining a context representation
on which policy search can perform well is a tedious but crucial process. It typically requires expert knowledge, does
not generalize straightforwardly over different tasks and strongly influences the quality of the learned policy. Further-
more, existing algorithms usually perform dimensionality reduction taking into account only feature redundancy and
relevance, ignoring the problem of feature interaction. In this paper, we present an autonomous feature construction
algorithm for learning low-dimensional manifolds of goal-relevant features jointly with an optimal policy. We learn a
model of the reward that is locally quadratic in both the policy parameters and the context variables. To tackle high di-
mensional context variables and to take into account feature interaction, we propose to regularize the model by mutual
information.
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1 Introduction

An autonomous agent often requires different policies for solving tasks with different contexts. For instance, in a ball
hitting task the robot has to adapt his controller according to the ball position, i.e., the context. Contextual policy search
approaches [11, 5, 4] represent the contexts by real-valued vectors and are able to learn a context-dependent distribution
over the policy parameters. Such a distribution can generalize across context values and therefore the agent is able to
adapt to unseen contexts. However, these algorithms rely on concise and dense, but informative, context descriptions.
Complex tasks often result in large sparse spaces. Such high-dimensional representations can contain features which are
redundant or even irrelevant for both the description of the context and the goal of the agent. Furthermore, two or more
weak features could explain the output well in the context of each other, even though each of them alone may not be
explanatory. Scaling up contextual policy search by learning a parsimonious context representation is thus an important
step towards more autonomous and widely applicable algorithms.

However, learning features for policy search algorithms jointly with an optimal policy introduces a circular dependency
into the learning process. To learn goal-relevant features a large part of the context space needs to be explored using a
goal-achieving policy. At the same time, learning a locally or globally optimal policy requires a concise feature repre-
sentation. For this reason, common RL approaches separate the problem of learning the context representation from the
agent task by preprocessing the feature space [2, 12]. As it precedes the RL procedure, such a separated dimensionality
reduction step requires additional context samples that are frequently not helpful for the learning itself. The context
representation resulting from a preceding dimensionality reduction step, in fact, does not consider the importance of
features for optimal policies but only for general policies. Thus, the context representation will not optimally support the
RL algorithm as it may establish features that are only relevant for suboptimal or even poor policies.

Recently, Tangkaratt et al. [18] proposed an algorithm to overcome these limitations, namely Contextual Model-based
Relative Entropy Stochastic Search (C-MORE). C-MORE learns a surrogate quadratic model of the reward to compute a
Gaussian search distribution analytically. To balance the exploration-exploitation trade-off, the algorithm upper-bounds
the Kullback-Leibler divergence between successive search distributions and lower-bounds the entropy of the new search
distribution. Yet, the authors focused only on feature redundancy and investigated only nuclear norm regularization.

In the field of machine learning, mutual information (MI), and especially squared-loss mutual information (SLMI), have
increasingly become important and popular. In information theory, MI and SLMI are quantities measuring statistical
dependency between random variables [3]. They both can be used to detect non-linear dependencies between two
random variables and have been widely used for dimensionality reduction [19, 14, 17, 13]. However, unlike maximizing
the MI, SLMI regularization is strictly convex under mild conditions [9] and therefore more appealing. SLMI has also
been successfully applied in problems of feature interaction, i.e., when a variable strongly depends on the interaction of
two or more features, but not directly on each feature alone.

In this paper, we present the C-MORE framework for contextual RL problems and discuss the its extension with SLMI.

2 Problem Statement and Notation

2.1 Problem Formulation

The contextual policy search is formulated as follows. An agent observes the context variable c ∈ Rdc and draws a
parameter θ ∈ Rdθ from a search distribution p(θ|c). Subsequently, the agent executes a policy with the parameter θ
and observes a scalar reward computed by a reward function R(θ, c). The goal is to find a search distribution p(θ|c)
maximizing the expected reward ∫∫

µ(c)p(θ|c)R(θ, c) dθ dc, (1)

where µ(c) denotes the context distribution. We assume that the reward function R(θ, c) itself is unknown, but the agent
can always access the reward value. We stress that context variables are fixed during task execution and they are drawn
independently from µ(c). Thus, context variables are different from state variables in standard policy search.

