
Composable energy policies for reactive
motion generation and reinforcement
learning

Journal Title
XX(X):1section*.1–28Learning to hit a
pucktable.caption.47
©The Author(s) 2022
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Julen Urain1, Anqi Li2, Puze Liu1, Carlo D’Eramo3,4 and Jan Peters1

Abstract
In this work, we introduce Composable Energy Policies (CEP), a novel framework for multi-objective motion generation.
We frame the problem of composing multiple policy components from a probabilistic view. We consider a set of
stochastic policies represented in arbitrary task spaces, where each policy represents a distribution of the actions
to solve a particular task. Then, we aim to find the action in the configuration space that optimally satisfies all the
policy components. The presented framework allows the fusion of motion generators from different sources: optimal
control, data-driven policies, motion planning, handcrafted policies. Classically, the problem of multi-objective motion
generation is solved by the composition of a set of deterministic policies, rather than stochastic policies. However,
there are common situations where different policy components have conflicting behaviors, leading to oscillations or
the robot getting stuck in an undesirable state. While our approach is not directly able to solve the conflicting policies
problem, we claim that modeling each policy as a stochastic policy allows more expressive representations for each
component in contrast with the classical reactive motion generation approaches. In some tasks, such as reaching a
target in a cluttered environment, we show experimentally that CEP’s additional expressivity allows us to model policies
that reduce these conflicting behaviors.
A field that benefits from these reactive motion generators is the one of robot reinforcement learning. Integrating these
policy architectures with reinforcement learning allows us to include a set of inductive biases in the learning problem.
These inductive biases guide the reinforcement learning agent towards informative regions or improve collision safety
while exploring. In our work, we show how to integrate our proposed reactive motion generator as a structured policy
for reinforcement learning. Combining the reinforcement learning agent exploration with the prior-based CEP, we can
improve the learning performance and explore safer.

Keywords
Reactive Motion Generation, Skill Composition, Reinforcement Learning, Energy Based Models, Multi-objective
optimization

1 Introduction
Many robotic tasks deal with finding control actions
satisfying multiple objectives. A seemingly simple task such
as watering plants requires satisfying multiple objectives
to perform it properly. The robot should reach the targets
(the plants) with the watering can, avoid pouring water on
the floor while approaching, and avoid colliding with and
breaking the plant’s branches by its arms. In contrast with
sequential tasks (Sutton et al. 1999; Kaelbling and Lozano-
Pérez 2011, 2013), in which the objectives to be satisfied are
concatenated in time, in this work we consider tasks in which
multiple geometric objectives must be satisfied in parallel.

The problem has been faced with a spectrum of solutions
that balance between global optimality and computational
complexity. Path planning methods (LaValle and Kuffner
2001; LaValle 2006; Kavraki et al. 1996) find a global
trajectory from start to goal by a computationally intense
Monte-Carlo sampling process. Trajectory optimization
methods (Toussaint 2009; Ratliff et al. 2009; Kalakrishnan
et al. 2011; Schulman et al. 2014; Mukadam et al. 2018)
reduce the computational burden of planning methods
by searching the global trajectory given initial trajectory
candidates. These methods reshape the global trajectory

to satisfy the objectives. However, they still require
solving an optimization problem over long temporal
horizon trajectories. The computational requirements of
these algorithms limit the possibility of exploiting them
for reactive motion generation. Computationally lighter,
Model Predictive Control (MPC) methods (Morari and Lee
1999; Poignet and Gautier 2000; Williams et al. 2017;
Bhardwaj et al. 2022) consider the problem of solving
a short-horizon trajectory optimization problem reactively.
Rather than assuming the problem of solving the trajectory
optimization problem for the whole trajectory, these methods
consider the problem of solving the trajectory optimization
problem in a receding horizon reducing the computational
requirements.

1Intelligent Autonomous Systems, TU Darmstadt, Germany
2 Robot Learning Lab, University of Washington, USA
3 Institute of Computer Science, University of Würzburg, Germany
4 Hessian.AI, The Hessian Center for Artificial Intelligence, Germany

Corresponding author:
Julen Urain TU Darmstadt, FG IAS, Hochschulstr. 10, 64289
Darmstadt (Germany)
Email: julen@robot-learning.de

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

Figure 1. Visual Representation of modular control for Goto + Obstacle Avoidance. In the top box, we show Artificial Potential
Fields (APF) (Khatib 1985). In the bottom box, we show Composable Energy Policies (CEP). In contrast, with the APF method,
which sums deterministic actions (goto, avoid an obstacle), CEP computes the product of the policy distributions and then finds the
maxima of the composition. The composition will provide a high probability to those actions that satisfy both components and low to
the rest. Robot: blue circle, obstacle: red circle, and target: green cross. Thick dotted line: performed trajectory, lightly dotted line:
possible future trajectories.*

Artificial Potential Fields (APF) methods (Khatib 1985;
Ge and Cui 2002) and more recently Riemannian Motion
Policies (RMP) methods (Ratliff et al. 2018; Kappler et al.
2018; Cheng et al. 2018; Bylard et al. 2021; Shaw et al.
2021; Aljalbout et al. 2021) are one of the most popular
approaches for reactive motion generation in manipulators.
In contrast with path planning or trajectory optimization
methods, these methods propose to solve a myopic (one-
step ahead) control problem. Given the problem is local, the
computational cost is very low and they can be used with
high control frequencies. These methods propose to solve the
multi-objective control problem by the composition of a set
of deterministic actions. Each action is computed to satisfy
a particular objective. Then, the optimal composing action is
found by solving a least-squares optimization problem given
all the action components. The solution of the optimization
problem can be analytically represented by a weighted sum
of the action components. The sum of the actions defines
a trade-off between the components with the weighting
term (the metric) giving the relevance of each component.
In these methods, it is common to have conflicting action
components that make the robot get stuck.

Similarly to RMP and APF, we consider the problem
of solving a one-step-ahead control problem. Considering a
short-horizon problem reduces the variables to optimize and
thus, we can guarantee sufficiently high control frequencies
to be reactive for a high dimensional robot. In contrast
with RMP and APF methods that assume deterministic
policies to model the optimal behavior for each objective, we
propose combining stochastic policies πk. We hypothesize
that considering arbitrary stochastic policies increases the
expressivity on how to model the policies and we might
represent policies that reduce the conflicting solutions in the
composition. To find the composed action, we propose an
optimization problem defined as a maximization over the log
of the product of a set of stochastic policies (Paraschos et al.
2013; Haarnoja et al. 2018a)

a∗ = argmax
a

log

(∏
k
πk(a|s)

)
, (1)

with action a and state s. One can view the product of
policies as a probabilistic instance of a logical conjunction
(AND operator) (Du et al. 2020; Tasse et al. 2020)
between the action distributions (see Figure 1 for visual
representation). The product of policies will set a high

probability to the actions that are likely to sample in all the
components and low to the rest. If we would like to sample
an action from the product of policies, we might apply
Markov Chain Monte Carlo (MCMC) sampling process over
the product of policies. In contrast, if we aim to obtain the
action that satisfies best the composition, we can compute
the maximum likelihood action (1).

Beyond local reactive navigation, policy composition
has become a relevant approach to integrate inductive
biases in robot Reinforcement Learning (RL) (Silver et al.
2018; Peng et al. 2019; Johannink et al. 2019; Li et al.
2021). These policy architectures allow the integration
of reinforcement learning agents with prior knowledge.
Rather than directly sampling the action commands for
the robot, the reinforcement learning agent explores the
parameter space of a structured policy. This structured model
allows exploring safer or biasing the exploration towards
informative regions. Nevertheless, prior methods assume
explicit functions (Silver et al. 2018; Johannink et al. 2019;
Li et al. 2021) to represent the structured policies. In contrast
with previous methods, in our work, we propose to consider
the optimization problem in (1) as the structured policy. We
show empirically, that considering an implicit function to
represent the structured policy allows us to explore with
fewer collisions with respect to previous structured policies.

1.1 Contribution
A preliminary version of this paper was published as (Urain
et al. 2021) in R:SS 2021. The current version complements
the previous paper with multiple contributions:

1. We present an extended theoretical analysis relating
RMP with Composable Energy Policies (CEP).
Understanding how both methods are theoretically
related allows a better comprehension of the obtained
results and provides additional intuition for the
practitioners to choose the method that fits their needs.

2. We provide a novel approach to model energy policies.
In contrast with (Urain et al. 2021) that proposed
handcrafted energy policies to deal with a set of

∗Artificial Potential Fields can be framed as Composable Energy Policies,
with each energy component represented by a quadratic function. For
visualization purposes, we choose the classical representation of the sum
of deterministic actions.

Prepared using sagej.cls

Urain et al. 3

objectives, we derive the optimal control policies for a
set of reward functions. Computing the policies as the
solution of an optimization problem allows us to better
understand what objectives each policy component
aims to maximize.

3. We extend the experiments presented in (Urain et al.
2021), with additional evaluations. The additional
experiments have been conducted to answer missing
questions such as computational time of CEP, required
optimization parameters, the performance of CEP
under different RL algorithms or clarifying the benefits
of the inductive biases in the reinforcement learning
problem.

4. We have conducted new experiments in a real robot
scenario. We evaluate the performance of CEP to
solve a pick and place task with a real robot in a
human-robot interaction environment. We measure the
performance of the robot under human disturbances or
online modifications of the picking and placing target
positions.

Notation As our discussion will involve a set of policies
and a set of spaces in which these policies are represented,
we will use superscript (πk) to represent the space in which
the policy is and subscript (πk) to represent the policy index.
We represent the state by (s) and the action by (a). The space
(Q) represents the state-action space in the configuration
(sq,aq) ∈ Q with sq and aq being, respectively, the state
and action in the configuration space. (Xk) represents the
state-action space in the k task space (sxk ,axk) ∈ Xk. fx

q :
Q −→ Xk represents a transformation map from space Q to
space Xk. This map moves the state-action pairs from the
configuration space to a task space.

1.2 Overview of APF and RMP
In reactive motion generation, we deal with the problem of
generating the robot’s motion online. The developed methods
are required to have a low computational cost so that the
robot responds fast to unexpected situations. Additionally,
the generated motion should be able to deal with multiple
tasks concurrently and represented in arbitrary spaces, such
as avoiding collisions with multiple robot links, reaching a
target with the end-effector, or avoiding joint limits. In APF
and RMP, the optimal action is proposed to be computed
by a weighted sum of the accelerations (RMP) or torques
(APF) components solving each particular task. In RMP,
each acceleration component is the output of a task space
second-order dynamic system.

Let us assume a set of transformation maps fx0
q , . . . ,fxK

q ,
mapping the position, velocity and acceleration in the
configuration space (q, q̇, q̈) ∈ Q, to a set of task spaces
(xk, ẋk, ẍk) ∈ Xk; with fxk

q : Q −→ Xk represented by

xk = ϕxk
q (q)

ẋk =
d
dt
ϕxk
q (q) = Jxk(q)q̇

ẍk =
d2

dt2
ϕxk
q (q) = Jxk(q)q̈ + J̇xk(q)q̇ ≈ Jxk(q)q̈, (2)

with Jxk = ∂ϕxk
q (q)/∂q the Jacobian of the forward

kinematic function ϕxk
q . The transformation for the

acceleration is usually approximated dropping out the
curvature term J̇xk(q)q̇. Given the integration steps in
control loops (running between 100 Hz and 1 kHz) are small
it is a valid approximation (Ratliff et al. 2018).

Let us also consider a set of task space second-order
dynamics systems ẍk = gxk(xk, ẋk), with a metric Λxk

associated to them. APF and RMP methods deviates in
how the metric Λxk is represented and applied to weight
the components. In APF, the metric is conditioned on the
position, while in RMP, the metric is conditioned on both
position and velocity. Given the kinematics model in (2),
in (Ratliff et al. 2018), the dynamics and the metric in the
configuration space Q are represented by

gqk(q, q̇) = J
xk†gxk(ϕxk

q (q),Jxk(q)q̇)

Λq
k = Jxk⊺ΛxkJxk , (3)

with Jxk† being the Jacobian pseudoinverse.
Finally, the acceleration in the configuration space is

computed by a weighted-sum of all the dynamics systems
represented in the configuration space

q̈ =

(∑
j
Λq

j

)−1∑
k
Λq

kg
q
k. (4)

Instead, APF (Khatib 1985) methods do not compute the
metric normalization

τ =
∑

k
Λq

kg
q
k. (5)

The solution in (4) is proven to be the optimal action for a
least-squares optimization problem (Ratliff et al. 2018)

q̈∗ = argmin
q̈

∑
k

1

2
||q̈ − gqk| |

2
Λq

k
. (6)

Each dynamic component represents the policy to satisfy
a particular objective, while the metric weights the influence
of each component in the composed action.

2 Composable Energy Policies
We will first motivate our approach and, subsequently, we
introduce the different elements our policy architecture is
composed of.

2.1 Motivation
Composable energy policies (CEP) aims to provide a novel
framework for multi-objective reactive motion generation.
Our proposed method should be able to compute high
frequency (100Hz-1kHz) control actions to apply in the
robot. The computed action should be able to jointly satisfy
multiple objectives. Additionally, we aim to model each
component by an arbitrary stochastic policy.

The key idea of our proposed model is that in contrast
to APF and RMP methods, we rather consider arbitrary
stochastic policies to model each component. This leads to an
optimisation problem where the cost of each component is no
longer a quadratic function as in (6). We expect that, given
that we can model each component arbitrarily, our method
will be able to more easily find an action that satisfies all the
objectives if the policies are chosen correctly. We visualize
this intuition in Fig. 1.

Prepared using sagej.cls

4 Journal Title XX(X)

2.2 Problem statement
Let us consider a set of stochastic policies, πxk

k (axk |sxk),
where each policy represents the optimal distribution in the
action space to satisfy a particular objective. Each policy is
represented in an arbitrary state-action space Xk. Let us also
consider a set of transformation maps fxk

q

sxk = fxk
qs (s

q)

axk = fxk
qa (s

q,aq), (7)

that relates the configuration space Q, with the task spaces
Xk, in which each policy is defined. We aim to find the
action in the configuration space, aq that better satisfies all
the policies. We frame the multi-objective reactive motion
generation problem as an optimization problem defined by
the policies and the task maps

aq∗ = argmax
aq

log

(∏
k
πxk(axk |sxk)

)
s.t. (axk , sxk) = fxk

q (aq, sq) ∀k, (8)

with fxk
q (aq, sq) ≡ (fxk

qa (s
q,aq),fxk

qs (s
q)) and sq the

current state in the configuration space. We assume sq

is given. The optimization in (8) represents our proposed
reactive motion generation. Thus, we aim to solve this
optimization in low computational time to guarantee high
frequency control commands.

2.3 Composable energy policies method
Let us assume a set of independent stochastic policies
π1(a|s), . . . , πK(a|s) modeled by a Gibbs distribution

πi(a|s) =
exp(Ei(a, s))

Zi(s)
, (9)

where E : S ×A → R is an arbitrarily represented energy
function and Z(s) =

∫
a
exp(E(a, s))da is the normaliza-

tion factor. The choice of Gibbs distribution is not arbitrary.
Gibbs distribution allows representing an arbitrary distribu-
tion by a suitable definition of the energy function E (Gibbs
1902). Additionally, computing the product of experts

π(a|s) =
∏

k
πk(a|s) ∝ exp

(∑
k
Ek(a, s)

)
, (10)

will end up in a weighted sum over the individual
energy components in the exponential. Having the energy
components linearly related is computationally beneficial.
Given a set of energy components, in practice, we can
parallelize the computation of all the components by
multi-processing increasing the control frequency. Even if
modeling the policy as a product of experts might seem an
arbitrary choice, we show in Section 3 that, given a set of
energy policies π1, . . . , πK , the product of experts represents
the distribution of the optimal behavior to satisfy all the
policy components (Jaynes 1957).

