Deep Learning

Standard Approaches

Tobias Croon, Heiko Guckes Coach: Oliver Kroemer

Motivation

- In machine learning, direct processing of raw input data is often not possible
- Features are needed for machine learning tasks like classification
- Engineering features is often hard
- Deep learning methods can automatically compute useful features of the input
- State-of-the-art in different areas like image classification or speech recognition

Introduction

 Shallow Neural Networks: Only one/few hidden layers Deep Learning: Multiple/many hidden layers

Abstractions of abstractions

Overview

- Introduction
- Basic Components
- Topologies
- Recent Ideas
- Applications
- Summary

Overview

- Introduction
- Basic Components
 - Restricted Boltzmann Machines
 - Auto-Encoders
- Topologies
- Recent Ideas
- Applications
- Summary

Restricted Boltzmann Machines (RBMs)

- Special Case of Markov Random Fields:
 - Energy Based Model (Energy depends on configuration of variables)
 - Joint probability:

$$p(x) = \frac{e^{-E_{\theta}(x)}}{Z_{\theta}}$$

with the normalizing partition function:

$$Z_{\theta} = \sum_{x} e^{-E_{\theta}(x)}$$

Restricted Boltzmann Machines (RBMs)

- Special Case of **Boltzmann Machines**:
 - Visible variables v_j
 (e.g. pixel image)
 - Hidden variables <u>h</u>_i
 (e.g. feature detectors)

$$v_2$$
 h_1 v_3 h_2 v_4

 v_1

$$p(v) = \sum_{h} p(v,h) = \frac{1}{Z} \sum_{h} e^{-E(v,h)}$$

$$E(v,h) = -\sum_{i=1}^{n} \sum_{j=1}^{m} h_i w_{ij} v_j - \sum_{k=1}^{m} \sum_{l < k} v_k u_{kl} v_l - \sum_{k=1}^{n} \sum_{l < k} h_k y_{kl} h_l - \sum_{j=1}^{m} b_j v_j - \sum_{i=1}^{n} c_i h_i$$

Restricted Boltzmann Machines (RBMs)

 v_2

 v_3

 v_4

• Restriction:

No connections between different visible or between different hidden variables

$$E(v,h) = -\sum_{i=1}^{n} \sum_{j=1}^{m} h_i w_{ij} v_j - \sum_{j=1}^{m} b_j v_j - \sum_{i=1}^{n} c_i h_i$$

- Bipartite structure (Layers)
- Independencies of conditional probabilities:

$$p(h|v) = \prod_{i=1}^{n} p(h_i|v)$$
 $p(v|h) = \prod_{j=1}^{m} p(v_j|h)$

• Maximize Log-Likelihood of Parameters heta

$$\ln \mathcal{L}(\theta|v) = \ln p(v|\theta) = \ln \frac{1}{Z} \sum_{h} e^{-E(v,h)}$$
$$= \ln \sum_{h} e^{-E(v,h)} - \ln \sum_{v,h} e^{-E(v,h)}$$

• Gradient of Log-likelihood:

$$\begin{split} \frac{\partial \ln \mathcal{L}(\boldsymbol{\theta} \mid \boldsymbol{v})}{\partial \boldsymbol{\theta}} &= \frac{\partial}{\partial \boldsymbol{\theta}} \left(\ln \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})} \right) - \frac{\partial}{\partial \boldsymbol{\theta}} \left(\ln \sum_{\boldsymbol{v},\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})} \right) \\ &= -\frac{1}{\sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})}} \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})} \frac{\partial E(\boldsymbol{v},\boldsymbol{h})}{\partial \boldsymbol{\theta}} + \frac{1}{\sum_{\boldsymbol{v},\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})}} \sum_{\boldsymbol{v},\boldsymbol{h}} e^{-E(\boldsymbol{v},\boldsymbol{h})} \frac{\partial E(\boldsymbol{v},\boldsymbol{h})}{\partial \boldsymbol{\theta}} \\ &= -\sum_{\boldsymbol{h}} p(\boldsymbol{h} \mid \boldsymbol{v}) \frac{\partial E(\boldsymbol{v},\boldsymbol{h})}{\partial \boldsymbol{\theta}} + \sum_{\boldsymbol{v},\boldsymbol{h}} p(\boldsymbol{v},\boldsymbol{h}) \frac{\partial E(\boldsymbol{v},\boldsymbol{h})}{\partial \boldsymbol{\theta}} \end{split}$$

