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Abstract

One key idea behind morphological computation is that many difficul-

ties of a control problem can be absorbed by the morphology of a robot.

The performance of the controlled system naturally depends on the control

architecture and on the morphology of the robot. Because of this strong

coupling most of the impressive applications in morphological computa-

tion typically apply minimalistic control architectures. Ideally, adapting

the morphology of the plant and optimizing the control law interact such

that finally, optimal physical properties of the system and optimal control

laws emerge. As a first step towards this vision we apply optimal control

methods for investigating the power of morphological computation. We

use a probabilistic optimal control method to acquire control laws given

the current morphology. We show that by changing the morphology of

our robot, control problems can be simplified, resulting in optimal con-

trollers with reduced complexity and higher performance. This concept

is evaluated on a compliant 4-link model of a humanoid robot, which has

to keep balance in the presence of external pushes.

Keywords: Probabilistic motor planning, stochastic optimal control, morpho-
logical computation, compliant robots.

∗Corresponding author.

1



1 Introduction

The control of compliant robots is inherently difficult due to their non-linear
stochastic dynamics. Morphological computation poses the vision that parts of
the complexity of a control or learning task can be outsourced to the morphology
of the robot [11, 12]. This has been illustrated in many impressive biologically
inspired robotic applications. For example Tedrake et al. [14] showed that the
task complexity of learning to walk is drastically reduced by exploiting the
dynamics of a passive biped walker. The authors in Iida and Pfeifer [7] demon-
strated that the stability of a simple four-legged robot exhibits a surprisingly
robust behavior using a mixture of active and passive joints. For swimming
[20] or flying [19] robots investigations of the morphologies yield in rich be-
havioral diversity using only a single actuator exploiting the dynamics of the
environment.

These approaches typically used minimalistic control architectures, like open
loop actuation with sinusoidal drives [7, 20, 19] or a simple linear combination
of state dependend features [14]. The morphology is assumed to absorb much of
the computation needed for controlling the robot, and, therefore less emphasis is
placed on the controller. More sophisticated control architectures were omitted
as these are typically more difficult to fine tune for a new morphology. Thus,
finding a good control law defines a individual optimization problem for each
morphology, which renders the joint optimization of the morphology and the
controller challenging. However, an autonomous system has to encompass for
both aspects — the morphology and the control architecture — for efficient
learning of complex motor skills.

One remarkable exception to this typically used minimalistic control archi-
tectures is the theoretical study of the morphological contribution for compliant
bodies in Hauser et al. [5]. The authors have demonstrated in simulations for
simple but nonlinear generic models of physical bodies, based on mass-spring
systems that by outsourcing the computation to the physical body, the difficult
problem of learning to control a complex body, could be reduced to a simple and
perspicuous linear learning task. Thus, it can not get stuck in local minima of
an error function. However, learning the optimal morphology and the optimal
control law remains an open problem for many motor control tasks using real
robots.

As a first step towards this vision we propose to directly use optimal control
methods for eliminating the dependency between the morphology of the robot
and the control architecture. Thus, for evaluating the computational power of
the morphology, we will always use the optimal control law connected to this
morphology. This allows for a fair comparison of different morphologies and
simplifies the search for an optimal morphology.

For determining our optimal control law for a given morphology, we can use
one of the many tools provided by Stochastic Optimal Control (SOC) meth-
ods such as Todorov and Li [15], Kappen [8], Toussaint [16]. These meth-
ods have been shown to be powerful approaches for movement planning in
high-dimensional robotic systems. We will use Approximate Inference Control
(AICO) [16], as it is a state of the art planning method for stochastic optimal
control tasks. AICO is based on probabilistic inference for motor control. The
beauty of this approach is that there is no distinction between sensor and mo-
tor, perception and action. We can include a multitude of variables, some of
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which might represent some features of the state, some of which might repre-
sent goals, constraints or motivations in the future and some of which might
represent future actions or motor signals.

As all other stochastic optimal control methods, AICO minimizes a cost
function, which is in our case given by the quadratic distance to a target state
and the used energy of the movement. In order to apply the AICO method to
torque constraint dynamical models we will briefly explain how to extend the
algorithm to systems with control limits in Section 2.

Quantifying how much computation is done by the morphology of the robot
and how much is done by the controller is often a difficult problem. Despite
of the advancements for theoretical models of morphological computation [5],
where the computational power of the plant can be assessed in a principled
manner, this remains an open problem for many motor control tasks using real
robots. Yet, by the use of optimal control laws the computation done by the
morphology can be quantified by investigating the complexity of the controller.
Thus, if the controller needs to do a lot of computation less computation is
provided by the morphology in order to fulfill a task.

AICO also provides us with a time-varying linear feedback controller as
policy to generate movement trajectories. We will use the variance of the control
gains as complexity measure of the controller. If the control gains are almost
constant in time, the control law is close to linear and does not perform much
computation. However, if the control gains are highly varying, the controller
needs to do a lot of computation and therefore, less computation is provided by
the morphology.

