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Votivation

In machine learning, direct processing of raw input data is
often not possible

Features are needed for machine learning tasks like
classification

Engineering features is often hard

Deep learning methods can automatically compute usetul
features of the input

State-of-the-art in different areas like image classitication
or speech recognition



lNtroauction

e Shallow Neural Networks: Only one/few hidden layers

Deep Learning: Multiple/many hidden layers

 Why deep learning?
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Restricted Boltzmann
Machines (RBMs)

* Special Case of Markov Random Fields:

* Energy Based Model (Energy depends Ze To
on configuration of variables)

e Joint probability:

G_Ee (z) Is5 I3

p(zr) = Z,

with the normalizing partition function:
Zo = Z e~ Eo(z)
xZr

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications



Restricted Boltzmann
Machines (RBMs)

« Special Case of Boltzmann Machines:

* Visible variables wv;
(e.g. pixel image) )

Hidden variables A, "

(e.g. feature detectors)

(%]
p(v) =) _p(v;h) = % ) e Z
h h
E(v,h) = — Z Z hiw;;v; — Z Z Ve Ukl V] — Z Z hryrih; — Z bjvi — Zcihi
i=1 j=1 k=1 l<k k=1 1<k j=1 i=1

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications



Restricted Boltzmann
Machines (RBMs)

e Restriction:
No connections between different visible

or between different hidden variables

i=1 j=1

& ©

N
_ Zn: ihi’wz‘j?}j — iijj - é cih; >%g
==
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» Bipartite structure (Layers)

* Independencies of conditional probabilities:

p(hlv) = Hp i|v) p(v|h):Hp(vj|h)

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications




Training RBMs

» Maximize Log-Likelihood of Parameters 0

1 —E(v,h)
InL(f|v) =Inpw|f) =In E Z e

h
= In Z e EWh) _1n Z e E(,h)
h v,h
* (Gradient of Log-likelihood:

alnL(H | ’U) 0 —E(v,h) —E(v,h)
89 80 (ln Z e 0 In vZ’; €

1 ~Bwn EW®R) | _B(v,h) 9E(v, h)
o Z e—E(v,h) ; € 00 —E('v h) Z 00
h

aE (v, h OF (v, h)
_Zp h|v) Zp(v,h) 90

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 9



Training RBMs

e Gradient of Log-likelihood:

Oln L(0|v OFE (v, h OE(v,h
0 =~ ) P S gl

* Gradient w.rt. weights w;;

Oln L(6
na ) — p(hi = Lv)v; — ) p(v)p(hi = 1jv)v;
’wij v
Oln L(6|v)
8wm — <hqj'Uj>da,ta —_ <hi?)j>model

» Second part is difficult to obtain s Approximation

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
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Training RBMs

* Approximation by Gibbs sampling

p(hz — 1|’U) =0 (Z ’wij’Uj -+ Cz')

j=1
n

Z wwhz -+ b3>

1=1

p(v; =1lh) = 0(

° inefficient @ @ @ @ @

« Contrastive Divergence (CD,)

* computes only k steps of the chain (starting from training sample as
* not really following a gradient (but works)

* computes reconstruction error =»similar to Auto-Encoder (following)

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

2 (0)
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Training RBMs

* Variations for Contrastive Divergence:
* Persistent Contrastive Divergence (PCD):
* no reinitialization of Gibbs chain
» Fast Persistent Contrastive Divergence (FPCD):

 |ike PCD but with additional fast parameters for sampling

m

p(h; =1jv) =0 (Z(wz] + wzfj)’vj + (¢ + c{))

j=1

p(vj = 1|h) = U(Z(wij +wl)hi + (b; + bf))
=1
e faster update of tast parameters with weight decay

An Introduction to Restricted Boltzmann Machines; Fischer and Igel 2012
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
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From Neurons
to Auto-Encoders