2.3.1 Energy trees Inspired by APF (Khatib 1987) and
RMP (Ratliff et al. 2018), we propose to model the
composition of energies in different task spaces. In the
composition proposed in (10), each energy function is
considered to be in the same state-action space. However,

in most of the robotics scenarios, we might be interested in
composing together energies defined in different task spaces.
Reaching a target while avoiding the obstacles, composes
skills defined in different task spaces. To solve the task, we
might require to define an attractor policy in the end-effector
space of the robot and additional obstacle avoidance policies
in different cartesian points in the links of the robot.

Our architecture is composed of two main components.
First, we have a set of policies πxk(axk |sxk), defined in
different state-action task spaces (sxk ,axk) ∈ Xk. Second,
we consider a set of deterministic mappings that transform
the state-action pairs in the configuration space (sq,aq) ∈ Q
to the state-action task spaces Xk, fxk

q : Q −→ Xk.
Consider the optimisation problem from (8). For a single

policy component. The problem is written as (TODO)

aq∗ = argmax
aq

log πxk(axk |sxk)

s.t. axk = fxk
qa (a

q, sq) (11)

sxk = fxk
qs (s

q). (12)

The unconstrained representation of the optimization
problem in (11) is

aq∗ = argmax
aq

log πxk(fxk
qa (a

q, sq)|fxk
qs (s

q)). (13)

Moreover, given we are considering Gibbs distributions
to represent each policy component, we can represent the
optimization problem by

aq∗ = argmax
aq

Exk(fxk
q (aq, sq))− logZxk(sxk). (14)

The objective function is represented in terms of the energy
function Exk and the log of the normalization function Zxk .
We can follow similar derivation for the multi-objective
problem. The objective function J for the unconstrained
problem of (8) is represented as

J (aq) = log
∏

k
πxk(fxk

q (aq, sq))

=
∑

k
log πxk(fxk

q (aq, sq))

=
∑

k
Exk(fxk

q (aq, sq))− logZxk(sxk).

(15)

Additionally, from (7), given the normalization term does not
depend on the action aq , we can neglect it from our objective
function and optimize over the sum of the energy functions.
In our work, we propose to compute the control action for our
robot by the maximization of (15), aq = argmaxaq J (aq).
In the general case, this optimization function lacks an
analytical solution and we will use stochastic optimization
methods to optimize it (De Boer et al. 2005).

Framing the robot control in terms of an implicit function
has several interesting properties in contrast with the explicit
counterpart (Khatib 1987; Ratliff et al. 2018). The first is that
we are not constrained in the policy function. In CEP we
can assume an arbitrary stochastic policy to represent each
component, whereas explicit models assume deterministic
policies. As we show in Section 3, RMP components can be
thought as normal distributions from CEP lenses. This policy
model freedom provides the practitioner with a much wider

Prepared using sagej.cls

Urain et al. 5

range of opportunities to design policies or learn them with
arbitrary energy based models (Urain et al. 2020; Florence
et al. 2022). An implicit representation has additional
relevant properties with respect to APF and RMP methods.
To compute the desired acceleration in the configuration
space; explicit methods require to invert the transformation
map ẍ ≈ Jq̈, to move the desired acceleration from the task
space to the configuration space. If the robot’s configuration
is close to a singularity, a small velocity in task space will
result in a big velocity in joint space. In contrast, in CEP,
given we are considering the implicit representation, we do
not require to invert the transformation map as the energy is
directly evaluated in the task space.

2.4 Optimization of composable energy
policies

In the following, we introduce the algorithm we use to solve
our optimization problem. In our problem, the optimal action
is obtained by a maximization over the logarithm of the
product of a set of expert policies (8). From the derivation
in (15), if each policy is defined by a Gibbs distribution, the
optimization function is

aq∗ = argmax
aq

∑
k
Exk(fxk

q (aq, sq)), (16)

with Exk being a set of given energy functions defined in
arbitrary task spaces X k and fxk

q being the transformation
map that transforms a state-action pair in the configuration
space (sq,aq) ∈ Q to the different task spaces X k.

We aim to solve the optimization in (16) in high control
frequencies (100Hz-1kHz) to run it as a reactive motion
generator. Additionally, the energy function might be non-
differentiable. We propose to solve the optimization problem
in (16) by cross-entropy methods (Botev et al. 2013). The
proposed method is presented in Algorithm 1.

We initialize our algorithm transforming the state in the
configuration space, sq to the different task spaces sxk . As
shown in (7), the task space states do not depend on the
action and we directly compute them given the configuration
state. In terms of computational efficiency, it is relevant
to compute the task space state out of the optimization
loop as it might be computationally demanding (usually, we
compute the forward kinematics in this stage). Then, we
initialize the cross-entropy optimization for the configuration
space action. We define a proposed sampling distribution
q(aq) = N (aq|µ,σ2I). Then, for I optimization steps, we
first sample a set of N action candidates in the configuration
space aq

0:N . To evaluate the samples, we first transform
the samples to the set of K task spaces axk

0:K . In practise,
we consider an affine map between aq and axk .Thus,
we can apply tensor multiplication and transform all the
samples aq

0:N to all the task spaces accelerations in a single
step. Finally, the energies are computed on each energy
component and the contributions summed.

In our problem, we consider two approaches to update the
sampling distribution q(aq). As proposed in (Botev et al.
2013), the mean and variance are updated by first selecting
the M particles with the highest energy value. Then, the

Algorithm 1: Composable Energy Policies

Given: N : Number of samples;
sq: Current state in configuration space;
K: Number of energy components;
(fx1

q , Ex1), . . . , (fxK
q , ExK)): Task maps and

energies;
I: Optimization steps;
(µ0,Σ0): Initial sampling distribution mean and
variance;
(a∗, e∗): Initial optimal action and energy;

for k ← 1 to K do
sxk = fxk

qs (s
q); Map configuration state to task states

for i← 1 to I do
aq
0:N ∼ N (µi,Σi); Sample N action candidates

for k ← 1 to K do
axk
n = fxk

q (sq,aq
0:N); Map actions to task spaces

exk

0:N = Exk(sxk ,axk

0:N); Evaluate energy

eq0:N =
∑K

k=1 e
xk

0:N ; Sum all energies

µi+1 ← Updateµ(µi,a
q
0:N , eq0:N); With (17) or (18)

Σi+1 ← UpdateΣ(Σi,a
q
0:N , eq0:N); With (17) or (18)

a∗
i , e

∗
i ← argaq maxe(e

q
0:N); pick optimal action

if e∗ < e∗i then
a∗ ← a∗

i ;
e∗ ← e∗i ;

return a∗;

optimal mean and variance are computed by

µ∗ =
1

M

M∑
m=0

aq
m

σ∗2 =
1

M

M∑
m=0

(aq
m − µ∗)2. (17)

Alternatively, we also considered a soft update version. We
represent the update by a reward weighted regression (Peters
and Schaal 2007)

µ∗ =
1∑N

k=0 ωk

N∑
n=0

ωna
q
n

σ∗2 =
1∑N

k=0 ωk

N∑
n=0

ωn(a
q
n − µ∗)2, (18)

with ωn = β exp(−βeqn). eqn is the total energy for the n
action sample and β > 0 is a temperature parameter that
scales the energies for the weighted mean and variance in
(18).

Rather by cross-entropy (Botev et al. 2013) or by reward
weighted regression (Peters and Schaal 2007), the mean and
standard deviation for the next optimization step µi+1 is
computed by smoothing the solution between the optimal
one µ∗ and the previous one µi

µi+1 = αµi + (1− α)µ∗

σi+1 = ασi + (1− α)σ∗. (19)

Prepared using sagej.cls

6 Journal Title XX(X)

Smoothing is often crucial to prevent premature shrinking of
the sampling distribution (Botev et al. 2013).

It is common in model predictive control algorithms (Oht-
suka 2004) to assume that consecutive optimal control prob-
lems are similar to each other. This allows initializing the
optimization with the previously computed optimal solu-
tion. In our work, we assume our optimization problem is
myopic (we only optimize for a single look ahead step) and
the energy functions might be non-continuous. Thus, we lack
any guarantee of the consecutive optimal control problems to
be similar to each other. In conclusion, we always initialize
our optimization problem with zero mean and a sufficiently
wide standard deviation.

3 An inference view on policy composition
In this section, we derive from an inference view the
proposed optimization problem in (1). We additionally
highlight the connections between RMP and CEP and prove
that RMP methods can be considered a particular case of
CEP.

Let us assume we aim to find the action distribution
that satisfies in the optimal way a set of stochastic policies
πk(a|s). Similarly to control-as-inference (Rawlik et al.
2012; Levine 2018) approaches, we introduce an additional
variable oπk

. This variable is a binary random variable,
where oπk

= 1 denotes how likely state-action pair is
optimal for the policy πk and oπk

= 0 denotes how unlikely.
We choose to model the distribution over the ”likelihood
variable” oπk

by

p(oπk
= 1|s,a) ∝ πk(a|s) ∝ exp(Ek(s,a)). (20)

From (20), we can observe that for those cases in which
the distribution is conditioned on the optimal state-action
pairs for a particular policy πk, the probability for oπk

= 1
is going to be high. While if the action is not an action
with a high likelihood for πk(·|s), the optimality probability
p(oπk

= 1|s,a) will be low.

s a

o0 o1 o2

Figure 2. Graphical model for Composable Energy Policies. ok
is an auxiliary variable that represents the optimality of s0 and
a0 for a particular policy.

Let us consider we aim to be optimal for a set of
policies πk. We can represent the Bayes net relating the
optimality variables and the state and action as in Figure 2.
The likelihood for the graphical model in Figure 2 can be
computed as the product of the terms

p(s,a, o0:2) = q(a)p(s)

2∏
k=0

p(ok|s,a). (21)

with p(s) and q(a) the prior distributions for the state and
the action consecutively.

Following the Bayes net, we can represent the posterior
distribution over the action space when conditioned to oπk

=
1 and s = s0 by

p(a|s = s0, o0:K = 1) ∝ q(a)

K∏
k=0

p(oπk
= 1|s0,a)

∝ q(a)

K∏
k=0

πk(a|s) ∝ q(a) exp

(
K∑

k=0

Ek(a, s)

)
. (22)

Considering the prior distribution over the action space
to be uniform, q(a) = 1/A, we observe that the posterior
distribution given all the optimality variables are 1 is
the product of policies. By taking the maximum a
posteriori estimate, a∗ = argmaxa p(a|s = s0, o0:K = 1),
we compute the action that optimizes over the composition
of all optimal distributions. The optimization problem is the
one of (1).

In our work, we additionally consider a hard constraint
that relates the state-action pairs in the configuration space
with the state-action pairs in the task space (8). We integrate
the constraints between the configuration space and the
task space by a deterministic node in the graphical model
(Figure 3). The deterministic node in the transformation will
induce a delta distribution relating the state action pairs in
the configuration space and in the task spaces

p(sxk ,axk |sq,aq) = δ((sxk ,axk)− fxk
q (sq,aq)). (23)

sq

aq

fx1
q

sx1

ax1

fx2
q

sx2

ax2

ox2 ox1

Figure 3. Graphical model for Composable Energy Policies
with task space policies. oxk is an auxiliary variable that
represents the optimality of sxk and axk for a particular policy
in that task space.

The likelihood function for the graphical model is
represented by the product of the terms

p(sq,aq, sx0:2 ,ax0:2 , ox0:2) =

p(sq)q(aq)

2∏
k=0

p(sxk ,axk |sq,aq)p(oxk
|sxk ,axk). (24)

Given that we aim to compute the posterior for aq and
assuming sq and ox0:2 are given, we marginalize the joint
distribution with respect to the rest of the variables

p(sq,aq, ox0:2
) =∫

sx0:2

∫
ax0:2

p(sq,aq, sx0:2 ,ax0:2 , ox0:2)ds
x0:2dax0:2 .

(25)

The relation between the configuration state-action pairs and
the task space action pairs is given by (23). Given the relation

Prepared using sagej.cls

Urain et al. 7

is defined by a delta distribution, the marginal distribution
can be represented by a simple substitution of variables

p(sq,aq, ox0:2) = q(aq)p(sq)

2∏
k=0

p(oxk
|sq,aq), (26)

with p(ok|sq,aq) ∝ exp(Ek(f
xk
q (sq,aq))). Now, we can

follow a similar derivation to (22) and compute the posterior
distribution for the configuration space action aq .

3.1 Riemannian Motion Policies as
Composable Energy Policies

The control-as-inference literature (Attias 2003; Toussaint
2009; Levine 2018) have widely studied the connections
between the cost functions and the distributions related to
them. From this viewpoint, RMP objective (6) can be framed
as a particular case of (8) where each policy component is
represented by a normal distribution. In the following, we
derive the Riemannian motion policies from an inference
perspective and show its relation with CEP.

Suppose each policy π is modelled by a normal
distribution, where the mean, gxk , is the desired optimal
action in the task space Xk, and the precision matrix, Λxk , is
the metric on the task space

π(axk |sxk) = N (gxk(sxk),Λxk(sxk)). (27)

We consider the action is defined by the acceleration, axk =
ẍk and the state by the position and velocity sxk = (xk, ẋk).

In RMP methods the action in the task space Xk and
in the configuration space Q are approximately related by
the pseudo-inverse Jacobian of the forward kinematics, q̈ ≈
Jx†

k ẍk. Given the map is linear, the policy distribution in
the task space (27) remains a normal distribution in the
configuration space

π(aq|sq) = N (Jx†
kgxk ,Jx⊺

kΛxkJxk), (28)

with the mean gq = Jx†
kgxk and the precision matrix Λq =

Jx⊺
kΛxkJxk . In CEP, we assume the posterior distribution

to maximize is modeled by the product of each policy (22).
For the particular case in which every policy is represented
by (28), the product of the policies remains a Gaussian,
p(a|s = s0, o0:K = 1) = N (µ,Λ) with

µ = (
∑
j

Λq
j)

−1
∑
k

Λq
kg

q
k

Λ =
∑
k

Λq
k. (29)

As we observe, the mean of the product of Gaussians is just
a weighted-sum of the mean of each independent component
and the precision matrix is the sum of each component. In
CEP, the action is computed by a maximum a posteriori
estimate over the posterior distribution p(a|s = s0, o0:K =
1). For the particular case in which the posterior is the
normal distribution in (29), the maximum a posteriori is the
mean of the Gaussian

q̈∗ = (
∑
j

Λq
j)

−1
∑
k

Λq
kg

q
k. (30)

As expected, the solution is the one from the RMP (4). As
shown in Urain et al. (2021), a similar derivation can be
follow to represent APF as special cases of CEP.