As different complexity measures are possible we additionally use the final
costs and the total jerk of a movement trajectory for a comparison. We illustrate
the power of morphological computation combined with optimal control on a
dynamical model of a humanoid robot (70kg, 2m). The robot is modelled by a
4-link pendulum, which has to keep balance in the presence of external pushes.
We will show in Section 3 that by changing the morphology of a robot like the
joint friction, the link lengths or the spring constants, the resulting optimal
controllers have reduced complexity. As we will demonstrate there are optimal
values for the physical properties for a given control task, which can only be
found by the use of optimal control laws. With naive control architectures,
different, sub-optimal morphologies would be chosen.

1.1 Related Work

We propose to use optimal control methods to eliminate the dependency be-
tween the control architecture and the morphology of the robot. These stochas-
tic optimal control (SOC) methods such as Todorov and Li [15], Kappen [8],
Toussaint [16] have been shown to be powerful methods for controlling high-
dimensional robotic systems. For example the incremental Linear Quadratic
Gaussian (iLQG) [15] algorithm is one of the most commonly used SOC meth-
ods. It uses Taylor expansions of the system dynamics and cost function to
convert the non-linear control problem in a Linear dynamics, Quadratic costs
and Gaussian noise system (LQG). The algorithm is iterative - the Taylor ex-
pansions are recalculated at the newly estimated optimal trajectory for the LQG
system.

A SOC problem can be reformulated as inference problem in a graphical
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Figure 1: This figure illustrates the graphical model for probabilistic planning,
where we consider finite horizon tasks with T time steps. The state variable xt

denotes for example the joint angles and joint velocities of a robot. Controls
are labelled by ut. The beauty of probabilistic inference for motor control is
that we can include a multitude of variables, some of which might represent
some features of the state, some of which might represent goals, constraints
or motivations in the future and some of which might represent future actions
or motor signals. These constraints are expressed in the model by the task
variables zt.

model [16, 6], which has the nice property that there is no distinction between
sensor and motor, perception and action. The unknown quantities, i.e. the states
and actions can be efficiently inferred using for example the Approximate Infer-
ence Control (AICO) algorithm [16]. The graphical model is given by a simple
dynamic Bayesian network with states xt, actions ut and task variables zt (rep-
resenting the costs) as nodes, see Figure 1. In this graphical model observations
are denoted by shaded nodes in contrast to the unknown random variables,
which are indicated by circles. If beliefs in the graphical model are approxi-
mated as Gaussian the resulting algorithm is very similar to iLQG. Gaussian
message passing iteratively re-approximates local costs and transitions as LQG
around the current mode of the belief within a time slice. A difference to iLQG is
that AICO uses forward messages instead of a forward roll-out to determine the
point of local LQG approximation and can iterate belief re-approximation with
in a time slice until convergence, which may lead to faster overall convergence
[16].

The dynamic Bayesian network shown in Figure 1 is fully specified by the
conditional distributions encoded by the cost function and by the state transition
model. Like most SOC methods [15, 8, 16] we assume that the cost function
and the state transition model are known. However, for model learning many
types of function approximators can be applied [18, 9, 10]. For learning the
cost function inverse reinforcement learning methods such as Abbeel and Ng
[1], Boularias et al. [3] could be used. Since we demonstrate in this paper how
morphological computation and optimal control can benefit from each other in
general, an extension to the more complex learning problems remains for future
research.

The original formulation of the AICO method [16] does not consider torque
limits, which are important for many robotic experiments as well for the dynamic
balancing experiments we consider in this paper. Therefore we extended the
algorithm, which is discussed in the next section.
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2 Probabilistic Inference for Motor Planning

We use the probabilistic planning method Approximate Inference Control (AICO)
[16] as optimal control method. Most applications of AICO are in the kinematic
planning domain. Here, we want to apply AICO to fully dynamic, torque con-
trolled robot simulations. Therefore we had to extend the AICO framework
with control or torque limits, which will be explained in the next subsections.

2.1 Approximate Inference Control

We will briefly clarify the notation for our discussion. Let xt denote the state
and ut the control vector at time step t. A trajectory τ is defined as sequence of
state control pairs, τ = 〈x1:T ,u1:T−1〉, where T is the length of the trajectory.
Each trajectory has associated costs

L(τ) :=

T∑
t=1

ct(xt,ut), (1)

where ct(xt,ut) represents the cost function for a single time step, which is in
our case given by the quadratic distance to a target state and the used energy
of the movement. Solely the cost function c1:T (·) and the initial state x1 are
known to the optimal control algorithm. The unknown trajectory τ is the result
of the inference process.

AICO uses message passing in graphical models to infer the trajectory τ . In
order to transform the minimization of L(τ) into an inference problem, for each
time step an individual binary random variable zt is introduced. This random
variable indicates a reward event. Its probability is given by

P (zt = 1|xt,ut, t) ∝ exp(−ct(xt,ut)).

