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Motivation
• In machine learning, direct processing of raw input data is 

often not possible 

• Features are needed for machine learning tasks like 
classification 

• Engineering features is often hard 

• Deep learning methods can automatically compute useful 
features of the input 

• State-of-the-art in different areas like image classification 
or speech recognition
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Introduction
• Shallow Neural Networks: Only one/few hidden layers  

Deep Learning: Multiple/many hidden layers 

• Why deep learning? 

• Abstractions of abstractions

http://theanalyticsstore.ie/deep-learning/
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• Special Case of Markov Random Fields: 

• Energy Based Model (Energy depends 
on configuration of variables) 

• Joint probability: 
 
 
 
with the normalizing partition function:  
 
 

 Restricted Boltzmann 
Machines (RBMs)

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012 
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 6



• Special Case of Boltzmann Machines: 

• Visible variables 
(e.g. pixel image) 

• Hidden variables 
(e.g. feature detectors) 
 
 
 
 
 

 Restricted Boltzmann 
Machines (RBMs)

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012 
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 7



• Restriction: 
No connections between different visible  
or between different hidden variables 
 
 

• Bipartite structure (Layers) 

• Independencies of conditional probabilities:  
 

 Restricted Boltzmann 
Machines (RBMs)

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012 
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 8



Training RBMs
• Maximize Log-Likelihood of Parameters    :  
 

• Gradient of Log-likelihood:  
 
 
 
 
 
 
 

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012 
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 9



Training RBMs
• Gradient of Log-likelihood:  
 

• Gradient w.r.t. weights       :  
 
 
 

• Second part is difficult to obtain       Approximation  

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012 
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 10



Training RBMs
• Approximation by Gibbs sampling  
 
 
 
 

• inefficient 

• Contrastive Divergence (CDk) 

• computes only k steps of the chain (starting from training sample as        )  

• not really following a gradient (but works) 

• computes reconstruction error       similar to Auto-Encoder (following)

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012 
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 11



Training RBMs
• Variations for Contrastive Divergence: 

• Persistent Contrastive Divergence (PCD): 

• no reinitialization of Gibbs chain 

• Fast Persistent Contrastive Divergence (FPCD): 

• like PCD but with additional fast parameters for sampling  
 
 

• faster update of fast parameters with weight decay

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012 
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 12



From Neurons  

to Auto-Encoders
• Single Neuron 

• Sigmoid Activation Function 

• Multilayer Feedforward Neural Network 

• Backpropagation Sketch 

• Backpropagation Building Blocks (Equations) 

• Finally: Auto-Encoder
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Single Neuron
w1

w2
w3

b 

from: http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
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Sigmoid Activation Function
• Squashes values into [0,1] 

• Saturates for small and large values
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Multi Layer Feedforward 
Neural Network (NN)
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How to train a  
Neural Network?

• How does changing a single weight 
influence the global cost function? 

• If we know this we can do Gradient Descent
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Backpropagation Sketch
• Initialize all parameters randomly near zero 

• Given an example  

• Compute all the activations in the network  
(forward pass) 

• Compute error responsibility for final layer 

• Backpropagate the error for hidden layers 

• Update all parameters
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Backpropagation 
 Building Blocks

•  An equation for ... 

• ... measuring the total cost 

• ... the error in the output layer 

• ... the error of one layer in terms of the error in the next layer 

• ... the rate of change of the cost with respect to any bias in the 
network 

• ... the rate of change of the cost with respect to any weight in 
the network
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Total Cost

Error = Average SSD + Weight Decay

• Goal: Minimize average error over all m training 
samples
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Output Layer Error
• For each output unit in the last layer 

• For the sigmoid activation function
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Backpropagate
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Desired partial derivatives
• How the weights/biases affect the cost function
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Weight Update
• One iteration of gradient descent
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Auto-Encoder
• Unsupervised 

• Output similar to Input 

•    

• Dimensionality reduction 

• Tied weights
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Auto-Encoder Variants
• Sparse 

• Apply regularization to hidden unit 
activation 

• Can use more hidden units 
(overcomplete) 

• More robust to small changes and 
noise 

• Denoising 

• Add noise to input data  

• Learns to remove additional noise
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RBM vs. Auto-Encoder
RBM AE

Generative √ Denoising*
Non Linear √ √

Dimensionality Reduction √ √
Remove Noise √ √

Trained with Backprop √
Use as feedforward NN √ √
Undirected Connections √

*Learning Deep Architectures for AI; Yoshua Bengio; 2009 27
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Topologies
• Composed of fully connected layers: 

• Stacked Auto-Encoders 

• Deep Belief Networks 

• Composed of partially/locally connected layers: 

• Convolutional Neural Networks
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Stacked Auto-Encoder

from http://deeplearning.stanford.edu/wiki/index.php/Stacked_Autoencoders

• Goal: Classify 
handwritten digits 

• Learn primary features 
on raw input
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http://deeplearning.stanford.edu/wiki/index.php/Stacked_Autoencoders