In conclusion, we can derive the RMP solution as a special
case of (8). To do so, we assume each policy component
is represented by a normal distribution with the mean equal
to the desired acceleration and the precision matrix equal to
the metric. We hypothesize that in some tasks, representing
all the policy components by a normal distribution might
not be expressive enough to solve the task properly. Normal
distributions assume that (1) there is a unique optimal
action (the mean) to solve the task and (2) the quality of
the actions is related to the Mahalanobis distance to the
optima. While tasks like reaching a target might satisfy
(1) and (2); tasks like obstacle avoidance might require
richer representations to properly solve the task. Rather than
limiting the policies to normal distributions, we consider
arbitrary shape distributions to represent each objective. In
the experimental section, we show empirically that for some
tasks, modeling the policy with non-normal distributions
might lead to better cooperation with the other components.

The scope of this paper is to study the relations
and performances of one-step control horizon controllers.
Nevertheless, given the clear relations of CEP with control-
as-inference in longer horizon problems, we study these
relations in the Appendix B.

4 A practical overview of energy policies

While the CEP framework can be used for arbitrary agents;
in our work, we focus on the problem of generating motion
for robot manipulators. The robot state in the configuration
space sq is represented by the robot’s position q, velocity q̇
and environment information c (obstacles position, obstacles
shape, target pose). The action in the configuration space aq

is the robot’s joint acceleration q̈.
The energy policies are defined in a set of task spaces. We

model the map from the configuration space to the different
task spaces fxk

q by the robot’s kinematics

xk = ϕxk
q (q)

ẋk = Jk(q)q̇ (31)

ẍk = Jk(q)q̈ + J̇k(q)q̇ ≈ Jk(q)q̈,

with ϕxk
q the forward kinematics to a given k task space

and Jk(q) = ∂xk/∂q, the Jacobian for the given forward
kinematics.

In CEP, we provide a framework to compose policies
from different motion generation paradigms such as
optimal control, imitation learning, movement primitives,
reinforcement learning, or handcrafted policies. In this
section, we introduce a practical overview of the different
sources from which a policy component could be computed.
In Section 4.1 we introduce a set of analytically computed
energy policies to represent a set of basic local behaviors.
Then, in Section 4.2, we introduce a set of possible methods
to learn energy policies from data. Finally, in Section 4.3, we
briefly introduced a set of methods to obtain energy policies
from optimal control or reinforcement learning.

Prepared using sagej.cls

8 Journal Title XX(X)

Task definition Input space (x, ẋ, ẍ) transformation (f) advantage function (A) reward function (r)

reach target position
Cartesian Task Space

(R3,R3,R3)

x = x

ẋ = ẋ

ẍ = ẍ

A(ẍ|x, ẋ) = −||ẍ− ẍg(x, ẋ)||2Λẍ

ẍg(x, ẋ) =
2

∆t2
(xg − x−∆tẋ)

Λẍ =
∆t4

4
Λ

r(x) = −||x− xg||2Λ

reach target orientation
Orientation Task Space

(SO(3),R3,R3)

θ = LogMapRg
(R)

ω′ = R−1
g ω

ω̇′ = R−1
g ω̇

A(ω̇′|θ,ω′) = −||ω̇′ − ω̇g(θ,ω
′)||2

Λω̇′

ω̇g(θ,ω
′) =

2

∆t2
(θ −∆tω′)

Λω̇′
=

∆t4

4
Λ

r(θ) = −||θ||2Λ

avoid obstacles
Cartesian Task Space

(R3,R3,R3)

do = ||x− xo||
v̂o = (x− xo)/do

ẋp = ẋ · v̂o
ẍp = ẍ · v̂o

A(ẍp|ẋp, do) =

{
0 if ẍp > αẍp(ẋp, do)

−∞ if ẍp ≤ αẍp(ẋp, do)

αẍp(ẋp, do) =
2

∆t2
(α− do − ẋp∆t)

r(do) =

{
0 if do > α

−∞ otherwise

avoid joint limits
Configuration Space

(R7,R7,R7)

q = q

q̇ = q̇

q̈ = q̈

A(q̈|q̇, q) =

{
0 if q̈ >

¯
q̈ and q̈ < ¯̈q

−∞ otherwise

¯
q̈(q̇, q) =

2

∆t2
(
¯
q − q − q̇∆t)

¯̈q(q̇, q) =
2

∆t2
(q̄ − q − q̇∆t).

r(q) =

{
0 if q >

¯
q and q < q̄

−∞ otherwise

joint velocity control
Configuration Space

(R7,R7,R7)

q = q

q̇ = q̇

q̈ = q̈

A(q̈|q, q̇) = −||q̈ − q̈g(q̇)||2Λq̈

q̈g(q̇) = q̇/∆t

Λq̈ = ∆t2Λ

r(q̇) = −||q̇||2Λ.

Table 1. Resume of the proposed basic local reactive energies. To compute a particular energy, first the input position x, velocity ẋ
and acceleration ẍ are transformed to a latent space by the maps in the third column. Then, the advantage is computed in the
latent space. The advantage function represents the energy function of our policy. Last column shows the reward that each policy is
trying to maximize.

4.1 Basic local reactive energies
In a previous work (Urain et al. 2021), we proposed
handcrafted models to represent the local reactive energies.
Handcrafted policies might lead to difficult parameter tuning
when using them and lack an intuition of the objective
they are trying to maximize. In this work, we propose
to represent the energies as value functions maximizing a
particular reward r : S −→ R. In multiple problems, defining
the behavior of the robot to solve a particular tasks with
a reward function might be more intuitive and easier than
defining it directly as a policy. If the task is easier to define in
the state space rather than the action space, a reward function
provides us with a natural form to describe the desired
behavior. For example, in the case of collision avoidance,
it is easier to represent the desired behavior in terms of
the robot’s position rather than with respect to the robot’s
acceleration. Modeling the energy of the policies in terms of
the value function has been widely studied in the maximum
entropy reinforcement learning community (Ziebart et al.
2010; Haarnoja et al. 2017). Under some assumptions, the
value functions can be computed analytically. This approach
allows the practitioner to understand the objective the policy
is trying to maximize and provides additional intuition to
tune the parameters.

The energies are represented by the optimal advantage
function A for a one-step control horizon problem

A(a|s) = r(s) + Eρ(s′|s,a) [V (s′)]− V (s), (32)

with V (s) = r(s) and ρ(s′|s,a) the transition dynamics.
We can observe, that for the particular case of one-step
control horizon with state dependant rewards, the advantage
function is simply the expected value function given the
transition dynamics.

Defining the state s = (x, ẋ) by the position and the
velocity and the action a = ẍ by the acceleration, we model
the transition dynamics with the explicit Euler discretization

of a linear dynamic system

xt+1 = xt + ẋt∆t+
1

2
∆t2ẍt

ẋt+1 = ẋt +∆tẍt, (33)

with ∆t being the step size. In the following we show that for
some particular reward function, we can analytically derive
the optimal advantage function that we exploit as the energy
of our policy.

Target position Consider the problem of reaching a
certain target position. The reward function to solve the
problem can be modelled by the negative Mahalanobis
distance to the target position xg

r(x) = −||x− xg||2Λ. (34)

The advantage function for the one-step ahead optimal
control problem with state dependant reward is represented
by

A(a|s) = Eρ(s′|s,a)[r(s
′)]. (35)

Given the dynamics in (33) are deterministic, the optimal
advantage function can be computed analytically, by
applying a change of variables in the reward (34)

A(ẍ|x, ẋ) = −||ẍ− ẍg(x, ẋ)||2Λẍ , (36)

with

ẍg(x, ẋ) =
2

∆t2
(xg − x−∆tẋ)

Λẍ =
∆t4

4
Λ. (37)

The maximum acceleration of the advantage function is the
one that moves a point in ∆t to the xg . In our work we want
to control the robot in fast control rates (< 0.01s). When the

Prepared using sagej.cls

Urain et al. 9

robot is far from the target, reaching the target in that small
∆t will require the robot to achieve very high accelerations.
To avoid it, we model the new target position x̂g by

x̂g = x+
max(||xg − x||, α)
||xg − x||

(xg − x). (38)

The following equation projects the target position xg to
a ball centered in x and with a radius α. This way, the
maximum Euclidean distance between the desired target and
the current position is limited to α.

Target orientation We can apply a similar approach for
reaching the desired orientation. In our work, we consider
the orientation is represented in a Lie group R ∈ SO(3).
Modeling a distance metric as the reward function is hard
in the Lie Group given it is not a Euclidean space (Sola et al.
2018). To properly model the reward function, we first map
the rotation to the Lie algebra so(3) centered in the target
orientation Rg ∈ SO(3) (We transform the rotation matrix
to the axis-angle representation)

θ = LogMapRg
(R), (39)

with LogMap being the logarithmic map that moves a point
in the Lie Group to the Lie algebra. The Lie algebra is an
Euclidean space in which we can apply calculus. Given the
Lie algebra is centered at the target Rg , the desired target
position in the Lie algebra is θg = 0; the origin. Thus, we
can model the reward in so(3) by

r(θ) = −||θ||2Λ. (40)

The reward function will maximize when θ = 0 and
quadratically reduces with respect to the Euclidean distance
in the Lie algebra.

To compute the optimal advantage function, we first
transform the rotation velocity and accelerations from the
world frame (We compute the world frame velocity and
acceleration in (2)) to the target orientation frameRg

ω′ = R−1
g ω

ω̇′ = R−1
g ω̇. (41)

This map is known as the adjoint operation in the Lie Group
theory (Sola et al. 2018). The linear dynamics in the Lie
algebra are

θk+1 = θk + ω′
k∆t+

1

2
∆t2ω̇′

k

ω′
k+1 = ω′

k +∆tω̇′
k. (42)

Once everything is represented in the Lie algebra centered
at Rg , we can similarly to (36) compute the advantage
function

A(ω̇′|θ,ω′) = −||ω̇′ − ω̇g(θ,ω
′)||2

Λω̇′ , (43)

with

ω̇g(θ,ω
′) =

2

∆t2
(θ −∆tω′)

Λω̇′
=

∆t4

4
Λ. (44)

Similarly to (36), the acceleration maximizing the advantage
is the one that sets the rotation to Rg in ∆t. To bound the
acceleration in the rotation we can also bound the target as in
(38).

Obstacle avoidance We represent obstacle avoidance
energy in the unidimensional space represented by the vector
between a cartesian robot position x in a certain task space
and the cartesian obstacle position xo. We compute this
energy for every combination of a set of task space points P
and a set of obstacles O. The total obstacle avoidance energy
components are P ×O.

We first compute the distance to the obstacles and the
vector pointing to the obstacle

do = ||x− xo||
v̂o = (x− xo)/do, (45)

with do being the distance and v̂o the vector pointing to the
obstacle.

We define the obstacle avoidance reward function by

r(do) =

{
0 if do > α

−∞ if do ≤ α
, (46)

with α being a parameter that represents the minimum
allowed distance to the obstacle. The proposed reward
function allows the robot to be in any position except those
that approximate to the obstacle to a distance below α.

To represent the advantage function, we first compute the
velocity and acceleration projected in the vector v̂o

ẋp = ẋ · v̂o
ẍp = ẍ · v̂o. (47)

Given the dynamics in (33), the dynamics in the projected
space are

dok+1 = dok + ẋpk∆t+
1

2
∆t2ẍpk

ẋpk+1 = ẋpk +∆tẍpk. (48)

Then, we represent the advantage function in the uni-
dimensional space represented by the vector between the
current task space point and the obstacle

A(ẍp|ẋp, do) =

{
0 if ẍp > αẍp(ẋp, do)

−∞ if ẍp ≤ αẍp(ẋp, do)
, (49)

with

αẍp(ẋp, do) =
2

∆t2
(α− do − ẋp∆t). (50)

Using the advantage function in(49) as the energy of a policy
represents a uniformly distributed policy

π(ẍp|ẋp, do) = U(αẍp(ẋp, do),∞) ∝ exp(A(ẍp|ẋp, do)).
(51)

Joint limits avoidance Similarly to the collision avoid-
ance energy, we apply a binary reward to bound the joint
limits. We define by

¯
q and q̄ the minimum and maximum

joints. We represent the reward by

r(q) =

{
0 if q >

¯
q and q < q̄

−∞ otherwise
. (52)

Prepared using sagej.cls

10 Journal Title XX(X)

Given the reward in (52), the advantage function is

A(q̈|q̇, q) =

{
0 if q̈ >

¯
q̈ and q̈ < ¯̈q

−∞ otherwise
, (53)

with

¯
q̈(q̇, q) =

2

∆t2
(
¯
q − q − q̇∆t)

¯̈q(q̇, q) =
2

∆t2
(q̄ − q − q̇∆t). (54)

Joint velocity control Due to the myopic behavior of CEP,
if the robot moves too fast, it might not be able to adapt
fast enough to avoid collisions. Thus, we are interested in
constraining the velocity the robot can achieve. We define a
reward for the configuration space velocity

r(q̇) = −||q̇||2Λ. (55)

Given the reward in (55), the advantage function is

A(q̈|q, q̇) = −||q̈ − q̈g(q̇)||2Λq̈ , (56)

with

q̈g(q̇) = q̇/∆t

Λq̈ = ∆t2Λ. (57)

All these control energies are purely local. As we have
shown, the proposed energies try to maximize a one-step-
ahead control horizon reward. While they perform well for
local navigation with obstacles, some tasks require a longer
horizon look ahead to properly solve the task. In these
situations, our myopic policies might fail. Nevertheless,
these ”smarter” policies could be obtained from data, given
some expert demonstrations are provided or by applying long
horizon optimal control or reinforcement learning and fitting
a value function that solves a long horizon problem. Then,
we could integrate these policies as an additional component
of our CEP.

4.2 Learning energy policies from data
A common approach to learn policies from data is by
behavioural cloning. Given a set of state-action pairs
demonstrations D : {si,ai}i=0:N , the policy is learned by
a conditioned maximum likelihood estimation

θ∗ = argmax
θ

Es,a∼D [log π(a|s;θ)] . (58)

While the most common case assumes a conditioned
Gaussian distribution as a policy model π, several works
consider more expressive policy models. In (Urain et al.
2020), a normalizing flow is used to model the policy
distribution, while in (Florence et al. 2022) an EBM is
proposed to model the policy and trained by contrastive
divergence (Hinton 2002).

Alternatively, we can build complex energy policies from
simply learned distributions

Mixture-of-Expert energies A possible option to repre-
sent multi-modal policy distributions is to build a mixture
of energies policies. Given a set of already given energies
E0, . . . , Ek, we can compute the mixture of energies

EM (a, s) = log
∑
k

wk(s) exp(Ek(a, s)), (59)

with wk the weighting term. For the particular case in which
the energy E is quadratic, the energy policy in (59) is the
energy of a Gaussian mixture model.

Negated energy policy A more conservative approach
to defining policies is by negative energies. Given a
certain policy distribution, we might want our algorithm
not to follow that policy without properly specifying
what should be the desired path to follow. Given
that the policy is modeled by energies of a Boltzman
distribution π(a|s) ∝ exp(E(a, s)), the negated policy
is straightforwardly computed by negating the energy,
πnot(a|s) ∝ exp(−E(a, s)). This policy will inform about
the action the robot should not do, rather than what to do.