AICO now assumes that a reward event zt = 1 is observed at every time step,
see Figure 1. Given that evidence, AICO calculates the posterior distribution
P (x1:T ,u1:T |z1:T = 1) over trajectories.

We will use the simplest version of AICO, where an extended Kalman
smoothing approach is used to estimate the posterior P (x1:T ,u1:T |z1:T = 1).
The extended Kalman smoothing approach uses Taylor expansions to linearize
the system and subsequently uses Gaussian messages for belief propagation in
a graphical model. Gaussian message passing iteratively re-approximates local
costs and transitions as a Linear dynamics, Quadratic costs and Gaussian noise
system (LQG) around the current mode of the belief within a time slice. Con-
cise derivations of the messages for AICO are given in the Appendix, as they
are used to further extend the algorithm to implement control constraints.

AICO provides us with a linear feedback controller for each time slice of the
form

ut = Otxt + ot,

where Ot is the inferred feedback control gain matrix and ot denotes the linear
feedback controller term. For our evaluations we also use a complexity measure
which is proportional to the variance of this feedback control law:

Var(O1:T−1,o1:T−1) =

Dx∑
i=1

Du∑
j=1

var(Oi,j,1:T−1) +

Du∑
j=1

var(oj,1:T−1), (2)
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where the dimension of the states is denoted by Dx and the dimension of the
controls is denoted by Du.

AICO is only a local optimization method and we have to provide an initial
solution which is used for the first linearization. We will simply use the first
state as initialization x2:T = x1.

If we use AICO with a constant cost and dynamic model for each time step,
the algorithm reduces to calculating a Linear Quadratic Regulator (LQR), which
is often used in optimal control. A LQR is the optimal linear feedback controller
for a given linear system. In contrast, AICO uses a time-varying linear feedback
controller, which may be different for each time step. In our experiments we
will compare both approaches on a dynamic non-linear balancing task. Thus we
evaluate the benefit of using AICO (time-varying linear feedback control) and
a LQR (constant linear feedback control).

2.2 Cost Function for Constrained Systems

In order to apply the AICO algorithm to torque controlled robots, we have to
extend the framework to incorporate control limits as the available motor torque
is typically limited. This is done by adding a control dependent punishment term
cu
t (ut) to the cost function in Equation 1. Thus for a trajectory τ we specify

the costs

L(τ) :=

T∑
t=1

ct(xt,ut) + cu
t (ut).

We use this additional term to punish controls ut that exceed a given bound
uBt

at time t:
cu
t (ut) = (ut − uBt

)T HBt
(ut − uBt

).

As a consequence, the resulting Gaussian distributions which are used to rep-
resent the costs ct change. This distributions have typically zero mean in the
control space due to the typically used quadratic control costs. In the case of
control limits the mean of the distribution is non-zero. Consequently, also the
message passing update equations used for the AICO algorithm changes. The
exact message passing equations of AICO with control limits are presented in
the Appendix.

3 Experiments

We investigate morphological computation combined with optimal control on
dynamic non-linear balancing tasks [2], where a robot gets pushed with a specific
force and has to move such that it maintains balance. The optimal strategy is a
non-linear control law which returns the robot to the upright position. For our
evaluations different initial postures and multiple forces are used as sketched
in Figure 2. We study the morphological computation by changing different
physical properties of a 4-link model of a humanoid robot. In particular we
investigate the computation done by different friction coefficients and the link
lengths. Inspired by the work of Hauser et al. [5] we will also incorporate springs
to our model for analyzing different spring constants.
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Figure 2: This figure illustrates different initial postures of a 4-link pendulum
modelling a humanoid robot (70kg, 2m). The robot gets pushed with specific
forces, i.e. F1 and F2 and has to move such that it maintains balance. At the
end of the movement the robot should stabilize at the upright position.

3.1 Setting

We use a 4-link robot as a simplistic model of a humanoid (70kg, 2m) [2]. The
8-dimensional state xt is composed of the ankle, the knee, the hip and the arm
positions and their velocities. Table 1 in Appendix B shows the initial velocities
(resulting from the force F which always acts at the shoulder of the robot)
and the valid joint angle range for the task. Additionally to the joint limits, the
controls are limited to the intervals [±70,±500,±500,±250]Ns (ankle, knee, hip
and arm). For more details we refer to Atkeson and Stephens [2].

We use a quadratic cost function given by

ct(xt,ut) = (xt − x∗)T R̂t(xt − x∗) + uT
t Ĥtut,

where the final state is denoted by x∗ = 0. The precision matrix R̂t determines
how costly it is not to reach x∗. The diagonal elements of R̂1:T are set to
2 · 103 for joint angles and to 0.2 for joint velocities. Controls are punished by
Ĥ1:T−1 = 0.05I.

