
On-board Robot Interactive Training
Riad Akrour, Marc Schoenauer, and Michèle Sebag

TAO, CNRS − INRIA − LRI
Université Paris-Sud, F-91405 Orsay Cedex

FirstName.Name@lri.fr

Abstract—This paper presents a frugal approach hybridizing
preference learning, active learning and reinforcement learning
to build an accurate robotic controller by direct interaction with
the human expert, emitting preferences among the behaviors
demonstrated by the robot. A preference learning approach is
used, allowing the robot to both gradually refine its policy utility
estimate, and select a new policy after an Expected Utility of
Selection criterion.

The strengths and limitations of the approach are experimen-
tally investigated in simulation and in-situ on the e-puck robotic
platform.

I. INTRODUCTION

Reinforcement learning (RL) [16, 18], a well founded
approach to optimal sequential decision making, has been
extensively investigated in robotics (see e.g. [15]). From the
applicative standpoint, RL relies on the smart design of the
state and action spaces, and of the reward function, actually
defining the optimization objective. Not only should the reward
function reflect the target robot behavior; it should also induce
a robust and tractable optimization problem. Since the 90s,
some approaches have been proposed to learn an appropriate
reward function, based on the demonstration of the target
behavior by the expert (e.g. inverse reinforcement learning
[14], learning by imitation [5], or learning by demonstration
[12]). Since the late 2000s, alternative approaches have been
proposed, based on the expert’s preferences about the robot
demonstrations and aimed at learning a reward function [6],
a posterior over the parametric policy space [21] or a policy
return function [2, 3].

This paper specifically investigates the strengths and lim-
itations of preference-based reinforcement learning. Taking
inspiration from the active preference-based reinforcement
learning setting (APRIL) [3], it proposes a Bayesian formu-
lation aimed at fast satisfactory policy building, focussing
on the policy robustness w.r.t. noisy expert’s preferences.
The practical merits of the new approach, called MAY, are
investigated in-situ, establishing a proof of principle of the
approach while shedding some light on the type of noise
involved in the expert’s judgments.

This paper is organized as follows. Section II briefly dis-
cusses work related to preference-based reinforcement learning
and active preference learning. Section III gives an overview
of MAY. Section IV is devoted to the empirical validation of
the approach and the paper concludes with some perspectives
for further research.

II. STATE OF THE ART

This section briefly introduces the notations used throughout
the paper, assuming the reader’s familiarity with reinforcement
learning and referring to [16] for a comprehensive presenta-
tion. Active preference learning-based reinforcement learning
is discussed with respect to inverse reinforcement learning
[1, 11], preference-based value learning [6] and Bayesian di-
rect policy learning [21]. Lastly, the section introduces related
work in active ranking, specifically in interactive optimization
and online recommendation.

A. Formal background

Reinforcement learning classically considers a Markov de-
cision process framework (S,A, p, r, γ, q), where S and A
respectively denote the state and the action spaces, p is the
transition model (p(s, a, s′) being the probability of being in
state s′ after selecting action a in state s), r : S 7→ IR is
a bounded reward function, 0 < γ < 1 is a discount factor,
and q : S 7→ [0, 1] is the initial state probability distribution.
To each policy π (π(s, a) being the probability of selecting
action a in state s), is associated a policy return J(π) being
the expected discounted reward collected by π over time:

J(π) = IEπ,p,s0∼q

[∞∑
h=0

γhr(sh)

]
RL aims at finding the optimal policy π∗ = arg max J(π).

B. Policy Learning with no rewards

IRL takes as input an MDP\r (reward is unknown), a set
of state sequences ck = (s

(k)
0 s

(k)
1 s

(k)
2 . . . s

(k)
h . . .) generated

by an expert, and a feature function φ(.) that maps each state
onto a vector in IRD; in the following the vectorial description
u(ck) of trajectory ck is defined as u(ck) =

∑∞
h=0 γ

hφ(s
(k)
h).

The exert is assumed to generate trajectories according to a
policy maximizing a hidden reward r∗, though the goal of IRL
is not to find r∗ per se but only a policy that performs (near)
optimally under it. In [1] the authors iteratively construct a
set of policies performing as well as the expert policy. In
[11], IRL is cast as a structured classification problem with the
actions having the role of labels and expert trajectory being
the learning set.