4.3 Q-function in optimal control and
reinforcement learning

The previously proposed advantage functions only solve a
one-step-ahead control problem. Nevertheless, for several
problems, we require to solve a longer horizon optimization.
CEP enables integration of longer horizon value functions as
energy components. We can integrate value functions learned
by reinforcement learning (Haarnoja et al. 2018b) or optimal
control (Lutter et al. 2021).Alternatively, we could compute
the distribution for an optimal trajectory distribution by
particles as in Stein Variational MPC (Lambert et al. 2021)
and exploit this multi-modal distribution as a guiding policy.
These learned models can be afterward integrated with
additional energy policies to deal with specific parts that
were not covered in the RL or optimal control problem.

5 Composable energy policies for robot
reinforcement learning

In Reinforcement Learning, we deal with the problem of
finding the policy π that maximizes the accumulated reward,
R

max
π

Epπ(s,a)[R(s,a)]. (60)

with ρπ(s,a) being the stationary state action distribution,
given some transition dynamics, p(s′|s,a) and initial state
distribution p(s0). Applying reinforcement learning in real
robot environments usually consider high dimensional state-
action spaces and sparse rewards. Thus, finding a good policy
might require many iterations in the environment before a
desirable policy is found.

A common approach to reduce the sample complexity is
by integrating as many priors as possible in the problem.
Properly chosen priors might accelerate the learning
process, biasing the exploration towards meaningful states.
Additionally, with the proper priors, we could increase the
safety guarantees in the exploration process.

There are multiple ways to integrate priors in a
reinforcement learning problem. A common option is to

Prepared using sagej.cls

Urain et al. 11

do reward shaping. Adding additional reward signals to the
problem, we can guide the learning process to informative
states. Another common option is assuming a set of expert
demonstrations are given, we can pretrain our policy to
match the expert demonstrations. This approach is known as
behavioral cloning. In our work, we explore the option of
using structured policies.

A structured policy can be represented as follows:

ψ ∼ πRL(ψ|s)
a = πstruct(s;ψ). (61)

A structured policy allows modifying the action space in
which the RL agent learns the policy. Rather than directly
sampling an action a from the RL agent; we sample a set of
parametersψ. Then, these parameters are input in a low-level
structured policy πstruct and the action is computed. Through
the action space transformation, structured policies allow a
faster and safer learning process.

There are several type of structured policies. In residual
policy learning (Johannink et al. 2019; Silver et al. 2018),
after sampling an action from the RL agent, an expert
policy πE action is summed to bias the exploration towards
meaningful regions, πstruct(s,ψ) = πE(s) +ψ. The RL
agent learns the residual actions around the expert policy.
In (Dalal et al. 2021) the parameters ψ select a Dynamic
Movement Primitives (DMP) and sets some parameters of
the DMP, such as the target. Then, the DMP is executed for
a certain period, before sampling new parameters from πRL.

In our work, we propose to model the low-level structured
policy by the maximization over a composition of policies

πstruct(s,ψ) = argmax
a

log

(
K∏

k=0

πk(a|s;ψ)

)
. (62)

In contrast with previous works that define an explicit model
to represent the structured policy, we propose to model
the structured policy by a maximization over an implicit
function. In our approach, we first sample a set of parameters
from the RL agent. Then, these parameters condition some of
the policies on the objective function. Finally, we solve the
optimization problem in (62) to obtain the action to apply in
the system. Considering an implicit function to represent the
low-level policy has multiple benefits. An important one is
related to safe exploration. Given we are solving a search
problem, we can guarantee the robot is not choosing an
action that would move the robot to a collision. We could
also set some prior policies that encourage smooth behaviors
and we could avoid high trembling while exploring. In
conclusion, the robot explores the parameter space of an
objective function. Then, given we have set some prior
knowledge in this objective function, we can solve an
optimization problem and apply the optimal action satisfying
the objective.

There are multiple choices to parameterize the objective
function. We show an example of how the energy policies
and the RL action can be combined.

A simple option is to parameterize a reaching policy. We
choose the target reaching policy proposed in Section 4. We

can both parameterize the target position xg or the metric Λ

A(ẍ|x, ẋ) = −||ẍ− ẍg(x, ẋ)||2Λẍ

ẍg(x, ẋ) =
2

∆t2
(ψxg − x−∆tẋ)

Λẍ =
∆t4

4
ψΛ.

Parameterizing xg allows the reinforcement learning policy
to set the desired target location given the current state s,
while parameterizing Λ allows the reinforcement learning
agent to weight the influence of this component. It is
important to remark, that for those cases in which Λ is big,
the influence of this component in the composition increases
and then, the influence of the reinforcement learning action.
When Λ is small the contribution of this component decays
and the inductive biases will define the movement.

Nevertheless, we remark, that we are not limited to
reaching policies. We could parameterize any energy pol-
icy presented in Section 4, probabilistic motion primi-
tives (Paraschos et al. 2013) or handcrafted policies.

In our experiments we combine parameterized policies
with fixed prior policies

π(a|s,ψ) =
∏

k
πkprior(a|s)

∏
j
πj(a|s,ψ). (63)

Integrating a parameterized reaching target policy with
a fixed obstacle avoidance policy, allows the robot to
explore with the guarantee of exploring safely. We also
consider combining attractor policies to a certain target and
parameterized policies. Combining both, the reinforcement
learning agent explores while the attractor policy guides the
robot to informative regions. The performance is similar to a
residual policy, in which the RL agent learns in the residuals
of the guiding policy.

6 Experimental evaluation
The experimental evaluation is split into three parts. In
the first part (Section 6.1), we evaluate qualitatively the
performance of CEP in a 2D navigation environment. The
experiment is performed to provide a visual intuition on how
CEP represents its policy.

In the second part (Section 6.2), we investigate the
performance of CEP for local reactive navigation in
cluttered environments. The experiments are performed
in a 7 dof Kuka-LWR robot. In a set of simulated
environments (Section 6.2.1), we evaluate how the energy
composition performs by observing the success rate and
the collisions in a set of obstacle avoidance environments.
Additionally, we perform ablation studies to find the
optimal parameters and also to find the maximum
control frequencies. Then, in a real robot environment
(Section 6.2.2), we investigate the performance of CEP to
solve a pick and place task in a cluttered environment. We
measure the performance under human disturbances, picking
position changes and placing position changes.

In the third part (Section 6.3), we investigate the
benefit of integrating CEP as a structured policy for robot
reinforcement learning. We first evaluate the performance
of CEP as a structured policy while learning how to hit a
puck and place it in a target position (Section 6.3.1). We

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 4. 2D navigation task. (a) Environment. The robot is
represented by a blue circle, the walls by the rectangles and the
target by the cross. (b) spherical obstacle bodies for the robot
and the walls.

want to observe if using CEP as prior boosts the learning
performance of an RL agent. Additionally, we want to
evaluate if adding an obstacle avoidance prior reduces the
number of collisions in the training. The experiments are
performed for three MDP’s that vary in the reward function.

6.1 Visual 2D particle environment
In the first experimental section, we aim to provide a
visual understanding of the proposed policy composition.
We investigate the composition of a set of energy policies
proposed in Section 4 for a 2D navigation problem. We
consider the toy environment in Figure 4 (a). We want to
reach the target (cross) with the robot (blue circle) avoiding
the walls (blue rectangles). To properly compute the obstacle
avoidance, we represent the collision bodies for the walls and
the robot with a set of spheres (Figure 4 (b)).

We model the composable energy policy with two
component: a target reaching energy policy and a set of
obstacle avoidance energy policies (one per each obstacle
sphere in the wall). We model both energy policies with the
proposed energy policies in Section 4. The attractor energy
is a quadratic function. For obstacle avoidance, we consider
N energy policies. Each energy function is a binary function
that penalizes the actions that move the robot below a certain
distance threshold with respect to the obstacles.

We visualize the probability density functions for each
policy component and for the composition of them in
Figure 5. Visualizing directly the distribution in the
acceleration space is not informative. To provide an intuitive
visualization, we plot the probability density function for the
next state p(s′), given the robot is sampling an action from a
certain energy policy π

p(s′) = Eπ(a|s)[f(s,a)], (64)

with f being the linear dynamics in (33). Given these
policies have been designed as the maximum entropy
policies maximizing the next state reward, the next state
distribution is naturally, p(s′) ∝ exp(r(s′)).

We observe that the reaching target policy defines a normal
distribution with the mean in an interpolation between the
target position and the current position. The most likely
action is the one that moves the robot to the mean position.
The sharpness of the distribution is defined by the metric
defined in Section 4. For the case of the obstacle avoidance
policy, the next state distribution is a uniform distribution
that sets the mass on a polytope defined by the shortest

distances to the obstacles. This distribution will put zero
mass to any action that moves the robot out of the polytope.
For any action keeping the robot inside the polytope, the
distribution remains constant.

The product of the two policies is a complex distribution
that weights the influence of both. The obtained distribution
is an attractor normal distribution truncated by the collision
avoidance policy. We remark that rather than computing the
maxima if we apply MCMC to sample from this distribution,
the robot will never choose an action that collides against
the obstacles and will sample actions that move towards the
target with a higher probability.

6.2 Reaching through clutter environments
In the following experimental section, we investigate the
performance of CEP for local navigation with a robot
manipulator. The experimental section is divided between a
simulated experimental section and a real robot experiment.
The simulated experiments have been performed to answer
the following questions:

Q1: Does energy policy composition increase the
probability of reaching the target in a cluttered environment
with respect to deterministic composition methods?

Q2: In CEP, the best action is found by stochastic
optimization algorithms. How many particles do we need for
a 7 dof robot? How many optimization steps?

In the real robot platform, we investigate the performance
of CEP under disturbances. The main question we aim to
answer is:

Q3: Is CEP able to reactively adapt to unmodelled
disturbances, such as human physical interaction, changes in
the placing position, or changes in the picking position?

6.2.1 Simulated reaching environments In the following,
we present the simulated experiment to reach a certain target
avoiding the obstacles. We perform the experiments with a 7
dof Kuka-LWR robot in 6 environments. The environments
have been designed to be increasing in difficulty. The first
environment has a single obstacle body, while the last
one has 62 obstacle bodies. We visualize the considered
environments in Figure 6. The robot is initialized in a
randomized joint configuration and the motion is generated
by a set of local motion generators, without additional global
path planning algorithms. The episode ends when the robot
reaches the target, collides against any obstacle or a certain
time is pass. In our experiment, the robot is initialized in
100 randomly chosen initial configurations. We consider
a control frequency of 250Hz for this experiment and the
episode length is 30 seconds.

Policy setup For this experiment, we consider three possi-
ble multi-objective reactive motion generators: RMP (Ratliff
et al. 2018), APF (Khatib 1985, 1987) and CEP. The three
methods consider a set of policy components modeled in a
set of task spaces. We compute the kinematics transforma-
tions in (2) with pinocchio (Carpentier et al. 2019). All the
policies are local basic policies and there are no long-horizon
planning components. The considered policy components
are:

• A target reaching policy in the end-effector space;

Prepared using sagej.cls

Urain et al. 13

Figure 5. A visual representation of the next state distribution p(s′) running a set of designed policies. We visualize the distribution
for different states in a 2D navigation task. In the top: next state distribution after applying a reaching target policy. In the middle:
next state distribution after applying an obstacle avoidance policy. In the bottom: next state distribution after applying the
composition of a reaching target and an obstacle avoidance policy.

Figure 6. Simulated Environments for the reaching through clutter environments experiment. From left to right: 1 obstacle, 3
obstacles, Cross, Double Cross, Cage I and Cage II.

Methods 1 Obstacle 3 Obstacles Cross Double Cross Cage I Cage II
Success Collide Success Collide Success Collide Success Collide Success Collide Success Collide

Riemannian Motion Policies (Ratliff et al. 2018) 100/100 0/100 99/100 0/100 93/100 0/100 87/100 0/100 29/100 0/100 5/100 0/100
Artificial Potential Fields (Khatib 1985, 1987) 100/100 0/100 98/100 0/100 91/100 0/100 46/100 0/100 2/100 0/100 0/100 0/100

Composable Energy Policies 100/100 0/100 98/100 0/100 94/100 0/100 88/100 0/100 70/100 0/100 15/100 0/100

Table 2. Results for 3D GoTo + Obstacle Avoidance Task. First three rows are the results from (Urain et al. 2021). We perform the
same experiment with the robot hand included in row 4.

Methods 1 Obstacle 3 Obstacles Cross Double Cross Cage I Cage II
Success Collide Success Collide Success Collide Success Collide Success Collide Success Collide

Riemannian Motion Policies (Ratliff et al. 2018) 100/100 0/100 89/100 0/100 71/100 0/100 63/100 0/100 11/100 0/100 0/100 0/100
Artificial Potential Fields (Khatib 1985, 1987) 100/100 0/100 90/100 0/100 68/100 0/100 21/100 0/100 0/100 0/100 0/100 0/100

Composable Energy Policies 100/100 0/100 95/100 0/100 84/100 0/100 72/100 0/100 30/100 0/100 5/100 0/100

Table 3. Results for 6D GoTo + Obstacle Avoidance Task. First three rows are the results from (Urain et al. 2021). We perform the
same experiment with the robot hand included in row 4.

• P ×O obstacle avoidance policies in a set of cartesian
task spaces;

• Joint limits avoidance policy in the configuration
space;

• Joint velocity limit policy in the configuration space.

We consider just position reaching policy for the 3D
experiment and a full-pose reaching policy for the 6D
experiment. For the obstacle avoidance policies, we model
a collision body for the manipulator (Figure 7). The collision
body is composed of 35 spheres with different radii. We
remark that for the most complex environment, we have
62 collision spheres, thus, we have in total 35× 62 = 2170

Figure 7. Collision body for
the robot manipulator. The
collision body is composed of
35 spheres with different
radius.

obstacle avoidance policies. Nevertheless, all of them are
computed in batch using tensor multiplication.

Prepared using sagej.cls

14 Journal Title XX(X)

Figure 8. Controller’s
computation time for the
six simulated
environments in
Figure 6. Measured for
RMP, APF and CEP.

Comparative evaluation We initialize the experimental
analysis evaluating the success rate and collisions in the
6 environments. We summarize the obtained results for
the 3D go-to problem in table 2. We refer the reader to
Figure 7 (Extension 1) for visualization of the experiments.
The easy environments are easily solved by all the methods.
We observe a success rate of almost 100% for the first three
environments in all the cases. This result shows that simple
scenarios can be easily solved with local reactive controllers
and it is not required to solve a global trajectory planning
problem. In complex scenarios, CEP performs better than
the baselines. We can obtain a 70% success rate in the
first cage environment and 15% in the second cage. We
hypothesize that this could be related to how the obstacle
avoidance policies are modeled. In the chosen baselines,
the obstacle avoidance policies apply a repulsive force in a
certain robot’s link to avoid the obstacles. In highly cluttered
environments, where the robot needs to move through narrow
passages, these repulsive forces will push the robot far from
the obstacles. Then, the robot is not able to get close to
the narrow passage and it gets stuck in the entrance. In
contrast, in our method, the obstacle avoidance policy defines
a uniform distribution for the set of valid actions. This
policy is more conservative. Rather than pushing the robot
away from the obstacles, our policy penalizes, with very
low probability, any action that moves a certain robot link
close to the obstacles. Thus, in front of a narrow passage,
the obstacle avoidance policy will only inform about those
actions that are not valid but will not apply any repulsive
force. We suggest that in the most complex environments,
integrating the output of a trajectory optimization method
could improve the robot’s performance.