The movement trajectories are simulated with a time-step of 0.5ms. For
the AICO algorithm we used a planning time step of ∆t = 5ms and a horizon
of T = 500, which results in a movement duration of 2.5s. We use a torque
dependent noise model — the controls are multiplied by Gaussian noise ǫ with
mean 1 and a standard deviation of 0.25, i.e. we use 25% torque dependent
noise. The noise affects the system dynamics ẋ = f(xt,ut + ǫ) while simulating
a trajectory, where ǫ ∼ N (ǫ|0, 0.252 · abs(ut)). The experiments are performed
for multiple forces sampled from F ∼ U [−15, +15]Ns.

3.2 Complexity Measures

We evaluate the average values of the final costs L(τ) in Equation 1, the variance
of the time-varying controller gains returned by the AICO approach in Equation
2 and the total jerk J(τ) = ∆t

∑T
t=0 u̇T

t u̇t of the trajectory (proportional to
the squared derivative of the torque). Different complexity measures would
be possible. However, the chosen ones are plausible since the complexity of
controlling the robot is reflected by how well the costs L(τ) are optimized. As
the jerk of a movement tracks the derivative of the torques, this also seems
to be a reliable complexity measure. Finally the variance of the time-varying
controller gains quantifies the complexity of the control law in comparison to
linear controllers (no variance).

7



0 10 20 30

200

300

400

Friction

F
in

al
 c

os
ts

 

 

AICO LQR LC

(a) Friction vs. Final Costs

0 10 20 30
100

150

200

250

Friction

T
ot

al
 J

er
k

 

 

AICO
LQR

(b) Friction vs. Jerk

0 10 20 30

100

200

300

400

500

Friction

T
ot

al
 V

ar
ia

nc
e

 

 

AICO
Flexible LQR

(c) Controller Variance

Figure 3: This figure shows the influence of the friction coefficient on controlling
the 4-link model using the optimal control methods AICO and LQR. Illustrated
are the mean and the standard error over 50 trajectories. As complexity mea-
sures of the morphology we used the final costs (a), the total jerk (b) and the
controller variance (c). For the final costs we additionally compare to a simple
linear feedback controller denoted by LC. For (c) we compare to a LQR con-
troller with time varying costs in contrast to the standard LQR method which
uses constant costs for all time steps.

3.3 Friction induces Morphological Computation

In this experiment we evaluate the influence of the friction coefficient γ on the
quality of the optimal controller for the 4-link model. The friction coefficient
directly modulates the acceleration of the joints, i.e. φ̈γ = −γφ̇.

Figure 3(a) shows the resulting final costs for different friction coefficients.
In order to illustrate the need for sophisticated control architectures, we com-
pare the optimal control method AICO with an LQR controller and a simple,
constant linear feedback controller. While AICO calculates the optimal con-
trol law for the non-linear system, the LQR controller linearizes the system at
the upright position and subsequently calculates the closed form solution of the
optimal controller for the resulting LQG system. The constant linear feedback
controller does not adapt to the morphology of the robot. As we can see from
Figure 3(a), we cannot determine the optimal morphology with the simple linear
controller, while we can recognize a clear minimum for the AICO and the LQR
controller.

AICO could find the most simple control law according to the jerk criteria in
Figure 3(b) and was also able to find control laws with considerably decreased
costs. In Figure 3 (c), we illustrated the variance of the time-varying controller
gains. The complexity of the resulting controllers is reduced by changing the
friction coefficient. The minimum lies in the same range as the minimum of
the cost function. Thus, in this case a simpler controller resulted in better
performance because the morphology (the friction) of the robot has simplified
the control task. Still, we needed a more complex optimal control algorithm to
discover this simpler control law if we compare to the LQR.

In Figure 4 we depict the joint and torque trajectories for the hip and the
arm joint, where we applied the friction coefficients γ = 0, γ = 12 and γ = 30.
With γ = 0 the trajectories overshoot as shown in Figure 4 (a), whereas in (c)
more energy is needed for stabilizing the robot with γ = 30. The trajectories
for the optimal friction coefficient γ = 12 (according to the jerk complexity
measure) are shown in (b).
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(c) γ = 30

Figure 4: The plots show the mean trajectories of the hip (φ3) and the arm (φ4)
joints over 100 runs for the first 0.5s, where we used the AICO approach for the
friction coefficients γ = 0, γ = 12 and γ = 30.

3.4 The Influence of the Link Lengths

To show the effects of morphological computation on a more complex variation
of morphologies, we consider in this experiment the variation of the shank,
the thigh, the trunk, and the arm length l = [l1, l2, l3, l4]. Initially the link
lengths are l0 = [0.5, 0.5, 1, 1]m and the weights of these links are specified by
m0 = [17.5, 17.5, 27.5, 7.5]kg.

We consider variations of l of up to 50% from their initial configuration.
Different link lengths of the 4-link robot result in different initial velocities [2],
which influences the complexity of the motor control problem. For this reason,
we consider constant inertias for a fair comparison. Thus, for each link-length
l the masses of the links are given by m = m0l0

2/l2. To match the physical
properties of humans we assume equal lengths for the shank and the thigh link
l1 = l2.

