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Abstract— Learning robot motions from demonstration re-
quires models able to specify vector fields for the full robot
pose when the task is defined in operational space. Recent
advances in reactive motion generation have shown that learn-
ing adaptive, reactive, smooth, and stable vector fields is
possible. However, these approaches define vector fields on a
flat Euclidean manifold, while representing vector fields for
orientations requires modeling the dynamics in non-Euclidean
manifolds, such as Lie Groups. In this paper, we present a novel
vector field model that can guarantee most of the properties of
previous approaches i.e., stability, smoothness, and reactivity
beyond the Euclidean space. In the experimental evaluation,
we show the performance of our proposed vector field model
to learn stable vector fields for full robot poses as SE(2) and
SE(3) in both simulated and real robotics tasks. Videos and
code are available at: https://sites.google.com/view/
svf-on-lie-groups/

I. INTRODUCTION

Data-driven motion generation methods such as Imitation
Learning (IL) [1], [2] bring the promise of teaching our
robots the desired behavior from a set of demonstrations
without further programming of the robot skill. Similar to
the CNN networks in computer vision, choosing a good
representation of the motion generator might help in the
quality of the robot’s performance, when learning a policy
directly from data. During the last two decades, there has
been vast research on learning policy architectures [3], [4],
[5], [6], [7] that guarantee a set of desirable inductive biases.
Popularized as Movement Primitive (MP), the community
explored a wide set of policy architectures with inductive
biases such as Smoothness [6], Stability [3], [5] or cyclic
performance [8], [4].

Learning Movement Primitives for orientations re-
quires additional insights in the architecture of the model.
There exist multiple representation forms for the orientation,
such as Euler angles, rotation matrices, or quaternions. Euler
angles have an intuitive representation, but the representation
is not unique and might get stuck in singularities (i.e. gimbal
lock). These properties make Euler angles undesirable for re-
active motion generation [9]. Instead of Euler angles, rotation
matrices and quaternions are preferred representations for
reactive motion generation. Nevertheless, they require special
treatment, given they are not defined in the Euclidean space.
Rotation matrices are represented by the special orthogonal
group, SO(3), while quaternions are represented in the 3-
sphere, S3. Thus, in the context of modeling orientation MP,
there has been wide research integrating manifold constraints
and MP. In [10], [11], [12], Dynamic Movement Primitives
(DMP) [3] were adapted to learn orientation DMP, by
representing DMP for quaternions [10], [11], [12] or rotation

Fig. 1. Robot pouring trajectories generated by SEp3q-stable vector
fields. Each color represents a trajectory starting from a different initial
configuration. Given the stability properties, all the trajectories end up with
the same orientation and position on the end effector.

matrices [12]. More recently, orientation MP have been
also considered to adapt Kernelized Movement Primitives
(KMP) [13], [14], Task Parameterized GMM (TP-GMM) [7],
[15] and Probabilistic Movement Primitives (ProMP) [6],
[16]. Nevertheless, most of the MP are rather phase depen-
dant or lack stability guarantees.

We propose to learn Stable Vector Field (SVF) [5], [17],
[18] on position and orientations. SVF are a family of
dynamic systems that are autonomous (i.e. don’t have phase
dependency, but only depend on the current state) and are
inherently stable in terms of Lyapunov. In contrast with
DMP [10] or KMP [14], SVF are inherently reactive to
disturbances without the requirement of any phase adapta-
tion. In contrast with TP-GMM [15], SVF are inherently
stable, generating stable motions beyond the expert demon-
strations. These properties makes SVF ideal for human-robot
interaction or to combine them with other vector fields as in
Riemannian Motion Policies (RMP) [19].

The contribution of this paper are: (1) We introduce
a novel learnable SVF function that can generate stable
motions on Lie Groups. Our proposed function generalizes
Euclidean space diffeomorphism-based SVF [17], [18], [20]
to arbitrary smooth manifolds such as Lie Groups. (2) To
learn these SVF, we propose a neural network architecture
that represents diffeomorphic functions in robotic-relevant
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Fig. 2. In our work, we compute the vector field in M by pulling back
the vector field from the latent manifold N . Given a point x P M, we first
map it to the latent manifold y “ Φpxq with y P N . Then, we compute
the vector in the latent manifold. Given a vector field g : N ÝÑ TN , we
compute 9y P TΦpxqN . Finally, we apply the pullback linear operator to
compute 9x “ dΦ˚

xp 9yq in the tangent space of M, 9x P TxM. As we can
observe, the diffeomorphic function Φ will deform the space and a trajectory
(red line) or a vector field in the manifold N will be deformed in M.