In [6] the authors use preference learning in replacement
of classification algorithms in Rollout Classification Policy
Iteration [9]. The authors advocate that action ranking is more

flexible and robust than a supervised learning based approach.
In [3], the authors use preference learning to define a policy
return estimate; the main difference with [6] is that the former
defines an order relation on the action space depending on
the current state and the current policy, whereas the later
defines an order relation on the trajectories. In [21], the authors
advocate the use of comparisons between short trajectories (as
opposed to the full trajectories in APRIL ([3]) provided they
can sample initial states from a distribution P (s0), increasing
the probability of visiting interesting parts of the state space.

Formally, [21] maintains a distribution on the parametric
policy search space, whereas [3] maintains a posterior on
trajectory utilities. On the one hand, the former approach
enables the direct sampling of policies from the posterior; in
contrast, the latter one needs an additional step to get a policy
maximizing a sampled utility from the posterior. On the other
hand, in [21], it is more expensive to update the posterior
distribution after a constraint is added, as a good amount of
rollouts is necessary to compute the similarity between the
trajectories generated from a certain policy parameter and the
two trajectories of the added constraint.

C. Interactive optimization

The preference-based reinforcement learning approach re-
quires the agent to find a new policy, expectedly relevant w.r.t.
the current objective function Jt, with the goal of finding as
fast as possible a (quasi) optimal solution policy. Interestingly
this same goal, cast as an interactive optimization problem,
has been tackled by [20, 4] in a Bayesian setting.

In [20], the system iteratively provides the user with a
choice query, that is a (finite) set S of items described as
vectors in X = IRD, of which the user selects the item she
prefers. The ranking constraints are used to learn a linear
utility function J on IRD, with J(x) = 〈w, x〉 and w a vector
in IRD. Within the Bayesian setting, the uncertainty about
the utility function is expressed through a belief θ defining
a distribution over the space of utility functions.

Formally, the problem of (iterated) optimal choice queries is
to simultaneously learn the user’s utility function, and present
the user with a set of good items, such that she can select
one with maximal expected utility. Viewed as a single-step
(greedy) optimization problem, the goal thus boils down to
finding a items x with maximal expected utility EU∗(θ). In
a global optimization perspective however [20], the goal is
to find a choice query S = {x1, . . . , xk} with maximum
expected posterior utility, defined as the expected gain in
utility of the next decision EPU(S; θ) =

∑i=k
i=1 PR(S

xi; θ)EU
∗(θ|S xi), where S xi designs the event of

the expert selecting the ith element of S, and PR its proba-
bility under the expert response model. The (more tractable)
expected utility of selection EUS(S; θ) =

∑i=k
i=1 PR(S

xi; θ)EU(xi; θ|S xi) is shown to be quasi optimal and
close to EPU in terms of optimal query set.

In [19], the issue of the maximum expected value of
information (EVOI) is tackled, aimed at selecting x such that

(where x∗ is the current best solution):

EUS(x; θ) = IEθ,x>x∗ [〈w, x〉] + IEθ,x<x∗ [〈w, x∗〉] (1)

Eq. (1) thus measures the expected utility of x, distinguishing
the case where x actually improves on x∗ and the case where
x∗ remains the best solution. This criterion can be understood
by reference to active learning and the so-called splitting
index criterion [8]. In active ranking, any instance x likewise
splits the version space into two subspaces: the challenger
subspace of hypotheses ranking x higher than the current best
instance x∗, and its complementary subspace. In the Bayesian
setting, considering an interactive optimization goal, the action
selection criterion to be maximized is set to the expected utility
of x on the challenger subspace, plus the expected utility of
x∗ on the complementary subspace.

III. MAY OVERVIEW

The MAY algorithm elaborates on the active preference
reinforcement learning (APRIL) setting presented in [3]. After
briefly describing the latter for the sake of self-containedness,
this section focuses on the handling of the expert preference
noise. A noise model is proposed, supporting the EUS-optimal
selection of the next policy to be demonstrated to the expert.

