
Neural network

for reinforcement learning

Tom F. Buchholz

Takayuki Osa

Advanced Topics on Machine Learning, July 8, 2015

Introduction

•We will pick up

Learning Neural Network Policies

with Guided Policy Search under Unknown Dynamics

NIPS 2014, Sergery Levine and Pieter Abbeel

Agenda

•Related works on Neural Network for
reinforcement learning

•Method of learning neural network policies with
guided policy search

•Some recent results

Neural Network for control

- Neural network has been employed for control since 1980s

ALVINN (Autonomous Land Vehicle In a Neural Network) Project

- Neural network was employed to recognize

the road in the image input

[Pomerleu et al., 1995]

Recent works on

Neural Network for control

Deep Learning Helicopter

Dynamics Models

(Punjani and Abbeel, 2015, ICRA)

- Neural network with rectified

linear unit for learning helicopter

dynamics

Deep Learning for Detecting

Robotic Grasps

(Lenz, Lee, and Saxena, 2014, IJRR)

- Neural network for detecting

appropriate features for

grasping.

[Punjani and Abbeel, 2015]

[Lenz, Lee and Saxena, 2014]

Deep-Q-Learning

(Minh et al, 2015, Nature)

Recent works on

Neural Network for control

- Estimate Q value directly from

image input

- Convolutional Neural Network

for learning Q function

Neural Fitted Q Iteration

(Riedmiller et al. ECML2005,

IJCNN2010)

- Auto-encoders for extracting

features

- Neural Network for learning

Q function [Lange and Riedmiller, 2010]

[Minh et al., 2015]

Neural Network
for Reinforcement Learning in 1990s

G. Tesauro “TD-Gammon” Communication of ACM, 1995

- First good example of NN for RL

- Autonomous player of backgammon

- Temporal-difference learning

- Neural network was used to represent nonlinear policy

Pollack and Blair “Why td-gammon work” NIPS 1996

Tsitsiklis and Roy “An analysis of temporal-difference learning

with function approximation” Automatic Control,1997

- It was clarified that TD with nonlinear function

approximation does not converge

Problem of reinforcement learning
with neural network in 1990s

- when the Q function is approximated with a nonlinear function,

updating with sequential data may cause divergence of the

optimization.

- When the Q function is nonlinear, policy may change rapidly with

slight changes to Q values

-> Policy may oscillate

Problem of studies in 1990s

Q learning (Watkins, 1989)

- Learn action-value function

 


,,|max),(2

2

1

* aassrrrEasQ ttttt   

- Update Q function every time step

 ),(),(max),(),(11 tttt
a

ttttt asQasQrasQasQ   

Neural network
for reinforcement learning

Sallans and Hinton “Reinforcement Learning with

Factored States and Actions” JMLR 2004

- Restricted Boltzmann Machines was

used to learn action-value function

),(),(asFasQ 

- Action-value function was approximated with negative free energy

- Action is selected by holding the state variables and sampling the action variables

- But, the problem of convergence was not addressed in this work

[Sallans and Hinton, 2004]

“Neural fitted-Q iteration”

Riedmiller et al. ECML2005, IJCNN2010

 


,,|max),(2

2

1

* aassrrrEasQ ttttt   

- Learn Action-value function with neural network

- Update value function at all transition concurrently

- Use whole data to train the Q function, i.e. batch learning

- Computational cost is proportional to the size of data-sets

“Human-level control through
deep reinforcement learning”

Mnih et al. nature, 2015

- State: (preprocessed) image

Action: joystick/button position

Reward: score of the game

- Neural network with

convolutional layers and rectified

linear units

 


,,|max),(2

2

1

* aassrrrEasQ ttttt   

- Learn Action-value function

  2

~,,,),,(),,(max)(wasQwasQrEwL
a

Dsras 


 

- Optimize the objective using stochastic gradient descent

[Minh et al., 2015]

“Experience replay”