Lie Groups such as SE(2) and SE(3). (3) Finally, we compare
the performance of our proposed model w.r.t. learning the
vector fields for Euler angles and learning the vector fields
in the configuration space of the robot.

A. Background

A n-manifold M is called smooth if it is locally dif-
feomorphic to an Euclidean space Rn [21]. For each point
x P M, there exist a coordinate chart pU,ψq, were U is
an open subset in the manifold, U Ď M and ψ : U ÝÑ Û ,
is a diffeomorphism from the subset U to a subset in the
Euclidean space Û Ď Rn. This chart allows us to represent
a section of the manifold M in a Euclidean space and do
calculus.

For any point in the manifold, x P M, we can attach a
tangent space, TxM that contains all the possible vectors that
are tangential at x. Intuitively, for any possible curve in M
passing through x, the velocity vector of the curve at x will
belong to the tangent space, v P TxM. Thus, a vector field
in the manifold M is a function that maps any point in the
manifold to a vector in the tangent space1, g : M ÝÑ TM.
The LogMap is the map that moves a point in the manifold
M to the tangent space, and the ExpMap is the map that
moves a point from the tangent space to the manifold.

A map Φ : M ÝÑ N between smooth manifolds induces a
linear map between their corresponding tangent spaces. For
any point x P M, the differential of Φ at x is a linear map,
dΦx : TxM,ÝÑ TΦpxqN , from the tangent space at x P M
to the tangent space at Φpxq P N (Fig. 2). The differential,
dΦx, is used to map vectors between tangent spaces. The
pullback operator is the linear operation dΦ˚

x : TΦpxqN ÝÑ

TxM that maps a vector from TΦpxqN to TxM.

B. Related Work

a) Stable Vector Fields: SVF models are powerful
motion generators in robotics given they are robust to
perturbations and generalize the motion generation beyond
the demonstrated trajectories. After the seminal work by
Khansari et al. [5], several works [22], [23], [24], [18], [20]

1The precise term for TM is tangent bundle. The tangent bundle is the
disjoint set of all tangent spaces. The tangent space is defined at a certain
point x, TxM. For simplicity, with a slight terminology abuse, in this
paper, we use the term tangent space.

have proposed novel SVF models covering a wider family of
solutions. Our work is particularly close to diffeomorphism
based SVF models [22], [23], [18], [20]. Specifically, in this
paper, we extend the class of solutions to non-Euclidean
manifolds, such as Lie groups.

b) Invertible Neural Networks (INN) in Smooth Mani-
folds: Invertible Neural Network (INN) are a family of neu-
ral networks that guarantee to represent bijective functions.
The study of modeling INN for smooth manifolds has been
mainly developed for density estimation. A set of previous
works [25], [26], [27] have proposed INN for specific
manifolds, such as Tori or Sphere manifolds. A more recent
work [28] proposes a manifold agnostic approach, on which
Neural ODE [29], [30] are adapted to manifolds. In [31], INN
are proposed for Lie Groups. Similar to our work, they also
exploit the Lie algebra to learn expressive diffeomorphisms,
but the proposed model is limited to density estimation.

II. PROBLEM STATEMENT

We aim to solve the problem of modeling SVF on Lie
Groups. In particular, we model our SVF by diffeomor-
phisms. Diffeomorphism-based SVF represent the vector
field in the observation space as the deformed vector field
of a certain latent space [17], [23], [18], [20]. These models
assume there exist a stable vector field in a latent space
g : N ÝÑ TN . Then, given a parameterized diffeomorphic
mapping Φ, that maps any point in observation space M
to the latent space N , Φ : M ÝÑ N , we can represent the
dynamics in the observation space

9x “ dΦ˚
x ˝ g ˝ Φpxq, (1)

in terms of the latent dynamics g and the diffeomorphism
Φ. dΦ˚

x is the pullback operator that maps a velocity
vector from the latent space to the observation space. In-
tuitively, as shown in Fig. 2, the diffeomorphic function
Φ deforms the space changing the direction of the vector
field in the observation space. The stability guarantees of
diffeomorphism-based SVF have been previously proven in
terms of Lyapunov [18], [17].