A. APRIL

Let us briefly remind that APRIL considers two search
spaces. The first one noted X , referred to as input space or
parametric space, is meant to describe and generate policies.
In the following X = IRd; policy πx is represented as a vector
x (e.g. the weight vector of a neural net or the parameters of
a control pattern generator (CPG) [13], mapping the current
sensor values onto the actuator values). The subscript x will
be omitted for readability when clear from the context.

Another space noted Φ(X) and referred to as feature space
or behavioral space, is meant to describe a policy behavior
or trajectory. The rationale for using both an input and a
feature space is that the expert’s preferences depend on the
policy behavior only; they are independent from the policy
parametric description, conditionally to the policy behavior.
Indeed, the policy behavior depends on both the policy para-
metric description and on the robot environment; but the policy
behavior actually depends in an arbitrarily non-smooth way on
the parametric policy representation.

Formally, a robot trajectory generated from
policy πx and given as a state-action sequence
(s0, πx(s0), s1 . . . πx(sH−1), sH) is represented as a vector
u ∈ IRD, with

u =

h=H∑
h=0

γhφ(sh), 0 < γ ≤ 1

and φ a feature function mapping the state space onto IRD.
The utility space W is set to the unit sphere of IRD. Given a

utility function w ∈W, the utility of a behavior u is measured
from the scalar product 〈w,u〉.

APRIL thus defines an iterative 3-step process: at time
t i) the selected policy π is demonstrated to the expert,

generating a behavior u; ii) the expert assesses this new
behavior comparatively to (her memory of) the previous best
behavior ut; iii) depending on the comparison, the associated
ranking constraint (e.g. u ≺ ut) is added to the APRIL archive
Ut, a new policy return model is estimated and a new policy
is selected (see section III-C).

As discussed in [3], the use of both the parametric and
the behavioral or feature space aims at addressing the ex-
pressiveness/tractability dilemma. On the one hand, a high
dimensional continuous search space is required to express
competent policies. But such a high-dimensional search space
makes it difficult to learn a preference-based policy return
from a moderate number of preferences. On the other hand,
the behavioral space does enable to learn a preference-based
policy return from the little evidence provided by the expert,
despite the fact the behavioral description is insufficient to
describe a flexible policy.

B. Preference and noise model

In the APRIL framework, the expert provides a binary
feedback and the feedback noise is not considered. As could
have been expected however, the experimentation of APRIL
in a robotic setting shows that the preference noise cannot be
discarded, and must be carefully taken into consideration.

Letting w∗ denote the true (hidden) utility of the expert, her
feedback is modelled as a noisy perturbation of the difference
〈w∗, (u − ut)〉 between the utility of the previous best and
current trajectories. This perturbation is usually modelled in
the literature as a Gaussian one ([7, 21]) or following the
Luce-Shepard rule [20]. In both cases however, the noise
model involves an extra-parameter (respectively the standard
deviation of the Gaussian perturbation or the temperature of
the Luce-Shepard rule) controlling the magnitude of the noise.

A simpler model is proposed in MAY, involving a scale
parameter δ. The merit of this noise model is to allow for a
full Bayesian treatment of the expert’s preferences, supporting
the integration of the preference noise over the scale parameter
δ and thereby avoiding the burden of adjusting it. Formally,
the probability of the expert preferring u over ut given the
threshold δ ∈ IR, δ > 0 and the true preference z = 〈w∗, (u−
ut)〉 is defined as:

P (u � ut|w∗, δ) =

 1 if z > δ
0 if z < −δ
1
2δ z + 1

2 else

The above model can be viewed as a ridged version of
the Gaussian noise model1. As mentioned, the ridged version
allows one to handle the uncertainty on the threshold δ through
integration over δ. A first option is to consider that the expert
consistently answers according to a hidden but fixed δ∗. The
second option assumes that δ can vary over time. Indeed the
first option is less robust as an otherwise consistent ranking

1Where the Gaussian noise model reads:

P (u � ut|w∗, δ) =
1

2
+

1

2
erf(
〈w∗, u− ut〉√

2δ
)

can be misidentified due to a single large mistake. Inversely,
the second option being less restrictive might slow down
the identification of the expert’s utility function; however it
is clearly more appropriate in the cases where the task (or
the expert’s understanding thereof, or her preferences) might
change over time. In the remainder of the paper, a distinct
noise scale parameter δi is considered to model the expert
preference noise upon seeing the i-th demonstration with
0 ≤ δi ≤M and M a hyper-parameter of the algorithm.