• Gradient of Log-likelihood:

$$\frac{\partial \ln \mathcal{L}(\theta|v)}{\partial \theta} = -\sum_{h} p(h|v) \frac{\partial E(v,h)}{\partial \theta} + \sum_{v,h} p(v,h) \frac{\partial E(v,h)}{\partial \theta}$$

• Gradient w.r.t. weights w_{ij}

$$\frac{\partial \ln \mathcal{L}(\theta|v)}{\partial w_{ij}} = p(h_i = 1|v)v_j - \sum_{v} p(v)p(h_i = 1|v)v_j$$
$$\frac{\partial \ln \mathcal{L}(\theta|v)}{\partial w_{ij}} = \langle h_i v_j \rangle_{data} - \langle h_i v_j \rangle_{model}$$

• Second part is difficult to obtain \rightarrow Approximation

Approximation by Gibbs sampling

$$p(h_{i} = 1|v) = \sigma\left(\sum_{j=1}^{m} w_{ij}v_{j} + c_{i}\right)$$

$$p(v_{j} = 1|h) = \sigma\left(\sum_{i=1}^{n} w_{ij}h_{i} + b_{j}\right)$$
inefficient

 \bullet

- Contrastive Divergence (CD_k)
 - computes only k steps of the chain (starting from training sample as $v^{(0)}$
 - not really following a gradient (but works)
 - computes reconstruction error \Rightarrow similar to Auto-Encoder (following)

- Variations for Contrastive Divergence:
 - Persistent Contrastive Divergence (PCD):
 - no reinitialization of Gibbs chain
 - Fast Persistent Contrastive Divergence (FPCD):
 - like PCD but with additional fast parameters for sampling

$$\tilde{p}(h_i = 1|v) = \sigma \left(\sum_{j=1}^m (w_{ij} + w_{ij}^f) v_j + (c_i + c_i^f) \right)$$
$$\tilde{p}(v_j = 1|h) = \sigma \left(\sum_{i=1}^n (w_{ij} + w_{ij}^f) h_i + (b_j + b_j^f) \right)$$

• faster update of fast parameters with weight decay

From Neurons to Auto-Encoders

- Single Neuron
- Sigmoid Activation Function
- Multilayer Feedforward Neural Network
- Backpropagation Sketch
- Backpropagation Building Blocks (Equations)
- Finally: Auto-Encoder

Single Neuron

$$h_{W,b}(x) = f(W^T x) = f(\sum_{i=1}^3 W_i x_i + b)$$
$$z^{(l+1)} = W^{(l)} a^{(l)} + b^{(l)}$$
$$a^{(l+1)} = f(z^{(l+1)})$$

from: http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

Sigmoid Activation Function

- Squashes values into [0,1]
- Saturates for small and large values

Multi Layer Feedforward Neural Network (NN)

How to train a Neural Network?