),,,(1 ttttt srase

 tt eeD ,1
Randomly sample mini-batch

Update Q function

“Human-level control through
deep reinforcement learning”

“Fixed target Q-network”

- avoids the correlation of sequential data

- avoids the oscillation of policy

Compute Q-learning targets w.r.t. old fixed parameters

),,(max
'

 wasQr
a



Optimize MSE between neural net and Q-learning target

  2

~,,,),,(),,(max)(wasQwasQrEwL
a

Dsras  


 

Periodically update fixed parameters ww 

w

Fix this term for a while

“Human-level control through
deep reinforcement learning”

Mnih et al. nature, 2015

- Input state is stack of pixel from last 4 frames

- Output is Q value for 18 joystick/button positions

[Minh et al., 2015]

“Human-level control through
deep reinforcement learning”

[Minh et al., 2015]https://www.youtube.com/watch?v=iqXKQf2BOSE

“Human-level control through
deep reinforcement learning”

- “Deep Q learning” works well

- Some heuristic techniques are underlying.

- What will happen if we put a constraint of KL divergence in the optimization?

Complex problems

Model-free methods:

require low dimensional parameterizations

Model-based methods:

require ability to learn an accurate dynamics model

*Graphics from Sergey Levine

Recent publications of
Sergey Levine

•“Guided Policy Search”
•ICML2013

•“Learning Complex Neural Network Policies with Trajectory
Optimization”
•ICML 2014

•“Learning Neural Network Policies with Guided Policy Search
under Unknown Dynamics”
•NIPS 2014

•“Learning Contact-Rich Manipulation Skills with Guided Policy
Search”
•ICRA2015

•“End-to-End Training of Deep Visuomotor Policies”
•arXiv 2015

NIPS 2014

Idea

4. Use samples to guide highly

complex and nonlinear policy

2. Obtain optimal linear

feedback controller with

DDP

1. Learn linear dynamics

3. KL-Divergence constraint to

fulfill linearity assumption

5. Sample new

trajectories from system

with linear controller

Full picture

Fitting linear dynamic model

iteratively refitted time-varying local linear model

(Gaussian)

Better dynamics model

→ faster convergence

exploit the correlation between

→ nearby time steps and

→ successive iterations

Adding a prior

Gaussian mixture model as a

prior to reduce sample count

Soft piecewise linear dynamics

Guided policy search
- Trajectory optimization -

Optimal policy is given as:

Quadratic cost function

Q-function is estimated recursively as:

where

Tassa et al. “Synthesis and Stabilization of Complex Behaviors through Online Trajectory

Optimization” IROS 2012

)()(ttttt xxKkuxg 

tuttxtt ufxfx ˆˆˆ
1 

),(ˆˆˆˆ
2

1
ˆˆ

2

1
ˆ),(tttuxt

T

ttuut

T

ttxxt

T

tut

T

txt

T

ttt xurxruuruxrxrurxxur 

utuutt QQk 1 uxtuutt QQK 1

xtxxt

T

xtxxtxxt fVfrQ  1xxxx  t

T

ttt VfrQ

tt

T

ttt fVfrQ uxxuuuuu  1xuuu  t

T

ttt VfrQ

tt

T

ttt fVfrQ xxxuuxux 

Time-varying linear-Gaussian controller

Restricting the change of the new controller from the old one

Controller update

Guided Policy Search

Enforce agreement between policy and linear controller

Guided policy search
- Trajectory optimization -

Cost with policy KL divergence

Add KL divergence constrain of trajectory

Divide by h and introduce

  



T

t

ttttttp pxupDlEpL
1

KL)(GPS)u,x(|||)x()]([)( 

  



T

t

ttttttp pxupDpHplEpL
1

KL)(GPS)u,x(|||)x()()](ˆlog)([)( hh

  