Additionally, the experimentations suggest that in some
cases the current demonstration u is neither better nor worse
than the previous best demonstration ut; rather, both demon-
strations are equally inappropriate. A ternary preference model
is thus considered, where the expert is allowed to express that
u is better (resp. worse) than ut, or that both are comparable. In
the latter case, the two ranking constraints u � ut and ut � u
are added to Ut, thereby focussing the search on utilities which
are orthogonal to u− ut.

C. Active policy selection

Let Ut = {u0, . . .ut; (ui1 � ui2), i = 1 . . . k} denote the
archive of all demonstrations seen by the expert up the t-th
iteration, and the ranking constraints defined from the expert
preferences (k ≤ 2t). With no loss of generality, the best
demonstration in Ut is noted ut.

Let us set a uniform prior of the utility function w over the
unit sphere in IRD, and let us likewise assume that the prior
over the noise scale parameter δi is uniform on interval [0,M].
Given Ut, the posterior distribution of the utility function
reads:

p(w;Ut) ∝
k∏
i=1

(
1

2
+

zi(w)

2M

(
1 + log

M

|zi(w)|

))
where zi is set to 〈w, (ui1 − ui2)〉 if it is not greater (resp.
lower) than M (resp. −M) in which case it takes the value
M (resp. −M).

The above utility posterior distribution is used to select
a promising policy along the line of Expected Utility of
Selection (Section II-C):

πx = arg maxπx
EUS({ux,ut};Ut)

= arg maxπx
PR(ux � ut|Ut)EU(ux;Ut ∪ {ux � ut})+
PR(ut � ux|Ut)EU(ut;Ut ∪ {ut � ux})

(2)
As shown in [20], the EUS criterion not only supports

the selection of the most promising items w.r.t. the current
belief; it also increases the expected utility of the posterior
distribution.

In the robotic context, the EUS criterion however raises
specific difficulties.

The first difficulty is that the policy selection operates in
the parametric space X , while the utility function is defined
on the behavioral space Φ(X). This issue is dealt with in
[21] by assuming that a pool of trajectories, sampled from
the current posterior over the parametric space, is available;
one out of the pool trajectory is selected according to the

considered active selection criterion defined in the behavioral
space. In an in-situ robotic setting, where a robot trajectory is
hardly reproducible (even when freezing the starting point of
the robot given the environment noise), this approach however
requires every trajectory in the pool to be recorded beforehand
to be able to display one of them to the expert.

The second difficulty is related to the parametric-to-
behavioral mapping. Ideally, a policy πx would be associated a
unique trajectory ux; this however requires the trajectory to be
long enough comparatively to the mixing time of the MDP. In
the case of a convex selection criterion a possibility is to select
a representative trajectory (close to the average trajectory
associated to a policy); thereby the policy optimization process
would optimize a lower bound on the selection criterion, after
the Jensen inequality. When none of those conditions are
fulfilled, a careful study of the trajectories generated for a
given policy and the trajectory distribution is required before
selecting the policy to be demonstrated.

IV. EXPERIMENTAL RESULTS

This section presents two experimental validations of the
MAY approach. The first setting considers the in-situ interac-
tion between a robot and a human expert, where the focus
is on the noise on the expert preferences. The second setting
considers a grid world, where the focus is on the noise in the
transition model.

A. Reaching a target robot

The first problem, inspired from the swarm robotics frame-
work [17], aims at having a swarm robot aligned in a very
precise way with another robot to dock to each other and
form a multi-robot organism. The simplified setting considered
here involves a single e-puck robot equipped with a (52x39, 4
img/s) camera; the target behavior is to reach an immobile
robot with its leds turned on. The starting state, from the
perspective of the expert and through the e-puck camera, is
displayed in Fig. 1. Sixteen states and five macro-actions are
manually defined. The macro-actions involve: stay motionless
for one time step, moving forward (resp. backward) for 3 time
steps, and rotate to the left (resp. to the right) for one time
step. The mapping from the robot camera image onto the state
space {1, . . . 16} is defined as follows. Given the set of pixels
Slum = {(xi, yi)} associated to the target (the stationary
robot) leds, the distance to the target is defined by discretizing
max(yi) in 5 values; the orientation w.r.t. the target is defined
by discretizing 1

2 (min(xi) +max(xi)) in 3 values. The case
where Slum is the empty set (no target in sight) corresponds
to the 16th state.