Previous diffeomorphism-based SVF are limited to Eu-
clidean spaces, without representing motion policies in the
orientation. Euclidean SVF assumes (i) that Φ : Rn ÝÑ Rn

defines a bijective mapping between Euclidean spaces, (ii)
in Euclidean spaces, the tangent space and the manifold
are in the same space, and then, the latent dynamics are
g : Rn ÝÑ Rn and, (iii) given Φ defines a mapping between
Euclidean spaces, the pullback operator is represented by the
Jacobian pseudoinverse of Φ, dΦ˚

x “ J:

Φ.
In our work, given we are required to model the SVF on

Lie Groups, we need to (i) model a Φ function that is bijec-
tive between Lie Groups, (ii) investigate how to model stable
latent dynamics for Lie Groups and (iii) investigate how to
model the pullback operator given the diffeomorphism Φ.

III. STABLE VECTOR FIELDS ON LIE GROUPS

As introduced in Section II, modelling diffeomorphism-
based SVF on Lie Groups requires additional insights in the



modelling of the three main elements Φ, g and dΦ˚. In the
following, we introduce our proposed models to represent
each of these elements and we add a control block diagram
on Fig. 4 to provide intuition on how to use the proposed
SVF in practice.

A. Diffeomorphic Mapping Φ

We introduce our proposed function to learn diffeomor-
phisms between Lie Groups, Φ : M ÝÑ N . Both M and N
are manifolds for the same Lie group, with M representing
the Lie group in the observation space and N , the Lie
group in the latent space. A simple example of Φ is given
by the rotation function. Given X P M “ SOp3q and
Y P N “ SOp3q, the rotation function Y “ ΦpXq “ RX ,
applies a linear diffeomorphic mapping between M and N .

Nevertheless, representing nonlinear diffeomorphic map-
pings for Lie groups is challenging. In our work, we propose
to exploit the tangent space to learn these mappings. In
contrast with the manifold, the tangent space is a Euclidean
space, making it easier to model nonlinear diffeomorphic
functions.

The topology of the Lie groups and their Lie algebra
are not the same. Then, it is impossible to define a single
diffeomorphic function Φ that maps all the points in the
group to the Lie algebra. To make proper use of the Lie
algebra and still guarantee the diffeomorphism for the whole
Lie group, we propose to model the diffeomorphism by parts.
We visualize an example of the proposed function in Fig. 3.
The points in the Lie Group are split into two sets. We
consider a coordinate chart UM Ď M that defines a set
of almost all the points in the Lie group. Then, we group
all the points not belonging to the set UM in a different set,
x P M a UM. For example, in the example on Fig. 3, we
group all the points except the antipodal point in UM and
put the antipodal point in the set MaUM. The points in the
set UM are mapped to a set in the latent manifold, UN Ď N .
The points in the set MaUM are mapped to the latent space
set N a UN . Given that M and N are represented in the
same Lie Group, the sets in the observation space and the
latent space are also the same.

Φpxq “

#

ExpMap ˝ fθ ˝ LogMappxq if x P UM

x if x P M a UM.

(2)

For any element in the coordinate chart x P UM, we
define the map from UM to UN , through the tangent space,
Φ : ExpMap ˝ fθ ˝ LogMap. The function first maps a point
in the Lie group to the Lie algebra by the LogMap. For any
point x P UM, it will map to a point in a subset of the tangent
space, x̂ P ÛM Ď TxH

M. We call first cover of the tangent
space to ÛM. The map between UM and ÛM is guaranteed
to be diffeomorphic given the LogMap properties [21]. Then,
we apply a Euclidean diffeomorphism fθ between the first
covers of the observation space ÛM and the first covers
of the latent space, ÛN . We introduce our proposed fθ in
Section IV. Finally, we can map the points ŷ P ÛN back
to y P UN Ď N by the ExpMap and represent it in the

Fig. 3. A visual representation of the Φ function for 1-sphere (S1).
The points in S1 are split into two groups. For the points in UM, the
diffeomorphism is composed by first, mapping the points to the first-cover
ÛM by the LogMap, then applying a bounded Euclidean diffeomorphism
between ÛM and ÛN and mapping the points back to the manifold, by the
ExpMap. For the points not belonging to UM, we simply apply the identity
map. If fθ is the identity map close to the boundaries ´π and π; the map
is diffeomorphic for the whole S1. We add a few markers to represent the
space deformation along the mappings.