In addition to the link lengths of the thigh, the trunk and the arm we still
optimize the friction coefficient, resulting into 4 parameters of our morphology.
A naive search for optimal parameters like in previous experiment is in the
multi-dimensional case intractable. Therefore we apply the non-linear stochastic
optimizer Hansen et al. [4] as a local search method.

The stochastic optimizer locally explores the parameter space (l2, l3 and l4)
until convergence. For example, the resulting final cost values for different link
lengths are illustrated in Figure 5 when using AICO as optimal control law.
For this experiment we used a friction coefficient of γ = 12, where we averaged
over multiple initial states and multiple forces. The optimizer converged to link
lengths of l2 = 0.39, l3 = 1.18 and l4 = 0.5 for the thigh, the torso and the arm.

For multiple friction coefficients an evaluation of the presented complexity
measures is shown in Figure 6. According to the final costs in Figure 6 (a)
the best controller was found with a friction coefficient of γ = 9. For the jerk
criteria in Figure 6 (b) and the variance as complexity measure shown in Figure
6 (c), the minimum of the complexity measures lies in the same range.

The morphologies found by the optimizer for the AICO and the LQR con-
troller are sketched in Figure 7 for the friction coefficients γ = 0, γ = 9 and
γ = 30. The initial configuration of the robot is shown in Figure 7 (a) and in
Figure 7 (e). Interestingly with increasing values of the friction coefficients the
link lengths change to compensate for the larger motor controls. This is shown
in Figure 7 (b-d) for the AICO controller and in Figure 7 (f-h) for the LQR
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Figure 5: This figure illustrates the explored link lengths for the thigh, the torso
and the arm (l2, l3 and l4) using AICO with the friction coefficient γ = 12. For
this illustration we discretized the parameter space to visualize the final cost
values, which are denoted by the color of the dots. Darker dots correspond to
lower cost values as specified by the colorbar on the right. The optimal values
of the link lengths are denoted by the large crosses (l2 = 0.39, l3 = 1.18 and
l4 = 0.5).
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Figure 6: This figure shows the results for optimizing the link lengths and the
friction coefficient of the 4-link model. Like before we used the final costs (a),
the total jerk (b) and the variance of the time-varying feedback controller (c)
as complexity measure.

controller. AICO could again find significantly different morphologies as the
LQR controller. As is illustrated in the captions of Figure 7, the morphologies
found by AICO could produce lower costs as the morphologies found by LQR.

3.5 Robot Model with Linear Springs

Inspired by the theoretical analysis of [5], we also evaluate the computational
power of linear springs in our model. The springs are mounted on the 4-link
model as illustrated in Figure 8. These springs support the control of the 4-
link robot as they push the robot back into its upright position. Thus, the
torques applied to the joints are given by the sum of the controls provided by
the feedback controller and the spring forces u∗

t = ut + diag(k)∆ls. The vector
∆ls denotes the displacements of the four springs and k is a vector containing
the 4 spring constants. Note that due to the calculation of the displacements,
the springs act non-linearly on the joint torques.

The adjustable parameters of the morphology include the friction coefficient
and the four spring constants k = [k1, k2, k3, k4] for the ankle, the knee, the hip,
and the arm joint. Initially the spring constants are set to k0 = [1, 103, 103, 1].
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Figure 7: This figure shows the learned link lengths for multiple friction coeffi-
cients γ = 0, γ = 9 and γ = 30 for the AICO (b-d) and the LQR (f-h) controller.
The link lengths are optimized with a stochastic optimizer and could vary up
to 50% from the initial configuration shown in (a) and (e). With increasing
friction coefficients the link lengths change to compensate for the larger control
costs. The final costs L(τ) for these morphologies are given in the captions.
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Figure 8: This figure illustrates the 4-link robot model endowed with linear
springs which are mounted at the midpoints of the joints. These springs support
the control of the 4-link robot as they push the robot back into its upright
position. Due to the calculation of the spring length displacements, the springs
act non-linearly on the joint torques.
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Figure 9: This figure shows the results for optimizing the spring constants and
the friction coefficient of the 4-link model. We used the final costs (a), the
total jerk (b) and the variance of the time-varying feedback controller (c) as
complexity measure.

For the optimization a lower bound of 0.1k0 and an upper bound of 100k0 are
used.

As in the previous experiment, for different friction coefficients γ, we opti-
mize the spring constants using the stochastic search method Hansen et al. [4].
The results for the final costs, the total jerk and the variance of the feedback
controller as complexity measures are shown in Figure 9. The benefit of the sup-
porting springs is best illustrated by the final costs in Figure 9 (a), which are
drastically reduced compared to the final costs using the 4-link model without
springs shown in Figure 3 (a).

The optimal spring constants strongly depend on the used friction coefficient.
This is illustrated in Figure 9, where we compare the learned spring constants
using AICO and LQR as control method. With an increasing friction also the
spring constants increase to compensate for larger control costs.