The robot demonstrates the selected policy for 80 time steps;
it then gets the expert’s feedback and the expert sets the robot
back to its initial position. The feedback is interpreted using
a built-in procedure: the expert activates the front (resp.) the
back e-puck sensors to indicate that the current behavior is
better (resp. worse) than the previous best one, and the side
sensors are activated to indicate that the current behavior is
neither better nor worse than the previous best one.

The parametric policy space is finite, associating one action
to each state. The parametric-to-behavioral space is defined as
follows. Letting the current trajectory generated from policy
πx be noted s0, . . . sH−1, where si ∈ {1, . . . , 16} is the robot
state at time i, the associated behavioral representation is set
to Φ(x) ∈ IR16 with Φ(x)[j] =

∑H−1
h=0 γ

hδj,sh where δj,sh is 1
iff the robot is in state j at time h, and 0 otherwise. Parameter
γ is set to .95 in the experiment.

The utility of a trajectory is integrated according to the
posterior probability distribution p(w|Ut), estimated using
importance sampling with a set of 50, 000 particles drawn
uniformly from the sphere in IR16. The policy maximizing the
EUS cannot be directly found as the EUS is not linear in u.
For this reason, the Query Iteration defined by [20] was used,
combined with an RL step. Firstly, 50 candidate utilities wi
are drawn according to p(w|Ut); for each such wi, an optimal
policy πi is computed using policy iteration and the predefined
transition model p. The average trajectory uxi associated to
πi is generated and EUS(uxi;Ut) is computed. A new utility
function

w =

∫
W

p(w|Ut)1{w·uxi>w·ut}dw

is defined and the process is iterated while the EUS increases.
Note that an alternative would be to use Direct Policy

Search (DPS, e.g. [10]) to optimize the EUS. Further work is
concerned with comparatively assessing Query Iteration and
DPS.

Fig. 1 displays the performance of MAY as follows. Figure
1.c shows the visiting frequency to the goal state (averaged
out of 5 runs) vs the number of expert’s feedback, a.k.a.
number of interactions. Interestingly, all 5 policies were
found to reach the goal state after 5 interactions; the observed
performance decrease in step 6 is explained by inspecting the
logs, showing that the expert made an error in one of the runs,
favoring a trajectory that spent significantly less time in the
goal state. Figs. 1.d, 1.e, 1.f show the utility weight of each
coordinate vs the number of interactions for three independent
runs. The red curve depicts the weight associated to the
goal state. Interestingly, the weight associated to some states
increases after the first interactions, and thereafter decreases,
due to the fact that these states are intermediate between the
starting and the goal states. Fig. 1.d displays the run where
the expert made a mistake (at the third feedback), causing the
weight associated to the ”nothing in sight” state to increase
and out-pass the other weights; this in turn leads astray the
optimal policy; however MAY recovers one iteration later.

Overall, this task requires a relatively low number of in-
teractions with the expert to be successfully achieved (circa
6 expert’s feedbacks; in APRIL [3] circa 10-15 expert’s feed-
backs were needed to learn e.g. the mountain car policy). The
docking task is indeed easy as safe trajectories, not visiting the
“nothing in sight“ state, can be found from the initial to the
target states. Further experiments will consider more difficult
target states.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

Expert feedback

True reward

(a) (b) (c)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7

Fe
a
tu

re
 w

e
ig

h
t

Expert feedback

Goal State

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7

Fe
a
tu

re
 w

e
ig

h
t

Expert feedback

Goal State

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7

Fe
a
tu

re
 w

e
ig

h
t

Expert feedback

Goal State

(d) (e) (f)

Fig. 1. a) Initial state from an observer’s perspective. b) Initial state from the e-puck camera perspective. c) Performance of the policy maximizing the
average utility vs number of interactions with the expert, averaged out of 5 runs. d, e, f) Utility weight vector in IR16 vs number of interactions for three
different runs. For each run, 16 curves, representing the weight of the 16 states, are displayed

B. Reaching a target state in a grid world

The second problem (Fig. 2) is concerned with reaching
a goal state in a grid world, in simulation, where the state
space involves 25 states and the action space involves 5
actions (up, down, left, right or stay motionless). In this latter
experiment, much less time-consuming than the former one,
a longer time horizon (H = 300 instead of H = 80) is
considered. Additionally, the impact of a stochastic transition
model is examined: the robot stays motionless with probability
1/2 if it can execute the selected action up, down, left or right
(respectively with probability 1 if the selected action would
send it through the wall). This setting aims at investigating in
depth the exploration of the search space achieved by MAY.