2.2 Related Work

In the basic contextual policy search framework, the agent iteratively collects samples {
(
θ[i], c[i], R

(
θ[i], c[i]

))
}Ni=1 using a

sampling distribution q(θ|c). Subsequently, it computes a new search distribution p(θ|c) such that the expected reward
increases or is maximized. In literature, different approaches have been used to compute the new search distribution,
e.g., evolutionary strategies [8], expectation-maximization algorithms [11], or information theoretic approaches [5].

Most of the existing contextual policy search methods focus on tasks with low-dimensional context variables. If the
context variable space is high-dimensional, usually the problem of learning a low-dimensional context representation
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is separated from the policy search by preprocessing the context space. However, unsupervised linear dimensionality
reduction techniques are insufficient in problems where the latent representation contains distractor dimensions that do
not influence the reward, or where the reward is explained by the interaction of two or more features. A prominent
example is principal component analysis (PCA) [10], that does not take the supervisory signal into account and there-
fore cannot discriminate between relevant and irrelevant latent dimensions and cannot detect feature interactions. On
the other hand, supervised linear dimensionality reduction techniques require a suitable response variable. However,
manually defining such variables in nontrivial for many problems.

In recent years, non-linear dimensionality reduction techniques based on deep learning have gained popularity [1] For
instance, Watter et al. [21] proposed a generative deep network to learn low-dimensional representations of images in
order to capture information about the system transition dynamics and allow optimal control problems to be solved in
low-dimensional spaces. More recently, Silver et al. [16] successfully trained a machine to play a high-level game of go
using a deep convolutional network. Although their work does not directly focus on dimensionality reduction, deep con-
volutional networks are known to be able to extract meaningful data representations. Thus, the effect of dimensionality
reduction is achieved. However, deep learning approaches generally require large datasets that are difficult to obtain in
real-world scenarios (e.g., robotics). Furthermore, they involve solving non-convex optimization, which can suffer from
local optima.

To alleviate these issues, Tangkaratt et al. [18] proposed to learn a low-rank representation of the reward function by
nuclear norm regularization. They show that learning a low-rank representation corresponds to performing linear di-
mensionality reduction on the context variables. Since optimization with a rank constraint is NP-hard, they minimize
the nuclear norm, which is a convex surrogate of the rank function [15].

3 Contextual Model-based Relative Entropy Stochastic Search

C-MORE [18] finds a contextual search distribution maximizing the expected reward while upper-bounding the
Kullback-Leibler (KL) divergence between successive search distributions and lower-bounding the entropy of the new
search distribution. The KL and the entropy bounds control the exploration-exploitation trade-off. The key insight of
C-MORE is to learn a reward model to efficiently compute a new search distribution in closed form.

3.1 Learning the Search Distribution

The goal of C-MORE is to find a search distribution p(θ|c) that maximizes the expected reward while upper-bounding
the expected KL divergence between p(θ|c) and q(θ|c), and lower-bounding the expected entropy of p(θ|c). Formally,

max
p

∫∫
µ(c)p(θ|c)R(θ, c) dθ dc,

s.t.

∫∫
µ(c)p(θ|c) log p(θ|c)

q(θ|c)
dθ dc ≤ ε,

−
∫∫

µ(c)p(θ|c) log p(θ|c) dθ dc ≥ β,∫∫
µ(c)p(θ|c) dθ dc = 1,

where the KL upper-bound ε and the entropy lower-bound β are parameters specified by the user. The former is fixed
for the whole learning process. The latter is adaptively changed according to the percentage of the relative difference
between the sampling policy’s expected entropy and the minimal entropy, i.e.,

β = γ(E[H(q)]−H0) +H0,

where E[H(q)] = −
∫∫

µ(c)q(θ|c) log q(θ|c) dθ dc is the sampling policy’s expected entropy andH0 is the minimal entropy.
The above optimization problem can be solved by the method of Lagrange multipliers. The solution is given by

p(θ|c) = q(θ|c)
η

η+ω exp

(
R(θ, c)

η + ω

)
exp

(
−η + ω − γ

η + ω

)
. (2)