- How does changing a single weight influence the global cost function?
- $\frac{\partial}{\partial W_{ij}^{(l)}}J(W,b;x,y)$
- If we know this we can do Gradient Descent

Backpropagation Sketch

- Initialize all parameters randomly near zero
- Given an example
 - Compute all the activations in the network (forward pass)
 - Compute error responsibility for final layer
 - Backpropagate the error for hidden layers
 - Update all parameters

Backpropagation Building Blocks

- An equation for ...
 - ... measuring the total cost
 - ... the error in the output layer
 - ... the error of one layer in terms of the error in the next layer
 - ... the rate of change of the cost with respect to any bias in the network
 - ... the rate of change of the cost with respect to any weight in the network

Total Cost

 Goal: Minimize average error over all m training samples

$$J(W,b) = \left[\frac{1}{m}\sum_{i=1}^{m} J(W,b;x^{(i)},y^{(i)})\right]$$
$$= \left[\frac{1}{m}\sum_{i=1}^{m} \left(\frac{1}{2} \|h_{W,b}(x^{(i)}) - y^{(i)}\|^2\right)\right]$$

Error = Average SSD + Weight Decay

Output Layer Error

• For each output unit in the last layer

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$

• For the sigmoid activation function

$$f'(z_i^{(l)}) = a_i^{(l)}(1 - a_i^{(l)})$$

Backpropagate

$$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$$

Desired partial derivatives

How the weights/biases affect the cost function

$$\frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x, y) = a_j^{(l)} \delta_i^{(l+1)}$$
$$\frac{\partial}{\partial b_i^{(l)}} J(W, b; x, y) = \delta_i^{(l+1)}.$$

Weight Update

• One iteration of gradient descent

$$\begin{split} W_{ij}^{(l)} &:= W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b) \\ b_i^{(l)} &:= b_i^{(l)} - \alpha \frac{\partial}{\partial b_i^{(l)}} J(W, b) \end{split}$$

Auto-Encoder

- Unsupervised
- Output similar to Input
 - $h_{W,b}(x) \approx x$
- Dimensionality reduction
- Tied weights

Auto-Encoder Variants

- Sparse
 - Apply regularization to hidden unit activation
 - Can use more hidden units (overcomplete)
 - More robust to small changes and noise
- Denoising
 - Add noise to input data
 - Learns to remove additional noise

RBM vs. Auto-Encoder

	RBM	AE
Generative	\checkmark	Denoising*
Non Linear		\checkmark
Dimensionality Reduction		\checkmark
Remove Noise		\checkmark
Trained with Backprop		\checkmark
Use as feedforward NN		\checkmark
Undirected Connections		

Overview

- Introduction
- Basic Components
- Topologies
- Recent Ideas
- Applications
- Summary

Topologies

- Composed of fully connected layers:
 - Stacked Auto-Encoders
 - Deep Belief Networks
- Composed of partially/locally connected layers:
 - Convolutional Neural Networks

- Goal: Classify handwritten digits
- Learn primary features on raw input

from http://deeplearning.stanford.edu/wiki/index.php/Stacked_Autoencoders

- Learn secondary features
- Use primary features as input

Input	Features II	Output
(Features I)		

- Use secondary features as input to softmax classifier
- Map secondary features to digit labels

Input	Softmax
(Features II)	classifier

G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504–507, 2006.

3 Layer Auto-Encoder vs. PCA

Why pre-training helps?

- Learning layer by layer scales very well
- Useful weights initially for Backpropagation
- Backpropagation only requires local search
- Labeled data is only used for fine tuning
- Can be seen as regularizer or prior

Convolutional Neural Networks (CNNs)

- Biologically inspired
- Sparse connectivity
 - Only local connectivity
 - One neuron spans whole area
- Shared weights
 - Images have stationary property, so same statistics everywhere
 - Enforce same weights

Convolution

Convolved Feature

Pooling

- More robust to small changes in features
- Less computations
- Reduce overfitting

Convolutional Neural Network (CNN)

- Structure with different alternating layers
- Convolutional layers
 - topographic structure (fixed 2d position + receptive field)
- Sub-sampling layers
 - Max-Pooling
- traditional MLP at the output

Multiple Input Modalities

- Combine different types of input data
- Combine data later in the hierarchy
- Lower levels learn modality specific features

Convolutional-Recursive Deep Learning for 3D Object Classification. Socher et. al (NIPS 2012 665-673)

Overview

- Introduction
- Basic Components
- Topologies
- Recent Ideas
- Applications
- Summary