4 Conclusion

In this paper we have shown that optimal control and morphological compu-
tation are two complementary approaches which can benefit from each other.
The search for an optimal morphology is simplified if we can calculate an op-
timal controller for a given morphology. This calculation can be done by new
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Figure 10: This figure shows the optimal spring constants for different friction
coefficients using AICO and LQR.

approaches from probabilistic inference for motor control, i.e. the approximate
inference control algorithm [16]. By the use of optimal control methods, we have
shown that for dynamic non-linear balancing tasks, an appropriate setting of
the friction, the link lengths or the spring constants of the incorporated springs
of the compliant robot can simplify the control problem.

We have demonstrated that there are optimal values for the physical prop-
erties for a given control task, which can only be found by the use of optimal
control laws. With naive control architectures such as the evaluated constant
linear feedback controller which does not adapt to the morphology, different,
sub-optimal morphologies would be chosen.

In the future, we plan to investigate more complex and more non-linear tasks.
In this case the benefit of AICO in comparison to LQR controllers should be
even more prominent. In the end we are planning to simultaneously evolve
walking controllers based on AICO and the morphology of bipedal robots like
a model of a planar walker.
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A Extension of the Approximate Inference Con-

trol Method

The original formulation of the Approximate Inference Control (AICO) method
[16] does not consider a linear term for the control costs. However, this is
needed to encode torque limits, which are important for our dynamic balancing
experiments, and hence, we needed to extend AICO.

The introduction of a linear term for the control costs yields not only in
a modified cost function but also results in different update equations for the
messages and finally in different equations of the optimal feedback controller.
For completeness we will first recap the main steps to derive the AICO method
and will then discuss the modifications to implement control constraints.

Approximate Inference Control without Torque Limits

For motor planning we consider the stochastic process:

P (x1:T ,u1:T−1, z1:T ) = P (x1)

T−1∏
t=1

P (ut|xt)

T∏
t=1

P (xt|xt−1,ut−1)

T−1∏
t=1

P (zt|xt,ut).

where P (ut|xt) denotes the state dependent prior for the controls, the distri-
bution P (xt|xt−1,ut−1) the state transition model and P (x1) the initial state
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distribution. Here, we assume that the prior of the controls is independent of the
states and thus we will simply use P (ut|xt) = P (ut) for the rest of the appendix.
The time horizon is fixed to T time-steps. The binary task variable zt denotes a
reward event, its probability is defined by P (zt = 1|xt,ut) ∝ exp(−ct(xt,ut)),
where ct(xt,ut) is the intermediate cost function1 for time-step t. It expresses
a performance criteria (like avoiding a collision, or reaching a goal).

We want to compute the posterior P (x1:T ,u1:T |z1:T = 1) over trajectories,
conditioned on observing a reward (zt = 1) at each time-step t. This posterior
can be computed by using message passing in the given graphical model of
Figure 1. To simplify the computations we integrate out the controls:

P (xt+1|xt) =

∫
ut

P (xt+1|xt,ut)P (ut|xt)dut, (3)

The marginal belief bt(xt) of a state at time t is given by:

bt(xt) = αt(xt)βt(xt)φt(xt), (4)

where αt(xt) is the forward message, βt(xt) is the backward message φt(xt) is
the current task message. The messages are given by:

αt(xt) =

∫
xt−1

P (xt|xt−1)αt−1(xt−1)φt−1(xt−1)dxt−1, (5)

βt(xt) =

∫
xt+1

P (xt+1|xt)βt+1(xt+1)φt+1(xt+1)dxt+1, (6)

φt(xt) = P (zt|xt). (7)

We consider discrete-time, non-linear stochastic systems with zero mean
Gaussian noise

P (xt+1|xt,ut) = N (xt+1|fDyn(xt,ut),Qt).

The non-linear stochastic system fDyn is approximated by a Linear dynamics,
Quadratic costs and Gaussian noise system (LQG) by Taylor expansion [16, 15]:

P (xt+1|xt,ut) = N (xt+1|Atxt + at + Btut,Qt). (8)

Thus, the system is linearized along a given trajectory 〈x̂1:T , û1:T−1〉 at every
point in time. We will use ft as shorthand for fDyn(xt,ut). Then, the state

transition matrix At is given by At = (I + δft

δxt

∆t), the control matrix Bt is

Bt = δft

δut

∆t and the linear term reads at = (ft −
δft

δxt

xt −
δft

δut

ut)∆t.
In the original formulation of the AICO algorithm the cost function ct is

approximated as:

ct(xt,ut) = xT
t Rtxt − 2rT

t xt + uT
t Htut.