Lie Group. Given the three steps are diffeomorphic, we can
guarantee that Φ applies a diffeomorphism between UM and
UN . For the points not belonging to the set UM, we apply
the identity map. The identity map is also diffeomorphic.

Even if each part in Eq. (2) is diffeomorphic in itself, to
guarantee the function Φ is diffeomorphic in the whole Lie
group, we require to guarantee the function is continuous and
differentiable in the boundaries between UM and MaUM.
To do so, we impose structurally fθ to become the identity
map fθpx̂q “ x̂ when approaching to the boundaries of the
set ÛM. Thus,

Φpxq “ ExpMap ˝ fθ ˝ LogMappxq

“ ExpMap ˝ LogMappxq “ x (3)

when x is close to the boundaries of UM.
1) An intuitive example for 1-sphere (S1) manifold: The

1-sphere manifold is composed by all the points in a circle
of radius r, S1 : tx P R2 ; ||x|| “ ru. We visualize this
manifold in Fig. 3. To model a diffeomorphic transformation
between M and N , we propose to split the manifold in two
sets: the set UM considers all the points in the manifold
except the point in the south xS “ p0, rq, UM “ S1

‰xS
.

Equally, the set in the latent manifold UN , also consider
UN “ S1

‰xS
. The other set M a UM “ txSu is composed

of the point not belonging to UM. We can observe that UM is
diffeomorphic to the open line segment ÛM “ p´π, πq. We
refer to this set as first-cover of the tangent space ÛM “

ÛN “ p´π, πq. We can map any point from UM to ÛM
by the LogMap function. Inversely, we can map the points
from the open line segment to the set UM by the ExpMap
function. We remark that points in UM are two-dimensional
while points in ÛM are one-dimensional. Once the points are
in the ÛM, we model a bounded diffeomorphic function fθ
that maps the points in ÛM to ÛN . We present in Section IV
how we model this bounded diffeomorphism fθ. This map
can be thought of as a deformation of the line ÛM, stretching
or contracting the line. We highlight that while representing
directly a diffeomorphism between the open line segments
ÛM and ÛN is easy, representing it between the groups UM
and UN is hard, given that UM and UN are not Euclidean
spaces.



Fig. 4. Left: Manifold stable vector fields block diagram. Right: Proposed architecture for our diffeomorphic function fθ . As shown in (1), our manifold
SVF is composed of three elements: a diffeomorphism Φ (light blue box)(for simplicity, we only visualize the part related with the set UM), the latent
dynamics g (yellow box) and, the pullback operator dΦ˚ (red box). The diffeomorphism Φ is composed of three elements: the LogMap, a bounded
diffeomorphism between first covers fθ (blue) and, the ExpMap. The pullback operator dΦ˚ has two elements: the Jacobian inverse, computed for the
diffeomorphism fθ , and the Adjoint operator. Additionally, to control a robot, we first map the current joint configuration q to x P SEp3q by Forward
Kinematics. And once 9x P sep3q is computed, we map it back to the configuration space by J:

FK. Then, we apply a velocity controller in the configuration
space. The dashed line from the output of fθ and the dynamics input represents a shortcut we consider in practice as long as the latent ExpMap and
LogMap are computed in the same origin frame.

As shown before, to guarantee that Φ is diffeomorphic
for the whole manifold S1, we need to guarantee that fθ
becomes the identity map close to the boundaries of ÛM.
For the case of S1, the function fθ should approximate
the identity map the closer the points are to ´π and π.
Intuitively, the function fθ represents a space deformation
in p´π, πq that becomes the identity close to the boundaries
´π or π. We illustrate this diffeomorphic map in Fig. 3.

B. Latent Stable Dynamics g

For a given manifold N , the vectors are represented in
the tangent space of the manifold, TN . Thus, a dynamic
system in a manifold is a function that for any point in the
manifold outputs a vector in the tangent space, g : N ÝÑ

TN . Similarly to the transformation map Φ, we propose to
model the dynamics by parts

9y “ gpyq “

#

´LogMapyH
pyq if y P UN

0 if y P N a UN
. (4)

For any element in UN , we first map the point to the tangent
space centered at yH and then, compute the velocity vector
as 9y “ gpŷq “ ´ŷ. These dynamics will induce a stable
dynamic system in the manifold UN , with a sink in yH . For
any point out of the set UN , we set the velocity to zero.
This will set an unstable equilibrium point for any point in
N a UN . In practice, given the LogMap in our dynamics
Eq. (4) is the inverse of the ExpMap in Φ, we can directly
compute the dynamics using as input the output of fθ without
moving to N (dashed line in Fig. 4).