Stacked Auto-Encoder
• Learn secondary 

features 

• Use primary features 
as input
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Stacked Auto-Encoder
• Use secondary 

features as input to 
softmax classifier 

• Map secondary 
features to digit 
labels
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Stacked Auto-Encoder
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Stacked Auto-Encoder

G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with 
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. 34



3 Layer Auto-Encoder  

vs. PCA
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Why pre-training helps?
• Learning layer by layer scales very well 

• Useful weights initially for Backpropagation 

• Backpropagation only requires local search 

• Labeled data is only used for fine tuning 

• Can be seen as regularizer or prior
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Convolutional Neural 
Networks (CNNs)

• Biologically inspired 

• Sparse connectivity 

• Only local connectivity 

• One neuron spans whole area 

• Shared weights 

• Images have stationary 
property, so same statistics 
everywhere 

• Enforce same weights

from http://deeplearning.net/tutorial/lenet.html
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Convolution
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Pooling
• More robust to small changes in features 

• Less computations 

• Reduce overfitting

Convoluted

3 2

4 1

Image Max Pooled

4
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Convolutional Neural 
Network (CNN)

• Structure with different alternating layers 

• Convolutional layers 

• topographic structure (fixed 2d position + receptive field) 

• Sub-sampling layers 

• Max-Pooling 

• traditional MLP at the output  
 
 
 
 
 

from http://deeplearning.net/tutorial/lenet.html#lenet
40

http://deeplearning.net/tutorial/lenet.html%23lenet


Multiple Input Modalities
• Combine different types of input data 

• Combine data later in the hierarchy 

• Lower levels learn modality specific features

Convolutional-Recursive Deep Learning for 3D Object Classification. Socher et. al (NIPS 2012 665-673)
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Drop Out
• Idea: Reduce overfitting by averaging the  

outputs of multiple separately trained networks 

• Problem: Too many parameters to learn, 
too slow, too much training data required 

• Solution: Use only one network, but slightly  
change the structure during training 

• Randomly deactivate nodes  
during training  
 
 
 
 

Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Srivastava et al. 2014 
Journal of Machine Learning Research 43



Drop Out
• Randomly deactivate nodes during training 

• Train "thinned" networks (one randomly thinned network per 
training case) 

• All thinned networks share all weights 

• Combine all thinned networks at test time  
 
 
 
 
 

Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Srivastava et al. 2014 
Journal of Machine Learning Research 44



Drop Out
• Results: 

• Increased robustness, prevents from overfitting, lower 
generalization error 

• State-of-the-art results on image data sets 

• Improvement on speech data set 

• Text data set: improvement smaller compared to vision and 
speech data sets

Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Srivastava et al. 2014 
Journal of Machine Learning Research 45



Xavier Initialization
• Avoid amplifying or attenuating the signals in the network 

• Normalized initialization of the weights   

• Desired properties:  
 
 
 

• Variances of weights:  
 
 
 

Understanding the difficulty of training deep feedforward neural networks; Glorot and Bengio 2010  
International conference on artificial intelligence and statistics 46



Xavier Initialization
• Compromise: 
 

• Suggestion for implementation 
(Normalized initialization):  
 
 

• Result:  
Helps initializing the weights to useful sizes instead of 
using pre-training on single layers

Understanding the difficulty of training deep feedforward neural networks; Glorot and Bengio 2010  
International conference on artificial intelligence and statistics 47



Linear Rectifier Units
• Different (biologically inspired) activation function 
 
 
 
 

• Use                    as activation function  
 
 
 
 

Deep Sparse Rectifier Neural Networks; Glorot, Bordes, Bengio 2011 
International conference on artificial intelligence and statistics 48



Linear Rectifier Units
• Only subset of neurons are active 

• Computation linear on subset 

• Linear within a small input region 

• Cheaper computations 

• Sparse activation (real zeros in neuron outputs) 

• Gradients do not vanish due to activation non-linearities 

• Yields similar results with and without pre-training

Deep Sparse Rectifier Neural Networks; Glorot, Bordes, Bengio 2011 
International conference on artificial intelligence and statistics 49



Direct Supervised Training
• When using Xavier initialization, pre-training is 

replaced 

• When using Linear Rectifier Units, pre-training does 
not give much advantage
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Computer Vision
• Handwriting recognition (e.g. MNIST dataset) 

• Image classification  (e.g. CIFAR 10 dataset) 

• Traffic sign recognition

Multi-column Deep Neural Networks for Image Classification; Ciresan, Meier and Schmidhuber 2012 
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 52



Computer Vision
• Pedestrian detection 

• Object recognition, detecting robotic grasps

Deep Learning for Detecting Robotic Grasps; Lenz, Lee and Saxena 2015 
The International Journal of Robotics Research  

Pedestrian Detection aided by Deep Learning Semantic Tasks; Tian et al. 2014 
arXiv preprint arXiv:1412.0069  
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Speech Recognition
• Google 

• Current neural networks have more than 30 layers 

• 8% word error rate compared to 23% in 2013 

• Baidu: Deep Speech (Large recurrent neural network)

DeepSpeech: Scaling up end-to-end speech recognition; Hannun et al. 2014 
arXiv preprint arXiv:1412.5567
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