T

t

ttttt
t

p pxupDpHlEpL
1

KL)(GPS)u,x(|||)x()()](
~

[)(
1

 
h




h

)x|u(ˆlog)u,x(
1

)u,x(
~

tttttt pll 
h

Guided policy search
- Trajectory optimization -

second Taylor expansion

linear-Gaussian approximation to the policy

Gaussian mixture model is used to

model the prior distribution

  



T

t

ttttt
t

p pxupDpHlEpL
1

KL)(GPS)u,x(|||)x()()](
~

[)(
1

 
h




h
),x()x|u(tttttt CkKp N

)),x̂(x)x̂(;u()x|u(
  ttxtttxtttt N

Guided policy search
- Trajectory optimization -

: covariance of

:Mean and covariance of

second Taylor expansion

linear-Gaussian approximation to the policy

  




























tttt

T

t

t

t

t

t

T
T

t t

t
ClllpL log

2

1~
tr

2

1~

û

x̂

û

x̂~

û

x̂

2

1
)(xuxu,xuxuxu,

1

GPS

       

h




h



h


tt

t
tttt

T

ttt
t

t
t CCC 11 tr

2
)x̂(û)x̂(û

2
log

2

    )x̂(K)x̂(Ktr
2

1

tttt

T

tttt
t CS  
h


 

tS)x(tp

)u,x(ttpT

tt)û,x̂(t,

  



T

t

ttttt
t

p pxupDpHlEpL
1

KL)(GPS)u,x(|||)x()()](
~

[)(
1

 
h




h
),x()x|u(tttttt CkKp N

)),x̂(x)x̂(;u()x|u(
  ttxtttxtttt N

Updating variables

How to update

Assuming locally linear dynamics and ignore higher order term

… yield to the following equations.

ttt CKk ,,

1xxuxuxu  t

T

ttt LflQ

xu1xx,xuxuxu,xx fLflQ t

T

tt 

   )ˆ(x

1

xu,

11

uu, ttttttttt xCQCQK   

0)1(uu,  MCCQC tttttt 

   )ˆ(1

u

11

uu, ttttttttt xCQCQk   

 )ˆ(ˆˆˆ 1

uxu,uu,u ttttttttttt xuCQxQuQL   

1

uu,uu,

 tttt CQL 

Guided policy search
- Policy optimization -

This is equivalent to train neural network in a manner of supervised learning.

   
 


T

t

N

i

tittitt pxuDL
1 1

KLGPS)x|u(|||)(

       
 

 
T

t

N

i

tittitt

T

tittittittit xkxKCxkxKCx
1 1

11

t)()()x(log)(tr
2

1  

Recap

Evaluation

State consists of joint angles and velocities, action correspond to joint torques

Policy representation:

Neural network with one hidden layer and a soft

rectifier nonlinearity of the form

Results

http://rll.berkeley.edu/nips2014gps/

Results

Results from ICRA paper

http://rll.berkeley.edu/icra2015gps/index.htm

ArXiv 2 Apr 2015

More recent result
- “End-to-End Training of Deep Visuomotor Policies” -

Learning policies that map raw,

low-level observations like

camera images directly to joint

torques

Practical applications often

require hand-engineered

components for perception,

state estimation and low-

level control

Observations

instead of states

End-to-End Training of

Deep Visuomotor Policies

Results from arXiv paper “End-to-End Training of Deep Visuomotor Policies”

Deep Convolutional neural network with 92,000 parameters and 7 layers for

extracting features and determining control input

The convolutional layer was pre-trained with ImageNet dataset.

More recent result
- “End-to-End Training of Deep Visuomotor Policies” -

Input to the neural network policy: image input

http://sites.google.com/site/visuomotorpolicy

http://sites.google.com/site/visuomotorpolicy

Summary

Learning nonlinear policy in reinforcement learning was not successful

until recently

Sergey achieved learning nonlinear policy with neural network by

using KL divergence constraint on trajectory and policy optimization

Neural network is playing an importance role to enable high

dimensional regression in reinforcement learning