Drop Out

- Idea: Reduce overfitting by averaging the outputs of multiple separately trained networks
- Problem: Too many parameters to learn, too slow, too much training data required
- Solution: Use only one network, but slightly change the structure during training
- Randomly deactivate nodes during training

Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Srivastava et al. 2014 Journal of Machine Learning Research

Drop Out

- Randomly deactivate nodes during training
 - Train "thinned" networks (one randomly thinned network per training case)
 - All thinned networks share all weights
 - Combine all thinned networks at test time

Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Srivastava et al. 2014 Journal of Machine Learning Research

Drop Out

- Results:
 - Increased robustness, prevents from overfitting, lower generalization error
 - State-of-the-art results on image data sets
 - Improvement on speech data set
 - Text data set: improvement smaller compared to vision and speech data sets

Xavier Initialization

- Avoid amplifying or attenuating the signals in the network
- Normalized initialization of the weights W^{\imath}
- Desired properties:

$$\begin{aligned} \forall (i,i'), Var[z^i] &= Var[z^{i'}] \\ \forall (i,i'), Var\Big[\frac{\partial Cost}{\partial s^i}\Big] &= Var\Big[\frac{\partial Cost}{\partial s^{i'}}\Big] \end{aligned}$$

 $s^i = z^i W^i + b^i$

 $z^{i+1} = f(s^i)$

• Variances of weights:

$$\begin{array}{ll} \forall i, & n_i \operatorname{Var}[W^i] = 1 & \Rightarrow \operatorname{Var}[W^i] = \frac{1}{n_i} \\ \forall i, & n_{i+1} \operatorname{Var}[W^i] = 1 & \Rightarrow \operatorname{Var}[W^i] = \frac{1}{n_{i+1}} \end{array}$$

Understanding the difficulty of training deep feedforward neural networks; Glorot and Bengio 2010 International conference on artificial intelligence and statistics

Xavier Initialization

• Compromise:

$$\forall i, \quad Var[W^i] = \frac{2}{n_i + n_{i+1}}$$

 Suggestion for implementation (Normalized initialization):

$$W \sim U \Big[- \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \Big]$$

• Result:

Helps initializing the weights to useful sizes instead of using pre-training on single layers

Understanding the difficulty of training deep feedforward neural networks; Glorot and Bengio 2010 International conference on artificial intelligence and statistics

47

Linear Rectifier Units

• Different (biologically inspired) activation function

• Use max(0, x) as activation function

Deep Sparse Rectifier Neural Networks; Glorot, Bordes, Bengio 2011 International conference on artificial intelligence and statistics

Linear Rectifier Units

- Only subset of neurons are active
- Computation linear on subset
- Linear within a small input region
- Cheaper computations

- Sparse activation (real zeros in neuron outputs)
- Gradients do not vanish due to activation non-linearities
- Yields similar results with and without pre-training

Deep Sparse Rectifier Neural Networks; Glorot, Bordes, Bengio 2011 International conference on artificial intelligence and statistics

Direct Supervised Training

- When using Xavier initialization, pre-training is replaced
- When using Linear Rectifier Units, pre-training does not give much advantage

Overview

- Introduction
- Basic Components
- Topologies
- Recent Ideas
- Applications
- Summary

Computer Vision

- Handwriting recognition (e.g. MNIST dataset) lacksquare
- Image classification (e.g. CIFAR 10 dataset)
- Traffic sign recognition

Dataset	Best result	MCDNN	Relative
	of others [%]	[%]	improv. [%]
MNIST	0.39	0.23	41
NIST SD 19	see Table 4	see Table 4	30-80
HWDB1.0 on.	7.61	5.61	26
HWDB1.0 off.	10.01	6.5	35
CIFAR10	18.50	11.21	39
traffic signs	1.69	0.54	72
NORB	5.00	2.70	46
	1		