Note that there is no linear term for the control costs as we only punish quadratic
controls. We can now write P (zt = 1|xt,ut) = P (zt = 1|xt)P (ut) as

P (zt = 1|xt) ∝ N [xt|rt,Rt], (9)

P (ut) = N [ut|0,Ht], (10)

1In this paper the immediate cost function is composed of the intrinsic costs and the
constraint costs, i.e. ct(xt,ut) + cp(xt, ut)
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where the distributions in Equation 9 and 10 are given in canonical form. The
canonical form of a Gaussian is used because numerical operations such as prod-
ucts or integrals are easier to calculate in this notation. The canonical form is
indicated by the square bracket notation and given by

N [x|a,A] =
exp(−1/2aTA−1a)

|2πA−1|1/2
exp(−1/2xTAx + xT a).

A Gaussian in normal form can always be transformed into the canonical form
by N (x|a,A) = N [x|A−1a,A−1]. For more details we refer to the Gaussian
Identities in Toussaint [17].

We can see in Equation 10 that our prior for applying the control ut is given
by the control costs, i.e. N [ut|0,Ht]. By integrating out the controls from our
system dynamics we get the following state transition probabilities

P (xt+1|xt) =

∫
ut

N (xt+1|Atxt + at + Btut,Qt)N [ut|0,Ht]dut, (11)

= N (xt+1|Atxt + at,Qt + BtH
−1
t Bt), (12)

where the integral was solved using a reformulation of the propagation rule in
Toussaint [17].

As we can see, all distributions in the approximated LQG system in Equation
12 are Gaussian, and thus, also all messages are Gaussians and can be calculated
analytically. The resulting messages are given in Toussaint [16].

Approximate Inference Control with Torque Limits

In order to implement torque and joint limits we introduce an additional cost
function cp which punishes the violation of the given constraints. The function
cp is just added to the current immediate costs. We use separate cost terms for
control constraints cu

t and joint constraints cx
t , i.e. cp(xt,ut) = cx

t (xt) + cu
t (ut).

Here, we will only discuss how to implement the function cu
t (ut) for the torque

constraints, joint constraints are implemented similarly.
The cost function cu

t is quadratic in u and punishes leaving the valid control
limits of u. In order to implement the upper bound umax for the torques, we
use the following cost function

cu
t (ut) = uT

t Htut + (ut − umax)
T HU

t (ut − umax),

= uT
t Htut + uT

t HU
t ut − 2uT

maxH
U
t ut + uT

maxH
U
t umax,

= uT
t Htut + uT

t HU
t ut − 2uT

maxH
U
t ut + const,

where matrix Ht denotes the quadratic control costs. The constrained costs are
only imposed for the control variable ui if the torque value exceeds the upper
bound umax,i. In order to do so HU

t is a diagonal matrix where the ith diagonal
entry is zero if ui ≤ umax,i and non-zero otherwise. The lower bound umin is
implemented likewise using an individual diagonal matrix HL

t .
We can again implement cu

t (ut) as prior distribution P (ut) for the controls.

P (ut) ∝ N [ut|ht,Ht], (13)

where ht = uT
maxH

U
t + uT

minH
L
t and the precision Ĥt = Ht + HU

t + HL
t . As

we can see, the linear term ht of the prior distribution P (ut) is now non-zero.
This yields different message equations.
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Joint-limits can be imposed similarly by using additional terms costs for
cx
t (xt). However, for joint limits the update equations stay the same because

P (zt = 1|xt) has already a non-zero mean denoted by rt in Equation 9.
To derive the messages we will first integrate out the controls to get the state

transition probabilities:

P (xt+1|xt) =

∫
ut

N (xt+1|Atxt + at + Btut,Qt)N [ut|ht, Ĥt]dut,

= N (xt+1|Atxt + at + BtĤ
−1
t ht,Qt + BtĤ

−1
t BT

t ). (14)

Note that, since the cost function cu
t (ut) contains a non-zero linear term ht,

we get a new linear term ât = at + BtH
−1
t ht in the transition dynamics. The

forward and the backward messages are the same like in Toussaint [16] except
that at is replaced by ât and Ht by Ĥt.

Like in Toussaint [16] we use the canonical representations for the forward
and the backward message:

αt(xt) = N [xt|st,St],

βt(xt) = N [xt|vt,Vt],

φt(xt) = P (zt|xt) = N [xt|rt,Rt].

The messages are represented by Gaussians in canonical form, for which math-
ematical operations like products are simply performed by adding the linear
terms and the precisions. The mean of the belief is given by bt(xt) = (St +
Vt + Rt)

−1(st + vt + rt) (multiplying three canonical messages and a sub-
sequent transformation to normal form). Furthermore we use the shorthand
Q̄t = Qt + BtĤ

−1
t BT

t for the covariance in Equation 14.
The messages are computed by inserting the state transition probabilities

given in Equation 14 in the message passing Equations 5 and 6. Subsequently
the integrals are solved using the propagation rule in Toussaint [17]. The final
equations in canonical form are:

St = (A−T
t−1 −Ks)St−1A

−1
t−1, (15)

st = (A−T
t−1 −Ks)(̄st−1 + St−1A

−1
t−1(ât−1 + Bt−1Ĥ

−1
t−1ht−1)), (16)

Ks = A−T
t−1St−1(St−1 + A−T

t−1Q̄
−1
t−1A

−1
t−1)

−1. (17)

And for the backward messages:

Vt = (AT
t −Kv)V̄t+1At, (18)

vt = (AT
t −Kv)(v̄t+1 − V̄t+1(ât + BtĤ

−1
t ht)), (19)

Kv = AT
t V̄t+1(V̄t+1 + Q̄−1

t )−1. (20)

To obtain the same mathematical form as in Toussaint [16] one needs to apply
the Woodbury identity and reformulate the equations. In contrast to the update
message in normal form [16], direct inversions of S̄t−1 and V̄t+1 are not necessary
in the canonical form and therefore, the iterative updates are numerically more
stable.