C. Pullback Operator dΦ˚

The pullback operator unrolls all the steps to the latent
space, N , done by the diffeomorphism, Φ, back to the
observation manifold, M. Additionally, given the velocity
vector is defined on the tangent space, the unrolling steps
are done on the tangent space. The pullback operator for
the mapping, fθ, is the Jacobian Jf . The inverse of the
Jacobian, maps the velocity vector from the latent tangent
space to the observation tangent space, centered in the origin,
J´1
f : TyH

N ÝÑ TxH
M. Additionally, we apply a second

pullback operator to map the vector from the tangent space

Algorithm 1: Behavioural Cloning for Manifold-
SVF

Given: mSVF: Manifold SVF function ;
θ0: initial parameters of the function mSVF;
I: Optimization steps;
D : ttxi,t, 9xi,tu

Ti
t“1u

N
i“1: N trajectories, of Ti length, with

the position in x P M and the velocity vector in 9x P TxM
1 for i Ð 0 to I ´ 1 do
2 xb, 9xb „ D; // Sample a batch from dataset

3 Lpθiq “ 1
B

řB
k“0 || 9xk ´ mSVFpxk;θiq||

2
2 ;

4 θi`1 Ð θi ` α∇θLpθiq;

5 return θ˚;

in the origin xH to the tangent space in the current pose
x, A : TxH

M ÝÑ TxM. This linear map is known as the
adjoint map and it can be understood as a change of reference
frame for the velocity vectors. We direct the reader to [32]
to find more information on how to model it. The whole
pullback operator is then, dΦ˚ “ A ˝ J´1

f .

IV. BOUNDED FLOWS AS TRANSFORMATION fθ

In Section III-A, we propose to model the diffeomorphism
between two subsets of the manifolds (UM and UN ) through
the tangent space. To properly model the diffeomorphism,
we have introduced a function fθ and defined its required
properties. The function fθ should be a diffeomorphism and
should become identity when approximating the boundaries
of the tangent space sets ÛM and ÛN . To represent our
function fθ, we build on top of the research on INN for
Normalizing Flows [33], [29].

We propose to model the function fθ by adapting Neural
ODEs [29] to our problem. Neural ODEs propose to model
the diffeomorphism between two spaces by the flow of a
parameterized vector field hθ. The flow kpx, tq : Rn`1 ÝÑ

Rn, represents the motion of a point for the time t, given
the ODE, dx{dt “ hθpxq ” dpkpx, tqq{dt “ hθpkpx, tqq

xt1 “ kpx, t1q “ x`

ż t1

0

hθpkpx, tqqdt. (5)

with t1 being a certain time instant and x the position of the
particle in the instant t “ 0. The flow function represents



the position of a particle x follows given the vector field
hθ at the instant t1. In Neural ODEs, the function fθ is
represented by the output of the flow at time 1

y “ fθpxq “ kpx, t “ 1q “ x`

ż 1

0

hθpkpx, tqqdt. (6)

As presented in [26], [29], the function is a diffeomorphism,
as long as hθ is a uniformly Lipschitz continuous vector
field (Picard–Lindelöf theorem).

Additionally, to compute the pullback operation, we are
required to compute the Jacobian matrix of fθ, Jf “

∇xkpx, t1q. Given the vector field hθ, there exists an ODE
representing the time evolution of the Jacobian

9Jf px, tq “ ∇khθpkpx, tqqJf px, tq

Jpx, t0q “ I. (7)

In practice, we can use an arbitrary ODE solver and find the
values for Jpx, t1q and kpx, t1q solving (6) and (7). In our
case, to guarantee a high control frequency rate, we apply the
forward Euler method to solve the ODE and then compute
the Jacobian by backward differentiation. It is important
to remark that these dynamics are used to represent the
diffeomorphism fθ between two spaces and not to represent
the desired vector fields.