The performance worsens for the 6D go-to problem
(Table 3). The orientation sets an important constraint in
the possible final configurations and reduces the set of
trajectories that solves the problem. CEP is able to perform
relatively better than the baselines but it got less than 50%
success rate in both cage environments, suggesting that in
complex scenarios an additional global path planner should
be integrated with CEP. It is important to remark, that both
the deterministic baselines and our approach were able to
properly impose the obstacle avoidance objective. We did not
record any single collision in all the trials.

An important consideration for using CEP as reactive
motion generators is its computational time. We compare
the computation time for CEP with respect to RMP and
APF. To properly compare them, we have considered the
same amount of policies on the three cases and we used
the same kinematics model. All the methods run in a AMD
Ryzen 9 3900 CPU. For CEP, we considered 50 particles
and a single optimization step. We show the computational

time in Figure 8. CEP is remarkably slower than RMP
and APF. While previous methods consider an analytical
solution for the optimal action, CEP requires solving an
optimization problem. To do so, we require to evaluate a set
of action particles and update a surrogate distribution (17).
In our implementation, RMP and APF computes the solution
in 0.0015s in average, while CEP computes the solution
in around 0.002s. Even if it is slower, we run CEP to
500Hz which is enough for reactive motion generation.
Additionally, we remark that our implementations are not
optimized and are running in an interpreted language. Thus,
we expect faster computation times if the code is optimized
and written in a compiled language. An additional point is
related to the different computation times for the different
environments. Our method requires an average computation
time of 0.0016s for the first environment and 0.002s for
the last one. The difference in computation is based on the
number of collision spheres. In our work, collision avoidance
is evaluated by computing the projected acceleration of a
set of obstacle spheres in the robot with respect to a set
of obstacles in the environment. The robot is composed
of 35 obstacle spheres, while the environment varies from
1 to 62. To be computationally efficient, we apply tensor
multiplication and compute the projected accelerations in
parallel. Given N possible acceleration candidates in the
configuration space, the number of projected accelerations
are N ×O × 35, where O is the number of obstacles in
the environment. Given the number of collision spheres in
the environment varies, the size of the tensor computing the
projected accelerations also changes and thus, the required
time for the tensor multiplication.

Conclusion 1 We have observed that the energy model
flexibility provided by CEP improves the success rate with
respect to previous methods. By choosing an appropriate
energy policy, we can improve the cooperation between
all the components and solve all the tasks jointly in a
more successful way. Nevertheless, CEP requires solving an
optimization problem by stochastic optimization methods,
while previous methods consider an analytical solution.
The stochastic optimization might reduce the computational
efficiency of CEP and it will require more time to find a
solution with respect to the analytic methods.

Ablation study CEP finds the optimal action by stochastic
optimization. For I optimization steps, we sample N
possible actions from the sampling distribution, we evaluate
the objective function for each sample, and update the
sampling distributions (Algorithm 1). The number of
particles and the number of optimization steps will directly
influence the performance of the robot. Also, the required
computation time will vary depending on the number of
samples and optimization steps. In the following experiment,

Prepared using sagej.cls

Urain et al. 15

Table 4. CEP computation time for CPU and GPU. We consider the average computation time for 1-5 optimization steps.

Table 5. CEP computation time for CPU and GPU. We show the variation of the mean computation time for the six environments

Table 6. CEP succes rate for reaching a target while avoiding obstacles. Left: Mean success rate for 1-5 optimization steps. Right:
Mean success rate for the six environments.

we investigate the number of optimization steps and particles
required for the reaching tasks represented in Figure 6.
Even if the obtained solutions are specific for the chosen
experiments, this ablation study is a relevant tool to
estimate the required optimization parameters for similar
experiments.

The experiments are performed in a AMD Ryzen 3900
CPU and a Nvidia GeForce RTX 2800 GPU. We consider
both to investigate which hardware is more convenient
for our problem. We present the obtained computational
performance in table 4 and table 5. With few samples
(< 500) the CPU is faster computationally than the GPU.
Nevertheless, when the number of particles augment, the
GPU outperformed the optimization time of the CPU. We
can also observe that the required computation time linearly
grows with the number of optimization steps in both CPU
and GPU cases. From table. 5, we can observe that the
computation effort remains constant for all the environments
as long as the number of particles is small. Nevertheless,
for a high amount of particles the computation frequency

decays from the first environment to the sixth environment.
For example, using a GPU with 5000 particles, we have an
average computation time of 0.0064s (156Hz) for the first
environment and 0.013s (77Hz) for the sixth environment.
This change in the computation is directly connected with
our obstacle avoidance energy. As previously introduced, we
compute a tensor of N ×O × 35 for the obstacle avoidance.
For the simplest scenario, we have 1 obstacles sphere and
for the most complex scenario, we have 62 spheres. For the
case of N = 5000, in the simplest environment, we deal
with a tensor of length 1.7e5, while in the most complex
environment, we require to compute a tensor of length 1.e7.

In the tables 6, we introduce the results for an ablation
study on the success rate. We investigate the required amount
of particles and optimization steps to reach the targets
without colliding. For the experiment, we execute CEP 100
times on each environment. We perform the same experiment
for a different number of particles and a different number
of optimization steps. The robot is initialized in a random
configuration and reactively navigates to reach the target.

Prepared using sagej.cls

16 Journal Title XX(X)

We show the mean success rate for all the environments in
Table 6 (a) and the mean success rate for different number
of optimization steps in Table 6 (b). For very few particles
(B = 2) the robot performs poorly achieving a mean success
rate of 0.54. Nevertheless, we can observe that it can solve
properly the easiest environments and it has a success rate of
0.008 for the most complex one. We can also observe that
for the cases in which few particles are used (5− 20), the
success rate improves if we use consider more optimization
steps. After 50 particles, the success rate arrives in a plateau
and an additional number of particles does not increase the
success rate. We observe that while increasing optimization
steps might have a direct impact with few particles (<
30) when considering a high amount of particles (> 30) a
single optimization step is enough for solving the task at
the maximum affordable success rate. We can also observe
a clear pattern in the environments. While the simplest
environments are solved with an almost 1. success rate, the
performance decays up to a 0.4 success rate in the most
complex environment. Due to the increase of obstacles, the
robot gets stuck in local minima more often in complex
environments with respect to simple ones. In these situations,
a learned policy or a path planning algorithm could help the
CEP, providing global guidance, while CEP solves the local
reactive problem.

We remark that the variability in the success rate might
be directly influenced by the stochasticity in the initial
configuration. There are no predefined initial configurations,
but rather the robot is initialized in arbitrary configurations.

Conclusion 2 From the tables 4 and tables 5, we conclude
that for our experiments, if less than 500 particles are enough
to solve the problem, we will choose the CPU while for
more demanding tasks a GPU should be considered. From
tables 6, we conclude that for the chosen experiments, 50
particles and one optimization step are enough to solve
the tasks and we do not see further improvements when
increasing the number of particles or the optimization steps.
As we can observe, the computation times for 50 particles
are sufficiently small to have control frequencies around
500Hz. Nevertheless, we can observe how the computation
requirements grow the more complex the environment is.
We can estimate that for environments that are even more
cluttered than ours, we might benefit from learning Signed
Distance Functions (SDF) (Park et al. 2019) to reduce the
computational requirements in the obstacle avoidance policy.

6.2.2 Pick-and-Place in cluttered environment In the
following experiment, we evaluate the performance of CEP
in a real robot scenario. We consider the problem of picking
and place in a cluttered environment. To pick the object,
the robot is required to navigate its hand through a narrow
hole, grasp the object and navigate out of the narrow hole to
leave the object in a plate. We remark there is no global path
planning or trajectory optimization and the robot reactively
computes the desired accelerations with a local controller.
We present a visualization of the task in Figure 9. We
have modeled the obstacle wall by 67 obstacle spheres
(Figure 11). With this experiment, we aim to investigate the
performance of CEP in complex environments as real-world
human-robot interaction environments. We additionally
evaluate the performance of RMP as baseline.

To control the robot, we use a CEP with a similar
architecture to the simulated experiments:

• A target reaching policy in the end-effector space
• P ×O obstacle avoidance policies in a set of cartesian

task spaces
• Joint limits avoidance policy in the configuration space
• Joint velocity limit policy in the configuration space

The robot is controlled with 50 particles and a single
optimization step.

To investigate the performance of CEP in the pick and
place task, we measure the success rate and the execution
time for picking and placing under 3 conditions. First, we
assume there is a fixed target to pick and place and no human
perturbing the robot. Second, the human applies physical
perturbations to the robot and changes its position, and third,
we track the human hand and dish to leave the object. Then,
the picking and placing targets are changed online. We run
the pick and place routine 30 times for every case. We present
the results in Figure 10. The experiments can be visualized
from Table 7 (Extension 2) to Table 7 (Extension 6).

On average, the robot is able to solve the pick and
placing task under the three conditions with more than 75%
success rate. We can observe that the robot is performing
slightly better when no human perturbations or target
modifications happened (see Figure 7 (Extension 2)). The
failure cases are related to the robot getting stuck in an
unrecoverable state (see Figure 7 (Extension 6)). For some
initial configurations, the robot might enter wrongly in the
not correct hole. Given CEP is myopic, it lacks any notion
on how to escape from the hole and it gets stuck. When the
human interacts with the robot it might move the robot to an
unrecoverable state more often and then, the robot is not able
to recover and gets stuck (see Figure 7 (Extension 3)). In the
target modification case, we reactively change the picking
position and the placing position (see Figure 7 (Extension 4-
5)). During the picking, we find the robot used to get stuck
if the picking point is too far from the holes. Once the robot
moves its arm inside the hole, the maneuverability decays.
This might result in the robot getting in some configurations
in which it does not know how to get out of the hole.

On average, the performance is better for placing than for
picking. In particular, when the placing target is modified,
there is only the target reaching component having a big
influence on the robot’s motion. Nevertheless, when picking,
the robot needs to trade-off between the obstacle avoidance
component and the picking target reaching component. Due
to this, the performance is better in the placing. We observe
that CEP outperformed RMP in all situations. Similarly
to simulated experiments, we consider that our proposed
collision avoidance energy policy allows a better integration
with the attractor policy in contrast with the repulsive
collision avoidance policy from RMP. We consider that there
are two easy fixes to improve the performance of the robot
in the situations it gets stuck. First, we can easily combine
longer horizon planning methods with CEP, to escape local
minima. Additionally, we can learn specific energy policies
that guide the robot through narrow passages. These energy
policies will lead the robot’s behavior when the robot is in a
difficult passage, but won’t influence the performance of the
robot when is far from the narrow passages.

Prepared using sagej.cls

Urain et al. 17

Figure 9. A visual representation of the pick and place task in a real robot environment. The robot is initialized in the left side. It
should reach to the other side through the holes to pick the object. Then, move back to the left side to place the object.

Figure 10. Left: Number of successful picks and places. Right: boxplot showing the execution time to solve the pick and place
tasks. We evaluate the performance for (i) fix targets and no disturbances, (ii) under human physical disturbances and, (iii) under
target modifications.

Figure 11. A visual representation of the sphere-based
collision body for the real robot experiments wall. The collision
body is composed of 67 spheres with different radius.

We can also observe the increase in execution time
under human perturbances and target modifications for both
picking and placing tasks. Due to the stochasticity, the human
injects in the robot’s motion, it requires additional time
to solve the task. In the case of human perturbances, the
injected noise is by physically stopping and moving the
robot around. Additionally, the robot might be set in an
uncomfortable configuration and it requires additional time
to recover and solve the task. In the case of the target
modifications, the additional execution time is usually due
to the human lack of steadiness and sensor errors. The robot

tries to grasp the object once a certain distance threshold
to the object is passed. Given the sensor disturbances and
the human’s lack of steadiness, the robot might require
additional time to reduce the threshold distance and pick the
object. We can observe, that the execution times are bigger
for the picking case rather than the placing task. Due to the
lack of maneuverability in the picking task, the robot usually
requires way more time to solve the task. Nevertheless, one
is far from the obstacles, the robot’s possible movements
increases and it can solve the task faster.

Conclusion 3 We evaluated the validity of CEP as a
reactive motion generator in a real system. We have observed
that the robot is able to reactively adapt to unmodelled
perturbances such as human physical disturbances or online
target modifications and still solve the pick and place task
while moving through a narrow hole. Nevertheless, we
observe the locality of CEP in some configurations. The
robot might get stuck in a local optimum trying to enter
through the hole. Due to this, we suggest integrating learning
components or path planning components to be able to
consider longer horizon information and resolve the local
minima easier.

6.3 Learning with structured policies
In this experimental section, we evaluate the performance
of CEP as structured policy in a reinforcement learning
problem. We perform the experiments to answer the
following questions

Prepared using sagej.cls

18 Journal Title XX(X)

Figure 12. A block diagram of a reinforcement learning
problem with a structured policy. The RL agent πRL and the
structured policy πstruct might run to different control frequencies.
Given the current state s, the RL policy samples a parameter
vector ψ. This parameter vector is input in the structured policy
and the control action is computed a.

Q1: Can we improve the learning performance of the
reinforcement learning problem by integrating guiding priors
through CEP?

Q2: Can we reduce the number of collisions while
learning by integrating obstacle avoidance priors through
CEP?

6.3.1 Learning how to hit a puck We consider the problem
of learning how to hit a puck and putting it in a certain
target position (Figure 12). We consider this task a good
experiment to investigate the benefits of integrating priors
for learning. A desirable policy should learn to hit the puck
without colliding against the table. Nevertheless, given that
the puck is close to the table, it is hard to find a policy that
weights properly both objectives. We investigate the benefit
of CEP as a structured policy to deal with such situations.
Additionally, if we consider the whole workspace of the
robot, there are very few regions in the state-action space that
make the robot move the puck. Most of the possible state-
action pairs won’t influence the position of the puck. Thus a
prior guiding the robot to the puck might be very helpful to
explore in more informative regions.

We use a 7 dof LBR-IIWA robot. A visual representation
of the task can be found at Figure 12. The reinforcement
learning agent πRL receives as input the state s. The state s ∈
R18 is represented by the end-effector’s cartesian position
xee, puck’s position xpuck, their relative position rp-ee =
xee − xpuck, the puck’s velocity vpuck, the end effector’s
velocity vee and the target position xtarget. The output of
the reinforcement learning agent is the parameter ψ. For
our experiment, the output ψ ∈ R3 represents the desired
task space cartesian velocity in the end-effector. The robot is
always initialized with the same joint configuration and each
episode last 300 steps (it lasts 300 steps for the reinforcement
learning agent, but 3000 steps for the structured policy
πstruct).

Policy Setup The structured policy receives the rein-
forcement learning agent’s output, ψ, and the state s and
computes the desired configuration space acceleration as
action a = q̈.

We consider two baselines as structured policies: direct
operational space control (Khatib 1987) and residual
operational space control (Silver et al. 2018; Johannink et al.
2019). The structured policy for direct operational space
control is modelled by

πstruct(s,ψ) = J
†K(ψ − q̇), (65)

with J† the Jacobian pseudoinverse of the forward
kinematics to the end-effector, q̇ the current robot joint
configuration and K a damping gain. The controller defines
a velocity error correction in the task space. Then, the desired
task space acceleration is map to the configuration space by
the Jacobian pseudoinverse. The residual operational space
controller is modelled by

πstruct(s,ψ) = J
†K(q̇∗ − q̇)

q̇∗ = ψ + πg(s), (66)

with πg(s) the guiding policy. Residual task space control
applies a similar approach to direct operational space control.
Nevertheless, the desired task space velocity is defined by
the linear sum of ψ and πg(s). πg(s) is a guiding policy. In
our experiments, we model πg(s) as a CEP with an obstacle
avoidance energy to the table and a puck attractor energy.
Thus, the desired velocity is represented as the linear sum of
the reinforcement learning action and the CEP action.