× *	N	27	1
<u>6</u>	1.0	AP 100	

52

Computer Vision

• Pedestrian detection

Pedestrian Detection aided by Deep Learning Semantic Tasks; Tian et al. 2014 arXiv preprint arXiv:1412.0069

• Object recognition, detecting robotic grasps

Deep Learning for Detecting Robotic Grasps; Lenz, Lee and Saxena 2015 The International Journal of Robotics Research

Speech Recognition

- Google
 - Current neural networks have more than 30 layers
 - 8% word error rate compared to 23% in 2013
- Baidu: Deep Speech (Large recurrent neural network)

System	Clean (94)	Noisy (82)	Combined (176)
Apple Dictation	14.24	43.76	26.73
Bing Speech	11.73	36.12	22.05
Google API	6.64	30.47	16.72
wit.ai	7.94	35.06	19.41
Deep Speech	6.56	19.06	11.85

DeepSpeech: Scaling up end-to-end speech recognition; Hannun et al. 2014 arXiv preprint arXiv:1412.5567

Overview

- Introduction
- Basic Components
- Topologies
- Recent Ideas
- Applications
- Summary

Summary

- Basic Components: Restricted Boltzmann Machines
 Auto-Encoders
- Topologies: Stacked RBMs/Auto-Encoders Convolutional Neural Networks
- Recent Ideas:

Drop Out Xavier Initialization Linear Rectifier Units

• Applications:

Computer Vision Speech Recognition

References

Tutorials: <u>http://deeplearning.net/tutorial/index.html</u> (with code samples) <u>http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial</u>

- Fischer, A., & Igel, C. (2012). An introduction to restricted Boltzmann machines. *In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications* (pp. 14-36). Springer Berlin Heidelberg.
- Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines. *In Neural Networks: Tricks of the Trade* (pp. 599-619). Springer Berlin Heidelberg.
- Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks of the Trade (pp. 437-478). Springer Berlin Heidelberg.
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*, *15*(*1*), 1929-1958.
- Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In *International conference on artificial intelligence and statistics* (pp. 249-256).
- Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In *International Conference on Artificial Intelligence and Statistics* (pp. 315-323).
- Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. *Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8)*, 1798-1828.
- Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new frontier in artificial intelligence research [research frontier]. *Computational Intelligence Magazine, IEEE, 5(4)*, 13-18.
- Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1-127.
- Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. *Science*, 313(5786), 504-507.

References

- Convolutional-Recursive Deep Learning for 3D Object Classi?cation (Socher 2012)
- ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012.
- "Improving neural networks by preventing co-adaptation of feature detectors." Hinton, Geoffrey E., et al. arXiv preprint arXiv:1207.0580 (2012).
- Montúfar, Guido, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. "On the Number of Linear Regions of Deep Neural Networks." arXiv preprint arXiv:1402.1869 (2014).
- Dauphin, Yann N., Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization." In Advances in Neural Information Processing Systems, pp. 2933-2941. 2014.
- Min Lin, Qiang Chen, Shuicheng Yan (2013). Network In Network. arXiv:1312.4400
- Bengio, Yoshua, et al. "Greedy layer-wise training of deep networks." Advances in neural information processing systems 19 (2007): 153.
- Ranzato(2007). Efficient learning of sparse representations with an energy-based model. In NIPSí06.
- Rumelhart(1986). Learning representations by backpropagating errors. Nature, 323, 533ñ536.
- Bengio, Yoshua, and Olivier Delalleau. "On the expressive power of deep architectures." Algorithmic Learning Theory. Springer Berlin/ Heidelberg, 2011.
- Going Deeper with Convolutions, Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, 19-Sept-2014.

Summary

- Basic Components: Restricted Boltzmann Machines
 Auto-Encoders
- Topologies: Stacked RBMs/Auto-Encoders Convolutional Neural Networks
- Recent Ideas:

Drop Out Xavier Initialization Linear Rectifier Units

• Applications:

Computer Vision Speech Recognition