Relevant consideration for our problem is that the function
fθ should define a diffeomorphism between two bounded
sets ÛM and ÛN and the transformation should become
identity close to the boundaries of these sets. Nevertheless,
without any additional considerations on hθ, the flow could
move a point in ÛM to any point in Rn, with n the dimension
of the Euclidean space in which the set ÛN is. To bound the
flow between the sets, we impose structurally that the vector
field hθ vanishes when approaching the boundaries. If the
flow dynamics are zero, then, the input and the output are
the same and we don’t apply space deformation at that point.
Given a distance function αpxq : Rn ÝÑ R that measures how
close we are to the boundaries, we define the vector field as

hθpxq “ αpxqψθpxq, (8)

with ψ an arbitrarily chosen uniformly Lipschitz continuous
parameterized vector field and α the scaling function of the
dynamics to satisfy the desired constraints, preventing to
move out of the set. α becomes zero close to the boundaries.
Then, close to the boundaries,

y “ fθpxq “ kpx, t1q « kpx, t0q “ x. (9)

Thus, the function fθ is guaranteed to approximate the
identity in the boundaries.

Given the set ÛM varies between the manifolds, we
consider different distance functions α for each possible
manifold. For the case of SOp2q, the first covers are ÛM “

ÛN “ p´π, πq. To impose identity map in the boundaries,
the dynamics are weighted with αpxq “ pπ ´ |x|q{π. α is a
function that moves from 1 to 0 when we approach the ˘π
boundaries.

For the case of S2, the sets are ÛM “ ÛN “ tx P

R2; ||x|| ă πu. This set is diffeomorphic to the set in

UM “ UN Ă S2, which considers all the points in the
manifold except the antipodal point. To impose the dynamics
to become zero close to the boundaries of the set, the distance
function is αpxq “ p||x|| ´ πq{π.

For the case of SOp3q, the sets are ÛM “ ÛN “ tx P

R3; ||x|| ă πu. The sets are diffeomorphic to the SO(3)
sets UM “ UN “ SOp3q‰Rπ Ă SOp3q, that consider
all possible rotation matrices except the ones that have a
π rotation from the origin. The dynamics are weighted by
the function αpxq “ p||x|| ´ πq{π.

For the case of the special Euclidean groups SE(2) and
SE(3), the orientation-related dimensions maintain the same
first covers of the special orthogonal groups. For the position-
related dimensions, we bound the first cover to the desired
workspace. Given pp,θq P sep3q, with p the position related
variables and θ, orientation related variables. We consider
two scaling functions, one for orientations and one for po-
sitions. The orientation scaling function αoripθq is computed
given the scaling functions above. The scaling function for
the positions αposppq can be used to enforce workspace
limits and varies depending on the chosen workspace bound-
aries. We compute the distance function by αpp,θq “

αposppqαoripθq.

V. EXPERIMENTAL RESULTS

We present three experiments to evaluate the performance
of our approach. In the first experiment, we illustrate, in
a S2 manifold, the performance of our proposed fθ w.r.t.
functions that do not take into consideration the manifold
and treat is as Euclidean. Even if S2 is not a Lie Group, we
can apply the proposed approach also on it and serves as a
useful manifold for illustration.

In the second and third experiments, we evaluate the
performance of our model in the Lie Groups SE(2) and
SE(3), for a 2D peg-in-a-hole task and a pouring task
respectively.

A. Network Evaluation in S2 manifold

We study the problem of learning stable vector fields
in 2-sphere, S2 by behavioral cloning (Algorithm 1). The
objective of this experiment is to evaluate the influence of
choosing different INN as mapping fθ.

For evaluation, we consider three models. The three mod-
els use our proposed architecture in Fig. 4 and vary in the
used diffeomorphism fθ. We consider two models using
the INN from previous works [20], [18] that considers a
diffeomorphism in the whole Euclidean space fθ : Rn ÝÑ

Rn and our proposed INN that learns a diffeomorphism in
bounded domains, fθ : ÛM ÝÑ ÛN . We modified the LASA
dataset [5] to S2 manifolds. We consider 22 different shape
trajectories and evaluate the models given three metrics:
MSE, Area, and Instability percentage. For measuring the
instability percentage, we initialized a set of points in random
positions on S2 and generated a trajectory with the learned
vector fields. Then, we measured how many trajectories reach
the target position after a certain period.



Fig. 5. Left: Kernel Coupling, Coupling, and Ours(Smooth Piecewise Linear) Layers compared in terms of MSE, Area and Instability %. Kernel Coupling
and Coupling Layer apply a diffeomorphism between Rn and Ours between the first covers. Right: Example of LASA trajectory and learned vector field.