Single Neuron

Sigmoid Activation Function

Multilayer Feedforward Neural Network
Backpropagation Sketch

Backpropagation Building Blocks (Equations)

Finally: Auto-Encoder

13



Single Neuron

X4 w
Xy ~V2
W3 —_—> hW’b(x)
X3
b
+1
hwy(z) = fWTz) = f(37_, Wiz + b)

L) 0,0 4 0
a(l—l—l) _ f(z(l—i—l))

from: http://web.stanford.edu/class/cs?294a/sparseAutoencoder.pdf
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http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

Sigmoid Activation Function

e Squashes values into [0,1]

e Saturates for small and large values

sigmoid function
1.0 -

0.8
0.6
0.4 -

0.2 —

0.0 I l | I I l | I I |



Multli Layer Feedforward
Neural Network (NN)

16



How to train a
Neural Network??

 How does changing a single weight b,
influence the global cost function? oW D

e |f we know this we can do Gradient Descent

J(W, b;z,y)

17



Backpropagation Sketch

* |nitialize all parameters randomly near zero
* (Given an example

 Compute all the activations in the network
(forward pass)

 Compute error responsibility for final layer
 Backpropagate the error for hidden layers

 Update all parameters

18



Backpropagation
Bullding Blocks

* An equation for ...

... measuring the total cost
... the error in the output layer
... the error of one layer in terms of the error in the next layer

... the rate of change of the cost with respect to any bias in the
network

... the rate of change of the cost with respect to any weight in
the network

19



Total Cost

* (Goal: Minimize average error over all m training
samples

J(W,b) = %ZJbe(Z) ()
=1 -

= |23 (e —90)

_m 1=1 -

Error = Average SSD



Output Layer Error

 For each output unit in the last layer

o 1
9z(m) 2

5\ = ly — bwo(@)|)* = —(v: — ™) - f'(2"™)

e For the sigmoid activation function

(") = a’(1 - a))

21



Backpropagate

22



Desired partial derivatives

* How the weights/biases affect the cost function

0 (1) <(1+1)
aw(l) J(W,b; , y) a; 0;
1)

0 (1+1)
WJ(WJ?;%?J) = 0; .

23



Weight Update

* One iteration of gradient descent

%,
w = W% —a——J(W,b)
ij ij ) )
oW,
Bl = bg”—ailj(w,b)
oY

24



Auto-Encoder

Unsupervised

Output similar to Input

* hwp(x) =
Dimensionality reduction

Tied weights

hw b(X)

25



Auto-Encoder Variants

e Sparse

* Apply regularization to hidden unit
activation

e Can use more hidden units
(overcomplete)

* More robust to small changes and
noise

e Denoising
* Add noise to input data

e [ earns to remove additional noise

20



RBM vs. Auto-Encoder

RBM

AE

Generative
Non Linear
Dimensionality Reduction
Remove Noise
Trained with Backprop
Use as feedforward NN
Undirected Connections

<~ <

<~ <

Denoising”

N < L <

*Learning Deep Architectures for Al; Yoshua Bengio; 2009
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lopologies

 Composed of fully connected layers:
« Stacked Auto-Encoders
 Deep Belief Networks
 Composed of partially/locally connected layers:

e Convolutional Neural Networks

29



Stacked Auto-Encoder

* Goal: Classity
handwritten digits

e Learn primary features

on raw input

from http://deeplearning.stanford.edu/wiki/index.php/Stacked _Autoencoders

Input

Features |

Output

30


http://deeplearning.stanford.edu/wiki/index.php/Stacked_Autoencoders

 |earn secondary

Stacked Auto-Encoder

features

 Use primary features
as input

)

= C? =) (=

Input Features Il Output

31



Stacked Auto-Encoder

 Use secondary
features as input to
softmax classifier
—> P(y=0 | x)
* Map secondary
features to digit
abels

> Ply=1| x)

r— Py =2 | X)

HEG®

Input Softmax
(Features Il) classifier

32



Stacked Auto-Encoder

——> P(y=0 | x)
—> Ply=1]x)

—> Ply=2 | x)

Softmax

classifier
33



Stacked Auto-Encoder

..........................................