We compare these baselines with respect to using CEP
as the structured policy (Section 5). Our model policy is
modelled by

πstruct(s,ψ) = argmax
q̈

log

(∏
k
πk(q̈|s,ψ)

)
. (67)

In contrast with the residual policy, which linearly combines
the output of the reinforcement learning agent and the CEP,
in our case, we input the action of the reinforcement learning
agent ψ as an additional parameter to condition the energy
policies. Then, the optimal action is computed between the
conditioned energy policies and the priors. The CEP is built
by three energy policy components:

• A target (puck position) reaching energy in the end-
effector;

• An obstacle avoidance energy in the end-effector (to
avoid collisions against the table);

• ψ parameterized velocity tracking energy in the end-
effector.

The chosen residual policy combines the output of the
reinforcement learning agent ψ and the output of a defined
CEP, πg linearly. In contrast, the CEP policy takes as
input parameter the reinforcement learning agent’s output
ψ and solves the maximization problem combining a ψ
parameterized policy and two defined policies.

Both baselines have been widely applied as structured
policies in reinforcement learning (Iriondo et al. 2019;
Johannink et al. 2019; Lee et al. 2019; Schaff and Walter
2020; Funk et al. 2021). We choose an operational space
control baseline to investigate the benefit of the target
reaching bias terms in the CEP. Given both CEP and
residual policy uses an attractor to the target, we aim to
investigate if it provides an additional benefit with respect

Prepared using sagej.cls

Urain et al. 19

to not considering an attractor bias in the policy. We choose
residual control to investigate the benefit of the obstacle
avoidance prior in CEP. Even if both consider an obstacle
avoidance prior, the prior and the reinforcement learning
action are integrated differently. We aim to investigate the
benefits and perks of imposing obstacle avoidance in our
method concerning the residual control method.

Problem Setup To properly investigate the benefit of
CEP, we extend the previous work in (Urain et al. 2021)
with two additional MDPs. The three MDPs consider the
same transition dynamics model, but they differ in the reward
function. The three rewards contain a reward signal that
defines the task to solve (move the puck to the target). The
three of them differ in the inductive biases we additionally
integrate into the reward function. We aim to study the
influence of reward shaping with respect to the influence of
structured policies to improve the learning performance.

The first reward is composed of the distance between the
end-effector and the puck and distance between the puck and
the target:

r1 = −dee-puck − dpuck-target.

The distance between the end-effector and the puck is an
inductive bias that helps the agent to find a policy that hits the
puck. A similar inductive bias is integrated into the residual
and CEP policies with the attractor policy.

The second reward function additionally considers a
negative terminal cost if the robot hits the table, rT = −100.

r2 = −dee-puck − dpuck-target + rT (sT).

The negative terminal cost is an inductive bias that pushes
the robot to avoid the table. If the robot collides against the
table, we stop the episode and add the terminal cost.

Finally, the last reward function (the one in (Urain et al.
2021)), considers only the reward distance between the puck
and the target

r3 = −dpuck-target + rT (sT).

Eliminating the attractor to the puck, the direct operational
space controller lacks any source of bias to approximate to
the puck. We aim to study if the attractor inductive bias
might have any influence on our learning performance. We
claim that CEP can be used with any arbitrary reinforce-
ment learning algorithm. To investigate its performance,
we have conducted the experiments with several deep rein-
forcement learning algorithms (PPO (Schulman et al. 2017),
SAC (Haarnoja et al. 2018b), DDPG (Lillicrap et al. 2015),
TD3 (Fujimoto et al. 2018)) implemented in Mushroom-
RL (D’Eramo et al. 2021).

Comparative evaluation We investigate the learning
performance of the three structured policies in terms of
the accumulated reward and accumulated collisions against
the table per epoch. We present the obtained results in
Figure 13. We additionally present a visualization of the
learned policies for every case in Figure 7 (Extension 7).

We start evaluating the results for the first reward
(Figure 13 top row). Observing the discounted reward, we
can see that the three controllers can achieve a similar
performance (direct operational space control is slightly

worse). While CEP and residual policies initial return is
close to the prior, the direct operational space control starts
with a worse policy. Nevertheless, given that we have added
a distance reward to the puck, the direct controller is able
to get close to CEP and residual in a few episodes. The
performance is pretty different if we observe the collisions.
The collision avoidance prior allows CEP to explore without
a single collision. In contrast, residual and direct controllers
collide quite often while exploring. The residual controller
has the obstacle avoidance prior encoded in the guiding
policy. Nevertheless, we can observe that the prior is not
strong enough and the robot collides quite often. In the third
column, we present the performance of CEP for different
deep reinforcement learning algorithms. As we can observe,
the agent is able to solve the problem with any learning
algorithm.

In the second experiment, we additionally add a terminal
cost if the robot collides with the table. We present the results
in Figure 13 middle row. We can observe that while CEP
maintains a similar learning curve than in the first problem,
the learning curve for residual learning and direct control
slows down. In the current MDP, the robot not only needs
to find a policy to hit the puck but also, avoid collisions
against the table. We hypothesize that given CEP is able
to impose the table collision properly, it will not explore
in state-space regions that lead to a collision. Therefore,
the learning agent is completely focused on the problem
of hitting the puck. On the contrary, direct and residual
learning policies are constantly hitting against the table. Due
to this, the reinforcement learning agent requires to learn
a policy that both avoids collisions and also hits the puck.
This hypothesis match with the collisions plot. Both direct
and residual policies have multiple collisions in the first
episodes. Nevertheless, during the learning, they find policies
that are able to avoid them. In the case of CEP, the obstacle
avoidance prior is sufficiently strong to have an obstacle-
free learning process. Similar to the first problem, all the
reinforcement learning algorithms can solve the problem
with similar performances.

Finally, in the third experiment, we eliminate from the
reward function the prior that guides the robot close to
the puck. In our previous experiments, the guiding prior
is included in both the reward signal and the structured
policies. We aim to investigate the learning performance
when we impose the guiding attractor only in the structured
policies. The obtained results are presented in Figure 13
bottom row. The performance of our method remains good
even if the inductive bias is eliminated from the reward.
The inductive bias in the policy is enough to find a good
behavior to hit the puck. We can observe that also residual
policy learning is performing well, similarly to the second
environment. Nevertheless, the direct controller is not able to
solve the problem and the performance decays from previous
experiments. The reward function is highly sparse (the robot
receives information only if it hits the puck) and the direct
control lacks any guiding inductive bias to be close to the
puck. In conclusion, a lack of guided exploration makes the
controller not find proper behavior.

Conclusion 4 In this experiment we investigate the
influence of integrating inductive biases in a robot
reinforcement learning problem. We include two inductive

Prepared using sagej.cls

20 Journal Title XX(X)

Figure 13. Obtained results for the hitting a puck experiment. Column 1 and 2 present a comparison between different structured
policies. Column 3 presents a comparison between different reinforcement learning algorithms.

biases: a collision-avoidance bias to encourage the robot
not to collide against the table and an attractor bias
that encourages the robot to get close to the puck. We
investigate the differences between integrating the inductive
biases directly in the reward or integrating them in the
policy. Additionally, we investigate the differences linearly
sum inductive biases (residual controller) or through an
optimization problem (composable energy policies). A
relevant conclusion is that in contrast with other structured
policies, only CEP is able to guarantee a learning without a
single collision. the collision avoidance bias in the residual
controller does not impose sufficient constraints. On the
other hand, the collision avoidance bias in the reward
function requires the robot to collide against the table to
receive the reward signal to learn not to collide. Thus, we

conclude that the CEP approach is a relevant approach to
guarantee safer exploration. In contrast, we observe that
the attractor bias is properly integrated with the residual
approach and also through the reward function. While CEP
is able to also integrate this inductive bias, we do not see any
major benefit in our approach with respect to others.

7 Related work
In the main part of this article, we focus on modeling reactive
motion generators. Nevertheless, reactive motion generators
have been widely explored for both robot local navigation
and robot reinforcement learning. In this section, we want to
briefly summarize the existing work on both topics.

Multi-objective reactive motion generation The problem
of reactively generating motion for local robot navigation

Prepared using sagej.cls

Urain et al. 21

satisfies three conditions: (i) there are multiple objectives
that must be jointly satisfied, (ii) usually, these objectives
are defined in arbitrary task spaces and (iii) we should be
able to compute the solution fast enough to have high control
frequencies and be reactive. Two of the earliest solutions to
this problem are proposed in (Khatib 1985, 1987). In (Khatib
1985), artificial potential fields method is proposed. This
method provides a solution for combining multiple obstacle
avoidance objectives as a combination of repulsive potential
fields. In (Khatib 1987), the idea of operational space control
is defined. Operational space control provides a method for
mapping the desired policies defined in the task space to the
configuration space in which the robot is controlled.

Inspired by these early efforts, in (Ratliff et al. 2018),
Riemannian motion policies are introduced. In this work,
the problem of properly combining policies defined in
different task spaces is addressed. Riemannian motion
policies focus on the concept of the metric to properly
weight the contribution of each policy in the final action.
Later works (Cheng et al. 2018; Li et al. 2021) improve
the riemannian motion policies in terms of computational
efficiency. There has been a set of alternative works,
dealing with different problems in Riemannian motion
policies. In (Shaw et al. 2021) pullback bundle dynamical
systems are proposed. The work proposes a method to
combine multiple policies defined in non-Euclidean spaces.
Geometric Fabrics (Ratliff et al. 2020, 2021; Xie et al. 2020)
propose to model the policy composition in terms of Finsler
geometries. As shown in their work, modelling the problem
in terms of Finsler geometries, they can easily guarantee
stable behaviors in contrast to Riemannian motion policies.

All of the above methods assume the composition of a
set of myopic controllers. In a different direction, some
researchers have tried to study the composition of policies
that are optimised to solve a longer horizon control problem.
In (Todorov 2009), linearly-solvable Markov Decision
Processes (LMDP) is presented. As shown in the work, a
weighted sum of individually optimal policies was proven to
be the optimal control problem solution for a reward function
defined as weighted-sum of individual rewards and differing
only in the terminal reward. In a similar vein (Haarnoja et al.
2018a; Tasse et al. 2020) proposes suming a set of optimal Q
function. Additionally, in (Haarnoja et al. 2018a) the distance
between the optimal Q function and the sum of Q functions
is investigated.

Finally, a set of works propose solving the multi-
objective reactive motion generation problem by numerical
optimization. Dynamic Window Approach (DWA) (Fox et al.
1997; Van Den Berg et al. 2011) solves the reactive motion
generation for a 2D planar robot in a two steps optimization
algorithm. First, the search space of possible actions is
reduced given a set of constraints. Then, given an objective
function, the optimal action is selected. Model predictive
control (MPC) methods (Garcia et al. 1989; Erez et al.
2013; Dentler et al. 2016) consider a non-myopic trajectory
optimization problem to find reactively the optimal action
satisfying multiple objectives. To reduce the computational
requirements, MPC methods initialize the optimization
problem with the previously computer solution. These
methods usually assume simplified kinematics and dynamics

models and quadratic cost functions to be computationally
efficient and be reactive.

Our work lays in a middle-ground. We consider a
myopic (one-step ahead) optimization problem to find the
optimal action similarly to artificial potential fields and
Riemannian motion policies. Nevertheless, we do not assume
there exist an analytic expression for our solution and rather
we solve a numerical optimization problem in every control
step as in model predictive control.

Structured policies in robot reinforcement learning
Integrating inductive biases into the reinforcement learning
problem has been shown to be effective in improving
the learning performance of the reinforcement learning
agents. These inductive biases are usually integrated into
the problem through the reward function (reward shaping)
or through the policy (structured policy). Structured policies
modify the action space of the reinforcement learning agent.
Rather than sampling actions that directly influence the robot
such as torques, the reinforcement learning agent samples
actions in a parameter space. These parameters are later
inputted into the structured policy and the robot control
signal is computed.

Structured policies have a long history in robot
reinforcement learning. Operational space controllers (Peters
and Schaal 2007; Lee et al. 2019) transform the action space
from the configuration space to the task space. It is shown
that the robot is able to learn better policies if the reward
function is also defined in the task space. A big set of
works have considered applying reinforcement learning in
the parameter space of movement primitives such as DMP
or handcrafted primitives (Mülling et al. 2013; Daniel et al.
2016; Pertsch et al. 2021; Bahl et al. 2020; Dalal et al.
2021). Considering a DMP as structured policy guarantees
inductive biases such as stability or smoothness in the robot’s
behavior. Residual Policy Learning approaches (Silver et al.
2018; Johannink et al. 2019), model the structured policy by
a linear sum of the reinforcement learning action and the
output of a guiding policy. Assuming the guiding policy is
properly modeled for the task, the reinforcement learning
agent is expected to learn the residuals of the guiding policy
and improve the performance of the guiding policy.

A different approach is proposed in (Li et al. 2021).
Instead of splitting the policy between the reinforcement
learning agent and the structured policy, they propose to
model the reinforcement learning policy directly as a RMP.
The action to apply in the robot is directly sampled from the
agent, but the agent model is a parameterized RMP. They
claim that both the policy leaves and the task maps can be
parameterized and learned.

In contrast with previous works that assume an explicit
structured policy; in our work, we propose to model
the structured policy via an optimization function. The
reinforcement learning agent samples a set of actions
that parameterize the energy policies. Then, we apply an
optimization problem to find the optimal action. As shown
in the experiments, this optimization problem can easily
impose hard constraints (through uniform distributions) and
guarantee safer learning.

Prepared using sagej.cls

22 Journal Title XX(X)

8 Discussion

CEP can be viewed as a generalization on RMP where
the cost functions are not limited to be quadratic. This
generalization provides additional flexibility to model the
policy components and find better alternatives to represent
the policy components. From a different perspective, CEP
can be viewed as a particular case of MPC, in which the
control horizon is fixed to a single step. Fixing the control
horizon to a single step allows us to reduce the optimization
variables and find control actions for a high-dimensional
robot and a set of cost functions with a low computational
budget. We show empirically, that with a proper choice
of energies, one-step ahead optimization can still solve
complex cluttered environments without the computational
requirements of optimizing over longer horizons as in MPC.
Nevertheless, it is important to remark that our approach
is myopic and thus, we will never have guarantees of
satisfying all the objectives in the long run. To have the
guarantees of solving a long-horizon problem, we might
instead rely on long-horizon planning methods. Additionally,
we embrace a probabilistic interpretation of the multi-
objective reactive motion generation problem. Framing the
problem in a probabilistic view allow us to build connections
between the literature in Bayesian inference (Jaynes 1957;
Rawlik et al. 2012) or in energy based composition (Hinton
2002; Du et al. 2020) and the literature in reactive motion
generation (Khatib 1987; Ratliff et al. 2018). We consider
that this probabilistic interpretation is beneficial to integrate
learning components in the reactive motion generation
problem. From this view, we can built policy component
as maximum likelihood distributions for a given dataset or
maximum-entropy policies for a given reward.