From Fig. 5, we can observe that the three architectures
performed similarly in both MSE and Area measures and
were able to mimic the performance of the demonstrations
properly. This indicates that the proposed algorithm can learn
vector fields on smooth manifolds. Nevertheless, as shown
in the Instability % metric, the performance of the Kernel
Coupling Layer [20] and the Coupling Layer [18] decay
when initializing the trajectories in a random position. Given
the Kernel Coupling Layer and the Coupling Layer define a
diffeomorphism in the whole Euclidean space, they lack any
guarantee of being bijective between ÛM and ÛN . Thus,
these approaches lack guarantees about the stability of the
vector field in ÛM. We can observe the instability of the
vector fields by observing the antipodal point of the sphere,
where the boundaries of the first cover ÛM are defined. As
shown in Fig. 6, while our INN can guarantee all the vectors
pointing out of the antipodal (a source in the antipodal
point), the kernel coupling layer and coupling layer are not
able to guarantee stability close to the boundaries generating
oscillatory behaviors around the antipodal point.

B. Evaluation of SEp2q Stable vector fields in a 2D peg-in-
a-hole task

We consider the environment presented in Fig. 7. The
robot is a 5-DOF robot moving in a 2d plane. The goal
of the task is to move the end-effector of the robot into
the hole while avoiding collisions against the walls. We
generated a 1K trajectory demonstration to train our models
by applying RRT-Connect [34] on the environment. We
compare the performance of our model w.r.t. three baselines.
First, we consider a vector field modeled by a naive fully
connected neural network in the tangent space of SEp2q.
Second, we trained a stable vector field in the configuration
space, Q. Third, similarly to the experiment in S2, we
model a vector field with the architecture in Fig. 4, but
consider a vanilla INN as fθ instead of the proposed INN.
To evaluate the performances, we initialize the robot in a

Fig. 6. Vector fields in the antipodal point of the Sphere. Our proposed
diffeomorphism guarantees a source in the antipodal, while the unbounded
INN does not.

random configuration and reactively evolve the dynamics. To
control the robot, we apply operational space control [35].
Given the current end-effector pose, x P SEp2q, we compute
the desired velocity at the end effector 9x P R3 and pullback
to the configuration space by the Jacobian pseudoinverse.

We present the results in Fig. 7. We measure the success of
the different methods to approach the goal without colliding
under different amounts of training data. The vanilla neural
network model performed the worst with any amount of
trained data. A vanilla-NN is not limiting the family of
possible vector fields, thus it may learn vector fields with
multiple equilibrium points, limit cycles, or even unstable
ones. This results in highly unstable vector fields with
poor performance. The results also show the relevance of
choosing a good task space representation. Learning in
SEp2q outperforms the configuration space approach. The
difference in performance might be related to the vector field
dimensionality, 5 for the configuration space and 3 for SEp2q

and also, with the task itself: as the peg-in-a-hole task is
defined in the operational space the SEp2q vector fields fit
better the problem. Finally, we observe the benefit of our
proposed INN w.r.t. vanilla INN approach. Given that the
vanilla INN lacks global stability guarantees, the robot gets
stuck in limit cycles and the performance decays.

In conclusion, we have observed that (i) stability guar-
antees greatly improves the performance of the policy for
behavioral cloning problems (ii) representing the vector field
in a proper manifold can boost the performance, and (iii) a
bounded INN guarantees stability, while the unbounded one
does not, given Φ is not diffeomorphic anymore.

Fig. 7. Left: Peg-in-a-hole environment. We show in different colors,
generated trajectories from different initial configurations. Right: Success
rate Vs. Data percentage. We evaluate the performance of a set of models
when trained with different amounts of data.



Fig. 8. Results for the pouring experiment. Right: simulated experiment
results. We compare the stability property of the three models given three
possible types of initial configurations (close to the target, far from the
target, and random configuration). Left: real robot experiments results.

C. Learning a pouring task with SEp3q stable vector fields

In this experiment, we evaluate the performance of our
method on a pouring task (Fig. 1). To properly pour, the
robot requires to combine multiple positions and orientation
changes. First, we compare in simulation our method with
Euler angle-based vector fields. We consider two version of
our model: One with bounded fθ, introduced in Section IV
and one with a vanilla unbounded INN as fθ [36]. Then, we
evaluate the performance of our model in a real robot under
target modifications and human disturbances.