..........................................

................

..........................................

RBM ' Encoder

.......................................

Pretraining Unrolling Fine-tuning

G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with 34
neural networks,” Science, vol. 313, no. 5786, pp. 504-507, 2006.



3 Layer Auto-Encoder
vs. PCA
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Why pre-training helps®
Learning layer by layer scales very well
Useful weights initially for Backpropagation
Backpropagation only requires local search

Labeled data is only used for fine tuning

Can be seen as regularizer or prior

36



Convolutional Neural
Networks (CNNSs)

e Biologically inspired

layer m+ | i)
e Sparse connectivity l
o layer m
e Only local connectivity
* One neuron spans whole area layer m-|
e Shared weights
 |Images have stationary
property, so same statistics layer m

everywhere

» Enforce same weights ayer m-1 O OO0

from http://deeplearning.net/tutorial/lenet.htm!
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http://deeplearning.net/tutorial/lenet.html

Convolution

1x1 1x0 1x1 0 0
0,1,)1/1/0 4
0,)0,1,/1]1
0(0{1(1]|0
0(1{1(0]|0
Convolved
Image

Feature

38



P00lINg

 More robust to small changes in features
* |ess computations

* Reduce overfitting

Image Convoluted Max Pooled

4




Convolutional Neural
Network (CNN)

Structure with different alternating layers

Convolutional layers

* topographic structure (fixed 2d position + receptive field)

Sub-sampling layers
* Max-Pooling

traditional MLP at the output

Inpuct layer (S1) 4 feacure maps

[ convolution layer l sub-sampling layer

(Cl1) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

l convolution layer l sub-sampling layer l fully connected MLP |

from http://deeplearning.net/tutorial/lenet.html#lenet

40


http://deeplearning.net/tutorial/lenet.html%23lenet

Multiple Input Modalities

 Combine different types of input data
* Combine data later in the hierarchy

* Lower levels learn modality specific features

RGB CNN Softmax Classifier Depth CNN
Label: Coffee Mug

K filters A I I N —
4 pooling regions
Multiple RNN Multiple RNN

Convolution

Filter Responses get pooled Merging of pooled vectors Merging of pooled vectors

| Convolution
K, R

Convolutional-Recursive Deep Learning for 3D Object Classification. Socher et. al (NIPS 2012 665-673)
41
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Drop Out

- ldea: Reduce overfitting by averaging the
outputs of multiple separately trained networks

- Problem: Too many parameters to learn,
too slow, too much training data required

- Solution: Use only one network, but slightly

change the structure during training

 Randomly deactivate nodes
during training
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(a) Standard Neural Net (b) After applying dropout.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Srivastava et al. 2014

Journal of Machine Learning Research
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Drop Out

* Randomly deactivate nodes during training

e Train "thinned" networks (one randomly thinned network per
training case)

e All thinned networks share all weights

e Combine all thinned networks at test time

W PW
Present with Always
probability p present

(a) At training time (b) At test time

Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Srivastava et al. 2014
Journal of Machine Learning Research
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Drop Out

e Results:

* Increased robustness, prevents from overfitting, lower
generalization error

e State-of-the-art results on image data sets

* Improvement on speech data set

* [ext data set: iImprovement smaller compared to vision and
speech data sets

Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Srivastava et al. 2014
Journal of Machine Learning Research
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Xxavier Initialization

Avoid amplitying or attenuating the signals in the network
Normalized initialization of the weights w* z

Desired properties:
V(i,i), Var[z'] = Var|[z* ]

V(z,1"), Var [8g;8t] — Var[agsojt]
Variances of weights: s' = 2'W" + b’
Vi, n;VarlW' =1 = Var[W'] = ni,, 2 = f(s")
Vi, njqVar[W'=1 = Var[W' = nz'l+1