The Lagrange multipliers η > 0 and ω > 0 are obtained by minimizing

g(η, ω) = ηε− ωβ + (η + ω)

∫
µ(c)

(
log

∫
q(θ|c)

η
η+ω exp

(
R(θ, c)

η + ω

)
dθ

)
dc. (3)

Evaluating the dual is not trivial due to the integration over q(θ|c)
η

η+ω , that cannot be approximated straightforwardly
by sample averages. Below, we describe how to solve this issue and evaluate the dual function from data.
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3.2 Analytical Solution via the Quadratic Model

We assume that the reward function R(θ, c) can be approximated by a quadratic model

R̂(θ, c) = θTAθ + cTBc+ 2θTDc+ θTr1 + cTr2 + r0, (4)

where A ∈ Rdθ×dθ ,B ∈ Rdc×dc ,D ∈ Rdθ×dc , r1 ∈ Rdθ , r2 ∈ Rdc , and r0 ∈ R are the model parameters. Matrices A and
B are symmetric. We also assume the sampling distribution q(θ|c) to be Gaussian of the form

q(θ|c) = N (θ|B +Kc,Q). (5)

Under these assumptions, the dual function in Eq. (3) can be expressed as

g(η,ω)=ηε−ωβ+ 1

2

(
fTF−1f−ηBTQ−1B+(η+ω)log|2πF−1(η+ω)|−η log|2πQ|

)
+

∫
µ(c)

(
cTm+

1

2
cTMc

)
dc, (6)

where

f = ηQ−1B + r1,

F = ηQ−1 − 2A,

m = LTF−1f − ηKTQ−1B,

M = LTF−1L− ηKTQ−1K,

L = ηQ−1K + 2D.

Since the context distribution µ(c) is unknown, we approximate the expectation in Eq. (6) by sample averages. The dual
function can be minimized by standard non-linear optimization routines. Finally, using Eq. (4) and Eq. (5) the new search
distribution p(θ|c) is computed in closed form as

p(θ|c) = N
(
θ|F−1f + F−1Lc,F−1(η + ω)

)
. (7)

To ensure that the covariance F−1(η + ω) is positive definite, the matrix A of the quadratic model is constrained to be
negative definite.

3.3 Linear Dimensionality Reduction on the Context Variables

Linear dimensionality reduction learns a low-rank matrix W and projects the data onto a lower dimensional subspace.
Performing linear dimensionality reduction on the context variables yields the following quadratic model

R̂(θ, c) = θTAθ + cTW TB̃Wc+ 2θTD̃Wc+ θTr1 + cTW Tr̃2 + r0, (8)

where W ∈ Rdz×dc denotes a rank-dz matrix with dz < dc. The model parameters A, B̃, D̃, r1, r̃2 and r0 can be learned
by ridge regression. However, the matrix B = W TB̃W is low-rank, i.e., rank(B) = dz < dc. Thus, performing linear
dimensionality reduction on the contexts makes B low-rank. Note that the rank of D = D̃W depends on θ and is
problem dependent. Hence, we do not consider the rank of D for dimensionality reduction.

There are several linear dimensionality reduction methods that can be applied to learn W . Principal component analysis
(PCA) [10] is a common method used in statistics and machine learning. However, being unsupervised, it does not
take the regression targets into account, i.e., the reward. Alternative supervised techniques, such as kernel dimension
reduction [7], do not take the regression model, i.e., the quadratic model, into account. On the contrary, in projection
regression [6, 20] the model parameters and the projection matrix are learned simultaneously. However, applying this
approach to the model in Eq. (8) requires alternately optimizing for the model parameters and the projection matrix and
is computationally expensive.

4 Discussion

The performance of C-MORE strongly depends on the accuracy of the quadratic model. The quadratic model can be
learned by regression methods such as ridge regression. However, ridge regression is prone to error when the context
is high-dimensional. The original C-MORE tackles this issue by nuclear norm regularization on the contextual matrix of
the surrogate model. Yet, nuclear norm regularization does not directly take into account possible interactions between
features. Therefore, we plan to extend the C-MORE framework with SLMI regularization.
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