Finally, in order to compute the optimal feedback controller we calculate the

18



joint state-control posterior

P (ut,xt) = P (ut,xt|zt = 1)

=

∫
xt+1

αt(xt)φt(xt)P (xt+1|xt,ut)P (ut)βt+1(xt+1)φt+1(xt+1)dxt+1,

= P (xt)P (ut)

∫
xt+1

P (xt+1|xt,ut)N [xt+1|v̄t+1, V̄t+1]dxt+1.

The conditional distribution is given by P (ut|xt) = P (ut,xt)/P (xt), and the
solution is

P (ut|xt) = N (ut|M
−1
t (BT

t V∗(V̄
−1
t+1v̄t+1 −Atxt − ât) + ht),M

−1
t ),

where V∗ = (Q + V̄−1
t+1)

−1 and Mt = BT
t V∗Bt + Ĥt. After a reformulation we

can obtain an optimal feedback controller of the form ut = ot + Otxt with

ot = M−1
t (BT

t V∗V̄
−1
t+1v̄t+1 −BT

t V∗at + ht), (21)

Ot = −M−1
t BT

t V∗At. (22)

Similar to Toussaint [16], we use an iterative message passing approach where
we approximate the non-linear system by an Linear dynamics, Quadratic costs
and Gaussian noise system (LQG) at the new mode of the trajectory. In Tou-
ssaint [16], this is done by using a learning rate on the current modes of the
belief. However, in difference to Toussaint [16], we also need an estimate of the
optimal action ut in order to impose the control constraints. Using a learning
rate on the control action ut turned out to be very ineffective because feed-
back is extenuated. For this reason we will use a learning rate on the feedback
controller.

The complete message passing algorithm considering state and control con-
straints is listed in Algorithm 1. This is a straightforward implementation of
Gaussian message passing in linearized systems, similar to an extended Kalman
smoother.

In Toussaint [16] or Rawlik et al. [13] more time efficient methods are pre-
sented, where for each time-step the belief is updated until convergence in
contrast to updating all messages and iterating until the intrinsic costs L(τ)
converge. The computational benefits of such an approach still needs to be
evaluated for our messages.

B 4-Link Robot Model Specifications

For the 4-link model the 8-dimensional state x = [φ1, φ̇1, φ2, φ̇2, φ3, φ̇3, φ4, φ̇4]
is composed of the ankle, the knee, the hip and the arm positions and their
velocities. In our experiments the velocities are instantaneously affected by the
applied force F [2]. These initial velocities and the valid joint angle range are
shown in Table 1.

In addition we use multiple initial joint angles. The ankle angle is given
by φ1 = −α, the knee angle by φ2 = −αf, the hip angle by φ3 = αf and the
arm joint angle is φ4 = 2αf, where α is sampled from α ∼ U [0, 7]π/180 and
the linear factor is uniform distributed with f ∼ U [−3.3,−2.3]. Some example
initial states are illustrated in Figure 2.
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Algorithm 1: Approximate Inference Control for Constrained Systems

Data: initial trajectory x̂1:T , learning rate η
Result: x1:T and u1:T−1

initialize S1 = 1e10 · I, s1 = S1x1, k = 0, ô1:T−1 = 0, Ô1:T−1 = 0 · I ;
while L(τ) not converged do

for t← 1 to T do
Linearize Model: At,at,Bt using Equation 8
Compute Costs: Ĥt,ht,Rt, rt using Equation 9, 13

for t← 1 to T do
Forward Messages: αt(xt) using Equation 15 - 17

for t← T − 1 to 1 do
Backward Messages: βt(xt) using Equation 18 - 20

for t← 1 to T − 1 do
Feedback Controller: ot,Ot using Equation 21, 22
if k == 0 then

ut = ot + Otxt

else
ôt = (1− η)ôt + ηot

Ôt = (1− η)Ôt + ηOt

ut = ôt + Ôtxt

xt+1 = Atxt + at + Btut

k = k + 1

Joint Initial velocities Lower Bound Upper Bound

ankle +1.2 · 10−2F −0.8 0.8
knee −7.4 · 10−2F −0.05 2.5
hip +5.1 · 10−2F −2.0 0.1
arm −4.2 · 10−2F −0.6 3.0

Table 1: Joint angle configurations where a robot gets pushed by a force F .
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