Introduced in Section 3, RMP can be viewed as the
solution of a myopic control as inference problem in which
each component is modelled by a normal distribution. A
normal distribution assumes that the action distribution is
unimodal. There exist an optimal action (the mean) to
satisfy a particular objective and the quality of the rest
of the actions is measured given a Mahalanobis distance
to the optimal one. While framing the problem in terms
of normally distributed policy components have some
benefits (there exist a close form solution for the optima);
the expressivity might be limited for other components.
We have shown experimentally, that uniformly distributed
policies might be more benefitial to represent obstacle
avoidance policies. Nevertheless, a drawback of considering
non-quadratic policies is that we lack an analytical solution
of our optimization problem and we require to use stochastic
optimization algorithms to find the optimal action. Through a
set of ablation studies, we have evaluated the computational
requirements of our method and find out that with the current
hardware, we can achieve control frequencies up to 500Hz
with a non optimized code. We expect that with a highly
optimized code and with more powerful hardware, we could
achieve 1kHz control frequencies.

In our work, we have additionally evaluate the perfor-
mance of CEP as a structured policy. In reinforcement
learning, high dimensional state-action spaces with sparse
rewards might require an excessive amount of samples to
find a proper behavior. Additionally, the robot might have

undesirable collisions while exploring. A common approach
to deal with this problem is by exploring in the parameter
space of a low-level controller. Through this abstraction we
can impose all the desired inductive bias in the low-level
controller and explore in manifold generated by the inductive
biases. In contrast with most of the structured policies in
the literature, in CEP, the structured policy is represented
by an optimization problem over a set of parameterized
implicit functions. The reinforcement learning agent samples
a set of parameters that conditions the objective function to
optimize. Through this abstration we can combine inductive
bias costs and reinforcement learning conditioned costs and
solve an optimization problem that aims to satisfy all the
objectives. Through this approach, imposing collision avoid-
ance constraints or guiding bias is simple as we only require
to agregate an additional energy function to the objective.
It also provides a modular learning as the reinforcement
learning conditioned policy can be completely independent
from the inductive bias policies.

9 Conclusion and future work

We have introduced a probabilistic approach for multi-
objective reactive motion generation. We have shown
theoretically the relations between CEP and RMP and
observe that the increase in flexibility when modelling
the policies could improve the composability performance
with respect to RMP or APF methods. CEP is a general
framework that allows the composition of multiple sources
policies defined in abritrary task spaces.

When integrated as a structured policy for reinforcement
learning, we have shown that CEP provides a novel learning
structure. The reinforcement learning agent samples a set of
parameters that are integrated as conditioning elements of
an objective function and the optimal action is computed
by solving this low level optimization problem. This bi-
level optimization problem allows the integration of safety
constraints through uniformly distributed inductive biases or
guiding inductive biases without changing the policy model,
but simply including additional components to the objective
function. We have shown experimentally that the implicit
structured approach provides higher safety guarantees with
respect to explicit structured policies.

A missing element in the current work is observing the
performance of CEP with data-driven policy components.
All the components we have considered are analitically
computed policies or reinforcement learning based learned
policies. We consider as future work, exploring the
composition of multiple policies learned by imitation
learning. Combining CEP architecture with imitation
learning allows the composition of multiple demonstrations
given in different task spaces. This would open the
possibility of composing expert demonstrations from
multiple sources and in different state-action spaces in
a single policy. We expect this approach to increase the
generalization and modularity properties in robot learning.

Prepared using sagej.cls

Urain et al. 23

Acknowledgements

This project has received funding from the European Union’s
Horizon 2020 research and innovation programmes under
grant agreement No. #820807 (SHAREWORK).

The Authors declare that there is no conflict of interest.

References

Aljalbout E, Chen J, Ritt K, Ulmer M and Haddadin S (2021)
Learning vision-based reactive policies for obstacle avoidance.
In: Conference on Robot Learning. PMLR, pp. 2040–2054.

Attias H (2003) Planning by probabilistic inference. In:
International Workshop on Artificial Intelligence and Statistics.
PMLR, pp. 9–16.

Bahl S, Mukadam M, Gupta A and Pathak D (2020) Neural
dynamic policies for end-to-end sensorimotor learning. arXiv
preprint arXiv:2012.02788 .

Bhardwaj M, Sundaralingam B, Mousavian A, Ratliff ND, Fox
D, Ramos F and Boots B (2022) Storm: An integrated
framework for fast joint-space model-predictive control for
reactive manipulation. In: Faust A, Hsu D and Neumann G
(eds.) Proceedings of the 5th Conference on Robot Learning,
Proceedings of Machine Learning Research, volume 164.
PMLR, pp. 750–759. URL https://proceedings.

mlr.press/v164/bhardwaj22a.html.
Botev ZI, Kroese DP, Rubinstein RY and L’Ecuyer P (2013) The

cross-entropy method for optimization. In: Handbook of
statistics, volume 31. Elsevier, pp. 35–59.

Bylard A, Bonalli R and Pavone M (2021) Composable geometric
motion policies using multi-task pullback bundle dynamical
systems. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, pp. 7464–7470.

Carpentier J, Saurel G, Buondonno G, Mirabel J, Lamiraux F,
Stasse O and Mansard N (2019) The pinocchio c++ library:
A fast and flexible implementation of rigid body dynamics
algorithms and their analytical derivatives. In: 2019 IEEE/SICE
International Symposium on System Integration (SII). IEEE,
pp. 614–619.

Cheng CA, Mukadam M, Issac J, Birchfield S, Fox D, Boots
B and Ratliff N (2018) Rmpflow: A computational graph
for automatic motion policy generation. In: International
Workshop on the Algorithmic Foundations of Robotics.

Da Silva M, Durand F and Popović J (2009) Linear bellman
combination for control of character animation. ACM
SIGGRAPH .

Dalal M, Pathak D and Salakhutdinov RR (2021) Accelerating
robotic reinforcement learning via parameterized action
primitives. Advances in Neural Information Processing
Systems 34.

Daniel C, Neumann G, Kroemer O and Peters J (2016) Hierarchical
relative entropy policy search. Journal of Machine Learning
Research 17: 1–50.

De Boer PT, Kroese DP, Mannor S and Rubinstein RY (2005) A
tutorial on the cross-entropy method. Annals of operations
research 134(1): 19–67.

Dentler J, Kannan S, Mendez MAO and Voos H (2016) A real-time
model predictive position control with collision avoidance for
commercial low-cost quadrotors. In: 2016 IEEE conference on
control applications (CCA). IEEE, pp. 519–525.

D’Eramo C, Tateo D, Bonarini A, Restelli M and Peters J (2021)
Mushroomrl: Simplifying reinforcement learning research.
Journal of Machine Learning Research 22(131): 1–5.

Du Y, Li S and Mordatch I (2020) Compositional visual generation
and inference with energy based models. In: Conference on
Neural Information Processing Systems.

Erez T, Lowrey K, Tassa Y, Kumar V, Kolev S and Todorov E (2013)
An integrated system for real-time model predictive control
of humanoid robots. In: 2013 13th IEEE-RAS International
conference on humanoid robots (Humanoids). IEEE, pp. 292–
299.

Florence P, Lynch C, Zeng A, Ramirez OA, Wahid A, Downs L,
Wong A, Lee J, Mordatch I and Tompson J (2022) Implicit
behavioral cloning. In: Conference on Robot Learning. PMLR,
pp. 158–168.

Fox D, Burgard W and Thrun S (1997) The dynamic window
approach to collision avoidance. IEEE Robotics & Automation
Magazine 4(1): 23–33.

Fujimoto S, Hoof H and Meger D (2018) Addressing function
approximation error in actor-critic methods. In: International
conference on machine learning. PMLR, pp. 1587–1596.

Funk N, Schaff C, Madan R, Yoneda T, Urain J, Watson J,
Gordon EK, Widmaier F, Bauer S, Srinivasa SS, Bhattacharjee
T, Walter MR and Peters J (2021) Benchmarking structured
policies and policy optimization for real-world dexterous
object manipulation. IEEE Robotics and Automation Letters
7(1): 478–485.

Garcia CE, Prett DM and Morari M (1989) Model predictive
control: Theory and practice—a survey. Automatica 25(3):
335–348.

Ge SS and Cui YJ (2002) Dynamic motion planning for mobile
robots using potential field method. Autonomous robots 13(3):
207–222.

Gibbs JW (1902) Elementary principles in statistical mechanics:
developed with especial reference to the rational foundations
of thermodynamics. C. Scribner’s sons.

Haarnoja T, Pong V, Zhou A, Dalal M, Abbeel P and Levine S
(2018a) Composable deep reinforcement learning for robotic
manipulation. In: IEEE International Conference on Robotics
and Automation. IEEE, pp. 6244–6251.

Haarnoja T, Tang H, Abbeel P and Levine S (2017) Reinforcement
learning with deep energy-based policies. In: International
Conference on Machine Learning. PMLR, pp. 1352–1361.

Haarnoja T, Zhou A, Abbeel P and Levine S (2018b) Soft
actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In: International conference
on machine learning. PMLR, pp. 1861–1870.

Hinton GE (2002) Training products of experts by minimizing
contrastive divergence. Neural computation 14(8): 1771–1800.

Iriondo A, Lazkano E, Susperregi L, Urain J, Fernandez A and
Molina J (2019) Pick and place operations in logistics using
a mobile manipulator controlled with deep reinforcement
learning. Applied Sciences 9(2): 348.

Jaynes ET (1957) Information theory and statistical mechanics.
Physical review 106(4): 620.

Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea
JA, Solowjow E and Levine S (2019) Residual reinforcement
learning for robot control. In: International Conference on
Robotics and Automation. IEEE, pp. 6023–6029.

Prepared using sagej.cls

24 Journal Title XX(X)

Kaelbling LP and Lozano-Pérez T (2011) Hierarchical task and
motion planning in the now. In: IEEE International Conference
on Robotics and Automation. IEEE, pp. 1470–1477.

Kaelbling LP and Lozano-Pérez T (2013) Integrated task and
motion planning in belief space. The International Journal of
Robotics Research 32(9-10): 1194–1227.

Kalakrishnan M, Chitta S, Theodorou E, Pastor P and Schaal S
(2011) Stomp: Stochastic trajectory optimization for motion
planning. In: IEEE international conference on robotics and
automation. IEEE, pp. 4569–4574.

Kappler D, Meier F, Issac J, Mainprice J, Cifuentes CG, Wüthrich
M, Berenz V, Schaal S, Ratliff N and Bohg J (2018) Real-time
perception meets reactive motion generation. IEEE Robotics
and Automation Letters 3(3): 1864–1871.

Kavraki LE, Svestka P, Latombe JC and Overmars MH (1996)
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and
Automation 12(4): 566–580.

Khatib O (1985) Real-time obstacle avoidance for manipulators
and mobile robots. In: IEEE International Conference on
Robotics and Automation, volume 2. pp. 500–505. DOI:
10.1109/ROBOT.1985.1087247.

Khatib O (1987) A unified approach for motion and force control of
robot manipulators: The operational space formulation. IEEE
Journal on Robotics and Automation .

Lambert A, Ramos F, Boots B, Fox D and Fishman A (2021) Stein
variational model predictive control. In: Conference on Robot
Learning. PMLR, pp. 1278–1297.

LaValle SM (2006) Planning Algorithms. Cambridge, U.K.:
Cambridge University Press.

LaValle SM and Kuffner JJ (2001) Rapidly-exploring random
trees: Progress and prospects. Algorithmic and computational
robotics: new directions 5: 293–308.

Lee MA, Zhu Y, Srinivasan K, Shah P, Savarese S, Fei-Fei L, Garg
A and Bohg J (2019) Making sense of vision and touch: Self-
supervised learning of multimodal representations for contact-
rich tasks. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE, pp. 8943–8950.

Levine S (2018) Reinforcement learning and control as prob-
abilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909 .

Li A, Cheng CA, Rana MA, Xie M, Van Wyk K, Ratliff N and
Boots B (2021) RMP2: A Structured Composable Policy Class
for Robot Learning. In: Robotics: Science and Systems (R:SS).

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y,
Silver D and Wierstra D (2015) Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971 .

Lutter M, Mannor S, Peters J, Fox D and Garg A (2021)
Value iteration in continuous actions, states and time. In:
International Conference on Machine Learning. PMLR, pp.
7224–7234.

Morari M and Lee JH (1999) Model predictive control: past, present
and future. Computers & Chemical Engineering 23(4-5): 667–
682.

Mukadam M, Dong J, Yan X, Dellaert F and Boots B
(2018) Continuous-time gaussian process motion planning via
probabilistic inference. The International Journal of Robotics
Research 37(11): 1319–1340.

Mülling K, Kober J, Kroemer O and Peters J (2013) Learning to
select and generalize striking movements in robot table tennis.
The International Journal of Robotics Research 32(3): 263–
279.

Ohtsuka T (2004) A continuation/gmres method for fast
computation of nonlinear receding horizon control. Automatica
40(4): 563–574.

Paraschos A, Daniel C, Peters JR and Neumann G (2013)
Probabilistic movement primitives. In: Advances in Neural
Information Processing Systems. pp. 2616–2624.

Park JJ, Florence P, Straub J, Newcombe R and Lovegrove S
(2019) Deepsdf: Learning continuous signed distance functions
for shape representation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp.
165–174.

Peng XB, Chang M, Zhang G, Abbeel P and Levine S (2019) Mcp:
Learning composable hierarchical control with multiplicative
compositional policies. Advances in Neural Information
Processing Systems 32 .

Pertsch K, Lee Y and Lim J (2021) Accelerating reinforcement
learning with learned skill priors. In: Conference on Robot
Learning. PMLR, pp. 188–204.

Peters J and Schaal S (2007) Reinforcement learning by reward-
weighted regression for operational space control. In:
Proceedings of the 24th international conference on Machine
learning. pp. 745–750.

Poignet P and Gautier M (2000) Nonlinear model predictive control
of a robot manipulator. In: 6th International workshop on
advanced motion control. Proceedings (Cat. No. 00TH8494).
IEEE, pp. 401–406.

Ratliff N, Zucker M, Bagnell JA and Srinivasa S (2009)
Chomp: Gradient optimization techniques for efficient motion
planning. In: IEEE International Conference on Robotics and
Automation. pp. 489–494.

Ratliff ND, Issac J, Kappler D, Birchfield S and Fox D (2018)
Riemannian motion policies. arXiv preprint arXiv:1801.02854
.

Ratliff ND, Van Wyk K, Xie M, Li A and Rana MA (2020)
Optimization fabrics. arXiv preprint arXiv:2008.02399 .

Ratliff ND, Van Wyk K, Xie M, Li A and Rana MA (2021)
Generalized nonlinear and finsler geometry for robotics.
In: 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 10206–10212.

Rawlik K, Toussaint M and Vijayakumar S (2012) On stochastic
optimal control and reinforcement learning by approximate
inference. Proceedings of Robotics: Science and Systems VIII
.

Schaff C and Walter MR (2020) Residual policy learning for shared
autonomy. In: Proceedings of Robotics: Science and Systems
(RSS).

Schulman J, Duan Y, Ho J, Lee A, Awwal I, Bradlow H, Pan J,
Patil S, Goldberg K and Abbeel P (2014) Motion planning with
sequential convex optimization and convex collision checking.
The International Journal of Robotics Research 33(9): 1251–
1270.