For this experiment, we use a 7 DoF Kuka LWR arm.
The provided task demonstrations consist of 30 kinesthetic
teaching trajectories with a wide variety of initial configura-
tions. We considered different end-effector positions and ori-
entations and trained the three models by behavioral cloning
(Algorithm 1). To control the robot, we apply operational
space control [35] for our proposed model (Fig. 4) and
position control for the Euler angles vector field. Note that
our proposed method adapts to any other type of robot
(prismatic joints, parallel robot) by changing the forward
kinematics function. We evaluate the three models in three
scenarios, robot performance with an initial configuration
close to the target, initial configuration far from the target,
and random initial configuration. We consider 10 different
initial configuration and measure the robot’s performance.
In the three cases, we measured the stability guarantees of
the models (i.e. the guarantee of arriving at the target pose
after a certain time). We present the experiment results in
Figure 8. From this figure, we can see that our model with
the bounded function fθ outperformed the other models in
the three cases. These results validate our claims on the
requirements of defining a function fθ between the first
covers, to guarantee stability in the whole Lie Group. Euler
angle-based vector fields perform quite well for the case of
close initial configuration. Euler Angles are an undesirable
representation for feedback control due to their singularities
and non-uniqueness. Nevertheless, we can assume these
types of situations are rare close to the target and can per-
form relatively well. Nevertheless, their performance decay
considering initial configurations far from the target. Given
the non-uniqueness of the Euler-angles, representing globally
stable vector fields in Euler-angles is not possible. In the case
of our model with vanilla INN, it shows unstable behavior
far from the target, while it remains quite stable close to it.
Diffeomorphism-based SVF lack stability guarantees if the
function Φ is not bijective. This lack of bijectiveness is more

prone to happen close to the boundaries of the first cover and
Φ remains bijective close to the target, with the guarantee of
being stable.

We also evaluate the performance of our model on a
real robot, measuring the model’s performance under target
modifications and human disturbances. To adapt to different
target positions, we use the current one xtarget P SEp3q as the
origin of the LogMap ( Fig. 4). This allows us to represent
the vector fields relative to the current target position. We
track the target pot by Optitrack motion capture systems.
The control signal is computed in a close-loop at a rate of
100Hz.

For the system evaluation, we predefined 10 different
initial configurations covering the whole workspace. The
robot holds a glass with 4 balls and we measured the number
of balls that enter the pot after executing the trajectory. We
considered 3 scenarios: normal execution, physical distur-
bance, and target modification.

Looking at the results in Fig. 8, it is clear that the robot
achieves a very robust performance. In the normal execution,
it pours almost all the balls in the pot, given any initial
configuration. This result shows the generalization properties
of our model: the robot was initialized in a position that does
not belong to the demonstration set, but was able to solve
the task. We also tested the system under heavy physical
disturbances, including pushing and holding the robot. In this
scenario, the performance decays, but the robot was able to
succeed most of the time. Finally, we observe the vector field
was able to properly adapt to different pot positions. The
robot succeeded to put almost all the balls in the pot except
for some target positions that were beyond the workspace
limits of the robot.

VI. DISCUSSION & CONCLUSIONS

We have proposed a novel Motion Primitive model that
can learn stable vector fields on Lie Groups from human
demonstrations. Our work extends previous works on mod-
eling stable vector fields to represent them on Lie Groups.
The proposed model allows us to generate reactive and stable
robot motions for the full pose (orientation and position).
Through an extensive evaluation phase, we have validated the
modeling decisions to guarantee stability and the importance
of representing the vector fields on Lie Groups to properly
solve robot tasks.

We have many directions to improve our model. First,
the chosen diffeomorphic function Φ has some limitations.
Our proposed model cannot set the sink in the antipodal
points, given the map in antipodal points is an identity
map. In practice, we can set the attractor in an arbitrary
pose by adding a linear transformation that moves the sink.
Nevertheless, we consider that this limitation might influence
the performance when modeling complex motion skills with
significant changes in orientation. In the future, we aim
to explore novel functions to represent the diffeomorphism
Φ. The experiments we have carried out focus on the
performance evaluation of our proposed stable vector fields.
However, these models are of particular interest combined



with additional motion skills, such as obstacle avoidance or
joint limit avoidance vector fields, as done in RMP [19] or
Composable Energy Policies (CEP) [37]. We will investigate
how to combine vector fields in future works.

Another possibility is to use the proposed method as a
cost function. Indeed, the architecture encodes in itself a
Lyapunov-stable potential function. We can use this function
as a terminal cost function (value function) or as a cost
function in trajectory optimization problems, allowing the
integration of additional cost functions. This approach could
be beneficial in long-horizon planning problems [38].
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