The expert’s feedback is emulated, preferring the trajectory
reaching at the earliest the target state, and otherwise, the
trajectory reaching the state nearest to the target state along
the 300 time steps.

As shown by Fig. 2.b, displaying the visiting frequency of
the goal state, averaged out of 41 independent runs, vs the
number of emulated expert’s feedbacks, this problem is more
difficult than the former one. Formally, after 60 feedbacks 75%
of the runs only reach the target behavior. This shortcoming
is blamed on the limited size of the particle set and its steep
weight decay. Indeed, a better approximation of the EUS
criterion requires the particles to be re-sampled (e.g. using
MCMC), all the more so as the size of the state space in-
creases. Figs 2.d, (respectively e. and f) display the frequency
of visits to the states during the 1-15 (resp. 15-30 and 31-
60) iterations of MAY. As could have been expected, Fig. 2.d
shows that initial policies mostly visit the regions close to
the starting state (iterations 1-15). Fig. 2.e shows that policies

explore farther regions at a later stage (iterations 16-30) and
correctly visit more the most interesting, upper rightmost
region. Later on however, it seems that the MAY strategy is
overly biased toward the exploration of the grid world (Fig.
2.f). A tentative interpretation blames the over-exploration on
the inappropriate cumulative preference; trajectories staying
longer in the goal state should be preferred.

V. DISCUSSION AND PERSPECTIVES

The main contribution of the present paper is to show the
feasibility of training a robot on-board, online, using an active
preference learning framework. The former APRIL framework
assumes that the expert’s preferences are noiseless; as could
have been expected, this assumption hardly holds in in-situ
experiments.

An extended Bayesian setting incorporating an integrable
noise model, is therefore proposed and investigated, defining
the MAY system. Several lessons are learned from the prelim-
inary experiments done with MAY in-situ and in simulation.

A first lesson is that experts (the authors) do make mistakes,
visibly leading astray the found policies; but MAY is shown to
recover from such errors in an easy, in-situ setting. A second
lesson, equally unsurprising, is that fine-grained information
should be leveraged by the expert, when comparatively as-
sessing policies: it was known that the expert must be able
to make differences between bad and very bad behaviors, to
prevent the system from facing a ”Needle in the Haystack“
problem (everything is bad, except the exact target behavior).
Symmetrically, it is suggested that the expert must be able
to make differences between good and very good behaviors,
between visiting the target state and staying in it, to limit the
over-exploration phenomenon.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

Expert feedback

True reward 0

 1

 2

 3

 4

 0 1 2 3 4

S
ta

te
 V

is
it

 F
re

q
u
e
n
cy

(a) (b) (c)

 0

 1

 2

 3

 4

 0 1 2 3 4

S
ta

te
 V

is
it

 F
re

q
u
e
n
cy

 0

 1

 2

 3

 4

 0 1 2 3 4

S
ta

te
 V

is
it

 F
re

q
u
e
n
cy

 0

 1

 2

 3

 4

 0 1 2 3 4

S
ta

te
 V

is
it

 F
re

q
u
e
n
cy

(d) (e) (f)

Fig. 2. a) The grid world: the agent initially in the start state S must visit the goal state G. b) Performance of the policy maximizing the average utility
against the number of expert’s feedback. c, d, e, f) Frequency of the state visits, averaged over all trajectories (c), during iterations 1-15 (d), during iterations
16-20 (e) and during iterations 31-60 (f).