Understanding the difficulty of training deep feedforward neural networks; Glorot and Bengio 2010
International conference on artificial intelligence and statistics
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Xxavier Initialization

e Compromise:
2

Vi, Var[W" = e T e

e Suggestion for implementation
(Normalized initialization):

V6 V6 ]

W ~ U[ |
Vi i1 /i

e Result:
Helps initializing the weights to useful sizes instead of
using pre-training on single layers

Understanding the difficulty of training deep feedforward neural networks; Glorot and Bengio 2010

International conference on artificial intelligence and statistics 4r



L Inear Rectifier Units

« Different (biologically inspired) activation function

I.

— Sigmoid | 200/
Tanh
Z 0 = 100
o

-05 2 501
1 0= i : ; |
-3 2 -1 0 1 2 3 0 2 - 6 8 10

x Input current (A)

9
x 10

* Use max (0, T)as activation function

—Softplus
—Rectifier

-3 -2 -1 0 1 2 3
X

Deep Sparse Rectifier Neural Networks; Glorot, Bordes, Bengio 2011
International conference on artificial intelligence and statistics
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L Inear Rectifier Units

Only subset of neurons are active Output

Computation linear on subset Hidden layer 2

Linear within a small input region Hidden laver 1

Cheaper computations

Input

Sparse activation (real zeros in neuron outputs)
Gradients do not vanish due to activation non-linearities

Yields similar results with and without pre-training

Deep Sparse Rectifier Neural Networks; Glorot, Bordes, Bengio 2011
International conference on artificial intelligence and statistics
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Direct Supervised Training

* When using Xavier initialization, pre-training Is
replaced

 When using Linear Rectifier Units, pre-training does
not give much advantage

50
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Computer Vision

* Handwriting recognition (e.g. MNIST dataset) g 0,%

* |Image classification (e.g. CIFAR 10 dataset) L RN

= .W

@VERAGIN(S

Dataset Best result MCDNN Relative
of others [%] [%] improv. [%]
MNIST 0.39 0.23 41
NIST SD 19 see Table 4  see Table 4 30-80

HWDB1.0 on. 7.61 5.61 26
HWDB1.0 off. 10.01 6.5 35
CIFAR10 18.50 11.21 39
traffic signs 1.69 0.54 72
NORB 5.00 2.70 46

Image

Multi-column Deep Neural Networks for Image Classification; Ciresan, Meier and Schmidhuber 2012
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 59



Computer Vision

Pedestrian detection

o -
- | -
- - s ! .,—,‘
Wl » 2 .
=

Pedestrian Detection aided by Deep Learning Semantic Tasks; Tian et al. 2014
arXiv preprint arXiv:1412.0069

Deep Learning for Detecting Robotic Grasps; Lenz, Lee and Saxena 2015
The International Journal of Robotics Research

53



Speech Recognition

 Google
e Current neural networks have more than 30 layers
* 8% word error rate compared to 23% in 2013

* Baidu: Deep Speech (Large recurrent neural network)

System Clean (94) Noisy (82) Combined (176)
Apple Dictation 14.24 43.76 26.73
Bing Speech 11.73 36.12 22.05
Google API 6.64 30.47 16.72
wit.ai 7.94 35.06 19.41
Deep Speech 6.56 19.06 11.85

DeepSpeech: Scaling up end-to-end speech recognition; Hannun et al. 2014
arXiv preprint arXiv:1412.5567



Overview

Introduction

Basic Components

opologies

Recent |ldeas

* Applications

Summary

55



summary

Basic Components:
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Restricted Boltzmann Machines
Auto-Encoders

Stacked RBMs/Auto-Encoders
Convolutional Neural Networks

Drop Out
Xavier Initialization
Linear Rectifier Units

Computer Vision
Speech Recognition
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