Schulman J, Wolski F, Dhariwal P, Radford A and Klimov O
(2017) Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 .

Shaw S, Abbatematteo B and Konidaris G (2021) Rmps for safe
impedance control in contact-rich manipulation. arXiv preprint

Prepared using sagej.cls

Urain et al. 25

arXiv:2109.12103 .
Silver T, Allen K, Tenenbaum J and Kaelbling L (2018) Residual

policy learning. arXiv preprint arXiv:1812.06298 .
Sola J, Deray J and Atchuthan D (2018) A micro lie theory for state

estimation in robotics. arXiv preprint arXiv:1812.01537 .
Sutton RS, Precup D and Singh S (1999) Between mdps and semi-

mdps: A framework for temporal abstraction in reinforcement
learning. Artificial intelligence 112(1-2): 181–211.

Tasse GN, James S and Rosman B (2020) A boolean task algebra
for reinforcement learning. Conference on Neural Information
Processing Systems .

Todorov E (2009) Compositionality of optimal control laws.
Advances in neural information processing systems 22: 1856–
1864.

Toussaint M (2009) Robot trajectory optimization using approx-
imate inference. In: international conference on machine
learning. pp. 1049–1056.

Urain J, Ginesi M, Tateo D and Peters J (2020) Imitationflow:
Learning deep stable stochastic dynamic systems by normal-
izing flows. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, pp. 5231–5237.

Urain J, Li A, Liu P, D’Eramo C and Peters J (2021)
Composable energy policies for reactive motion generation and
reinforcement learning. In: Robotics: Science and Systems
(R:SS).

Van Den Berg J, Guy SJ, Lin M and Manocha D (2011) Reciprocal
n-body collision avoidance. In: Robotics research. Springer,
pp. 3–19.

Van Niekerk B, James S, Earle A and Rosman B (2019) Composing
value functions in reinforcement learning. In: International
Conference on Machine Learning. pp. 6401–6409.

Williams G, Aldrich A and Theodorou EA (2017) Model predictive
path integral control: From theory to parallel computation.
Journal of Guidance, Control, and Dynamics 40(2): 344–357.

Xie M, Van Wyk K, Li A, Rana MA, Wan Q, Fox D, Boots B and
Ratliff N (2020) Geometric fabrics for the acceleration-based
design of robotic motion. arXiv preprint arXiv:2010.14750 .

Ziebart BD, Bagnell JA and Dey AK (2010) Modeling interaction
via the principle of maximum causal entropy. In: International
Conference on Machine Learning.

Prepared using sagej.cls

26 Journal Title XX(X)

A Index to Multimedia Extensions

Extension Media Type Description
1 Video Visual Representation of

reaching through a clut-
tered environment

2 Video Visual Representation of
the experiments for real
robot reactive pick and
place task I: Multiple
Initial configurations

3 Video Visual Representation of
the experiments for real
robot reactive pick and
place task II: Human
disturbances

4 Video Visual Representation of
the experiments for real
robot reactive pick and
place task III: Online
picking changes

5 Video Visual Representation of
the experiments for real
robot reactive pick and
place task IV: Online
target changes

6 Video Visual Representation of
the experiments for real
robot reactive pick and
place task V: Failure
cases

7 Video Visual Representation
of the results for the
learned policies for the
robot hitting a puck

Table 7. Table of Multimedia Extensions

B A Control as Inference view for
Composable Energy Policies

In the following section, we want to highlight the
connections between composable energy policies and control
as inference to evaluate the optimality guarantees of
composing energies in a multi-objective optimal control
problem.

Figure 14. Graphical model for the Optimal Control problem. st
denoted the state, at denotes the action and ot is an additional
variable representing the optimality of the state and action for a
given reward.

s0 s1 s2 s3 s4

a0 a1 a2 a3o0 o1 o2 o3

ps
′

sa ps
′

sa ps
′

sa ps
′

sa

We frame optimal control as a Bayesian inference
problem (Rawlik et al. 2012; Levine 2018) over the

sequence of actions a0:T . The optimal control problem is
visualized as a graphical model in Fig. 14. The problem
is formulated introducing an auxiliary variable o0:T that
represents the optimality of st and at under a certain
reward function, p(ot|st,at) ∝ exp(r(st,at)). Given a
certain prior distribution q(a|s0) and given s0 is known, the
inference problem is

p(AT
0 |s0, OT

0) =
p(OT

0 |AT
0 , s0)q(A

T
0 |s0)

p(OT
0 |s0)

(68)

with

p(OT
0 |AT

0 , s0) =

∫
s1:T

p(OT
0 |ST

0 , A
T
0)p(S

T
1 |AT

0 , s0)dS
T
1

(69)

where AT
0 : {a0, . . . ,aT }, OT

0 : {o0, . . . , oT } and ST
0 :

{s0, . . . , sT }. The are two main directions to solve the
posterior in (68). First, methods that frame the problem
as an Hidden Markov Model (HMM) and solve it in an
Expectation-Maximization approach. Second, methods that
compute the posterior in the trajectory level AT

0 . The first, are
computationally demanding as they require several forward
and backward message passing to compute the posterior. The
second, needs to solve the problem in the trajectory level and
thus the dimension of the variables grows linearly with the
trajectory length, T .

In our work, we consider solving a one-step-ahead
optimal control problem. Rather than solving an optimization
problem for a sequence of actions AT

0 , we solve the problem
for a single step a0.

We can reframe the control as inference problem as a one-
step ahead control problem

p(a0|s0, OT
0) =

p(OT
0 |a0, s0)q(a0|s0)
p(OT

0 |s0)
(70)

with

p(OT
0 |a0, s0) =∫

S1:T

∫
A1:T

p(OT
0 |ST

0 , A
T
0)p(S

T
1 |a0, s0)π(A

T
1 |ST

1)dS
T
1 dA

T
1 .

(71)

In contrast with the trajectory optimization problem that
finds the posterior for the whole trajectory AT

0 , in one-
step-ahead control as inference problem, we aim to find
the posterior for only the instant next control action, a0.
Computing the posterior only for a0 requires the likelihood
to be defined as the marginal of not only the state trajectory
ST
1 , but also the action trajectory AT

1 . The graphical model
for one-step-ahead control as inference is presented in
Fig. 15. In one-step ahead control as inference, we introduce
an additional distribution π that provides us the probability
of AT

1 given ST
1 . This additional policy π is interpreted as

the policy the agent will apply in the future. In this context,
we are looking for the action the maximizes the cumulative
reward in the long horizon trajectory running the policy π.

Prepared using sagej.cls

Urain et al. 27

Figure 15. Graphical model for one-step ahead optimal control
problem. In this approach, the actions AT

1 are dependant on ST
1

given a policy π.

s0 s1 s2 s3 s4

a0 a1 a2 a3o0 o1 o2 o3

ps
′

sa ps
′

sa ps
′

sa ps
′

sa

πa
s πa

s πa
s

(71) can be rewritten as the expectation over p(OT
0 |ST

0 , A
T
0)

EST
0 ,AT

0 ∼pπ(ST
0 ,AT

0 |s0,a0)

[
p(OT

0 |ST
0 , A

T
0)
]
∝

EST
0 ,AT

0 ∼pπ(ST
0 ,AT

0 |s0,a0)

[
exp(

T∑
t=0

r(st,at))

]
=

exp(Qπ
r (s0,a0)) (72)

From what follows, the likelihood for our inference problem
is proportional to the exp(Q) defined over a certain policy π.
Given a π, the posterior for our inference problem is given
by

p(a0|s0, OT
0) ∝ exp(Qπ

r (s0,a0))q(a0|s0). (73)

The provided Q function depends on π and then, the
quality of our reactive motion generator to solve a long
horizon optimal control problem directly depends on the
quality of π. In the optimal case, for Q∗, the one-step ahead
control problem follows the optimal trajectory, even if the
optimization is done locally. Nevertheless, in CEP we aim
to study the obtained policy in a multi-objective framework.
Given we have a set of Q functions, each being optimal for a
particular reward; is the sum of the Q functions still optimal
for the sum of the rewards?

B.1 Optimality Guarantees
In CEP, we propose to model the Q function as the sum
of a set of optimal Q∗

k functions. Instead, we are aware
that QΣ = 1

K

∑K
k=0 Q

∗
k is not the optimal function Q∗ for

the sum of the rewards r = 1
K

∑K
k=1 rk. The closer QΣ is

from the optimal Q∗, the closer the product of experts policy
would be from the optimal policy. In this section, we study,
given a certain reward r = 1

2 (r1 + r2), how much the sum of
the individual components QΣ diverge from the optimal Q∗.
In (Levine 2018) is shown, that the optimal Q function for the
control as inference problem can be computed by recursively
solving the soft-value iteration (Ziebart et al. 2010)

Q(s,a) = r(s,a) + Ep(s′|s,a) [V (s′)]

V (s) = log

(∫
A
exp(Q(a, s))da

)
. (74)

We assume a finite horizon control as inference problem and
evaluate how much QΣ diverges from Q∗ when increasing
the control horizon

For t = T , the optimal Q function for the sum of the
rewards is

Q∗T =
1

2
(r1 + r2). (75)

The individual optimal Q functions for each reward are

Q∗T
1 = r1 , Q

∗T
2 = r2. (76)

Then, the sum of the Q components is given by

QT
Σ =

1

2
(Q∗T

1 +Q∗T
2). (77)

If we compute the distance between the optimal Q∗T and the
sum of Q’s, QT

Σ

∆QT = Q∗T −QT
Σ = 0. (78)

From (77), for T = 1, the sum of the optimal components
QΣ is equal to the optimal Q.

For longer temporal horizons, the optimal Q is computed
by recursively solving the soft Bellman update backward in
time. For computing t = T − 1,

Q∗T−1(s,a) = r(s,a) + Ep(s′|s,a)
[
V ∗T (s′)

]
V ∗T (s) = log

∫
A
exp(Q∗T (a, s)). (79)

we do a soft Bellman update. The difference between Q∗T−1

and QT−1
Σ

∆QT−1 = Q∗T−1 −QT−1
Σ = E[V ∗T − V T

Σ]

(80)

with

V T
Σ =

1

2
(V ∗T

1 + V ∗T
2). (81)

The distance in the value function can be represented as

V ∗T − V T
Σ = log

∫
A exp(Q∗T)∫

A(exp(Q
∗T
1)

∫
A exp(Q∗T

2))
1
2

= log

∫
A exp(12Q

∗T
1) exp(12Q

∗T
2)

(
∫
A exp(Q∗T

1)
∫
A exp(Q∗T

2))
1
2

. (82)

Then,

Q∗T−1 = QT−1
Σ +∆QT−1

= QT−1
Σ +

Ep(s′|s,a)

[
log

∫
A exp(12Q

∗T
1) exp(12Q

∗T
2)

(
∫
A exp(Q∗T

1)
∫
A exp(Q∗T

2))
1
2

]
(83)

From (80) and (82), we can obtain the recurrence relation
for the distance error

∆Qt−1 =

Ep(s′|s,a)

[
log

∫
A exp(12Q

∗t
1) exp(12Q

∗t
2) exp(∆Qt)

(
∫
A exp(Q∗t

1)
∫
A exp(Q∗t

2))
1
2

]
.

(84)

From (82), we can see that if Q∗
1 = Q∗

2, then ∆Q = 0 and
the more they differ, the bigger the distance error to the

Prepared using sagej.cls

28 Journal Title XX(X)

optima Q∗. From the obtained results, we can obtain some
conclusions.

Similar theoretical studies have been already devel-
oped (Haarnoja et al. 2018a; Van Niekerk et al. 2019;
Todorov 2009). In Optimal Control, composable optimal-
ity guarantees were proven for linear dynamics, by the
LMDP approach. In (Todorov 2009; Da Silva et al. 2009),
a weighted policy sum was proven to be optimal for the
sum of the rewards, as long as the rewards differ only in
the terminal reward. In Haarnoja et al. (2018a); Tasse et al.
(2020), the optimality of the composition is studied in a
maximum entropy reinforcement learning problem.

C Experiments

C.1 Reaching through a cluttered environment
The modular components (reach target, obstacle avoidance
and joint limits avoidance) for both baselines APF and RMP
were modeled based on Khatib (1985) and Cheng et al.
(2018) respectively. The CEP without hand was modelled
with the energy policy components introduced in (Urain
et al. 2021) and with the parameters In this work, we

Energy Modules Parameters
Reach Target Kp = 20. Kv = 30. α = 10.

Obstacle Avoidance γ = 0.2 α = 4. β = 0.1
Joint Limits avoidance γ = 0.3 α = 4. β = 0.1

Table 8. Component parameters for Composable Energy
Policies in reaching through cluttered environment (Urain et al.
2021).

have extended the experiments with an additional evaluation
with the robot hand. We considered the energy policies in
Section 4 to model the energy policies. We considered a
target reaching policy, a set of obstacle avoidance policies,
joint limits avoidance policy and a joint velocity limits
policy. We show in table 9 the parameters we consider for
the experiments. The reaching target policy is parameterized

Energy Modules Parameters
Reach target Λ = I , α = 0.05

Obstacle avoidance α = robstacle + rbody + 0.01
Joint velocity limits Λ = 0.1I

Table 9. Component parameters for Composable Energy
Policies in reaching through cluttered environment with hand.
robstacle and rbody represent respectively, the radius of the
collision spheres in the obstacle and the robot body.

by the metric Λ that frames the relevance of this component
and α that defines the maximum Euclidean distance of the
truncated target position. The obstacle avoidance energy
policy is parameterized by the desired minimum distance
between the surfaces of the body sphere and the obstacle
sphere. The joint velocity limits is parameterized by the
metric defining the importance of this component. As we can
observe, in contrast with (Urain et al. 2020), in the current
approach, we have (i) less tuning parameters for each energy

component and (ii) there is an intuition in the meaning of
each parameter.
C.2 Learning to hit a puck
In the reinforcement learning experiment, we consider the
same hyperparameters for CEP, residual operational space
control and direct operational space control. Additionally, we
keep the same hyperparameters for the three reward func-
tions. We consider the reinforcement learning algorithms
implemented in Mushroom-RL (D’Eramo et al. 2021). In the
following, we introduce a table with the hyperparameters for
PPO, SAC, DDPG and TD3.

Hyperparameters
policy net 18-128-128-3

policy batch 64
policy learn rate 3e-4
critic learn rate 3e-4

critic net 18-128-128-1
critic batch 256

critic learn rate 3e-4
n steps per fit 600
discount factor .99

eps ppo 0.1

Table 10. PPO hyperparameters for hitting the puck

Hyperparameters
policy net mean 18-128-128-3
policy net sigma 18-128-128-3

policy batch 64
policy learn rate 3e-4
critic learn rate 3e-4

critic net 18-128-128-1
critic batch 256

critic learn rate 3e-4
n steps per fit 1
discount factor .99
target entropy -6

warmup transitions 10000
max replay size 200000

Table 11. SAC hyperparameters for hitting the puck

Hyperparameters
policy net 18-128-128-3

policy batch 64
policy learn rate 3e-4
critic learn rate 3e-4

critic net 18-128-128-1
critic batch 256

critic learn rate 3e-4
n steps per fit 1
discount factor .99

warmup transitions 10000
max replay size 200000

Table 12. DDPG and TD3 hyperparameters for hitting the puck

Prepared using sagej.cls