Further work, inspired from [21], will investigate how to
extend MAY in order to learn from short and well focused
sub-behaviors. Indeed, the better framed the sub-behaviors,
the more informative the expert’s preferences will be. A
challenging issue is however related to the choice of the
starting state, conditioning the behavior framing. We shall
tackle the preference learning over (unknown) sub-behaviors
as a Multiple Instance ranking problem, considering that a
long behavior actually involves a set of sub-behaviors, and
that some sub-behaviors among the set, are responsible for
the expert’s ranking preferences. Incidentally this approach
will address the dependency of MAY onto the starting state.

Acknowledgments. The first author is funded by FP7 Eu-
ropean Project Symbrion, FET IP 216342, http://symbrion.eu/.

REFERENCES

[1] P. Abbeel and A.Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Carla E. Brodley, editor, ICML, volume 69 of ACM
International Conference Proceeding Series. ACM, 2004.

[2] Riad Akrour, Marc Schoenauer, and Michèle Sebag. Preference-based
policy learning. In ECML/PKDD (1), pages 12–27. Springer Verlag,
2011.

[3] Riad Akrour, Marc Schoenauer, and Michèle Sebag. April: Active
preference learning-based reinforcement learning. In ECML/PKDD (2),
pages 116–131. Springer Verlag, 2012.

[4] E. Brochu, N. de Freitas, and A. Ghosh. Active preference learning with
discrete choice data. In NIPS 20, pages 409–416, 2008.

[5] S. Calinon, F. Guenter, and A. Billard. On Learning, Representing
and Generalizing a Task in a Humanoid Robot. IEEE transactions on
systems, man and cybernetics, Part B. Special issue on robot learning
by observation, demonstration and imitation, 37(2):286–298, 2007.

[6] Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, and Sang-Hyeun
Park. Preference-based policy iteration: Leveraging preference learning
for reinforcement learning. In ECML/PKDD (1), pages 312–327.
Springer Verlag, 2011.

[7] Wei Chu and Zoubin Ghahramani. Preference learning with Gaussian
processes. In ICML, pages 137–144, 2005.

[8] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning.
In NIPS, 2005.

[9] Christos Dimitrakakis and Michail G. Lagoudakis. Rollout sampling
approximate policy iteration. Machine Learning, 72(3):157–171, 2008.

[10] Verena Heidrich-Meisner and Christian Igel. Hoeffding and bernstein
races for selecting policies in evolutionary direct policy search. In ICML,
page 51, 2009.

[11] Edouard Klein, Matthieu Geist, Bilal Piot, and Olivier Pietquin. Inverse
reinforcement learning through structured classification. In NIPS, pages
1016–1024, 2012.

[12] G. Konidaris, S. Kuindersma, A. Barto, and R. Grupen. Constructing
skill trees for reinforcement learning agents from demonstration trajec-
tories. In NIPS, pages 1162–1170, 2010.

[13] Chengju Liu, Qijun Chen, and Danwei Wang. Locomotion control of
quadruped robots based on cpg-inspired workspace trajectory generation.
In Proc. ICRA, pages 1250–1255. IEEE, 2011.

[14] A.Y. Ng and S. Russell. Algorithms for inverse reinforcement learning.
In P. Langley, editor, ICML, pages 663–670. Morgan Kaufmann, 2000.

[15] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills
with policy gradients. Neural Networks, 21(4):682–697, 2008.

[16] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, 1998.

[17] Symbrion. FP7 European Project FET IP 216342, June 2009. URL
http://symbrion.eu/.

[18] Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan &
Claypool, 2010.

[19] Paolo Viappiani. Monte-Carlo methods for preference learning. In Proc.
Learning and Intelligent OptimizatioN, LION 6. LNCS, Springer Verlag,
2012.

[20] Paolo Viappiani and Craig Boutilier. Optimal Bayesian recommendation
sets and myopically optimal choice query sets. In NIPS, pages 2352–
2360, 2010.

[21] Aaron Wilson, Alan Fern, and Prasad Tadepalli. A Bayesian approach
for policy learning from trajectory preference queries. In NIPS, pages
1142–1150, 2012.

http://symbrion.eu/
http://symbrion.eu/

	Introduction
	State of the art
	Formal background
	Policy Learning with no rewards
	Interactive optimization

	May Overview
	April
	Preference and noise model
	Active policy selection

	Experimental results
	Reaching a target robot
	Reaching a target state in a grid world

	Discussion and Perspectives

