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Introduction

•We will pick up

Learning Neural Network Policies 

with Guided Policy Search under Unknown Dynamics

NIPS 2014, Sergery Levine and Pieter Abbeel



Agenda

•Related works on Neural Network for 
reinforcement learning

•Method of learning neural network policies with 
guided policy search 

•Some recent results



Neural Network for control

- Neural network has been employed for control since 1980s

ALVINN (Autonomous Land Vehicle In a Neural Network) Project

- Neural network was employed to recognize 

the road in the image input

[Pomerleu et al., 1995]



Recent works on 

Neural Network for control

Deep Learning Helicopter 

Dynamics Models

(Punjani and Abbeel, 2015, ICRA)

- Neural network with rectified 

linear unit for learning helicopter 

dynamics 

Deep Learning for Detecting 

Robotic Grasps

(Lenz, Lee, and Saxena, 2014, IJRR)

- Neural network for detecting 

appropriate features for 

grasping. 

[Punjani and Abbeel, 2015]

[Lenz, Lee and Saxena, 2014]



Deep-Q-Learning 

(Minh et al, 2015, Nature)

Recent works on 

Neural Network for control

- Estimate Q value directly from 

image input 

- Convolutional Neural Network  

for learning Q function

Neural Fitted Q Iteration 

(Riedmiller et al. ECML2005, 

IJCNN2010)

- Auto-encoders for extracting 

features

- Neural Network for learning 

Q function [Lange and Riedmiller, 2010]

[Minh et al., 2015]



Neural Network 
for Reinforcement Learning in 1990s

G. Tesauro “TD-Gammon” Communication of ACM, 1995

- First good example of NN for RL

- Autonomous player of backgammon

- Temporal-difference learning

- Neural network was used to represent nonlinear policy

Pollack and Blair “Why td-gammon work” NIPS 1996

Tsitsiklis and Roy “An analysis of temporal-difference learning 

with function approximation” Automatic Control,1997

- It was clarified that TD with nonlinear function 

approximation does not converge



Problem of reinforcement learning 
with neural network in 1990s

- when the Q function is approximated with a nonlinear function, 

updating with sequential data may cause divergence of the 

optimization.

- When the Q function is nonlinear, policy may change rapidly with 

slight changes to Q values

-> Policy may oscillate

Problem of studies in 1990s

Q learning (Watkins, 1989)

- Learn action-value function
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Neural network 
for reinforcement learning

Sallans and Hinton “Reinforcement Learning with 

Factored States and Actions” JMLR 2004

- Restricted Boltzmann Machines was 

used to learn action-value function
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- Action-value function was approximated with negative free energy

- Action is selected by holding the state variables and sampling the action variables

- But, the problem of convergence was not addressed in this work

[Sallans and Hinton, 2004]



“Neural fitted-Q iteration”

Riedmiller et al. ECML2005, IJCNN2010
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- Learn Action-value function with neural network

- Update value function at all transition concurrently

- Use whole data to train the Q function, i.e. batch learning

- Computational cost is proportional to the size of data-sets



“Human-level control through 
deep reinforcement learning”

Mnih et al. nature, 2015

- State: (preprocessed) image

Action: joystick/button position

Reward: score of the game

- Neural network with 

convolutional layers and rectified 

linear units
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- Learn Action-value function
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- Optimize the objective using stochastic gradient descent

[Minh et al., 2015]



“Experience replay”
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Update Q function

“Human-level control through 
deep reinforcement learning”

“Fixed target Q-network”

- avoids the correlation of sequential data

- avoids the oscillation of policy

Compute Q-learning targets w.r.t. old fixed parameters

),,(max
'

 wasQr
a



Optimize MSE between neural net and Q-learning target
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Fix this term for a while



“Human-level control through 
deep reinforcement learning”

Mnih et al. nature, 2015

- Input state is stack of pixel from last 4 frames

- Output is Q value for 18 joystick/button positions

[Minh et al., 2015]



“Human-level control through 
deep reinforcement learning”

[Minh et al., 2015]https://www.youtube.com/watch?v=iqXKQf2BOSE



“Human-level control through 
deep reinforcement learning”

- “Deep Q learning” works well

- Some heuristic techniques are underlying.

- What will happen if we put a constraint of KL divergence in the optimization? 



Complex problems

Model-free methods:

require low dimensional parameterizations

Model-based methods:

require ability to learn an accurate dynamics model 

*Graphics from Sergey Levine



Recent publications of 
Sergey Levine

•“Guided Policy Search”
•ICML2013

•“Learning Complex Neural Network Policies with Trajectory 
Optimization”
•ICML 2014

•“Learning Neural Network Policies with Guided Policy Search 
under Unknown Dynamics”
•NIPS 2014

•“Learning Contact-Rich Manipulation Skills with Guided Policy 
Search”
•ICRA2015

•“End-to-End Training of Deep Visuomotor Policies”
•arXiv 2015



NIPS 2014



Idea

4. Use samples to guide highly 

complex and nonlinear policy

2. Obtain optimal linear

feedback controller with

DDP

1. Learn linear dynamics

3. KL-Divergence constraint to 

fulfill linearity assumption

5. Sample new 

trajectories from system 

with linear controller



Full picture



Fitting linear dynamic model

iteratively refitted time-varying local linear model 

(Gaussian)

Better dynamics model 

→ faster convergence

exploit the correlation between

→ nearby time steps and

→ successive iterations



Adding a prior

Gaussian mixture model as a 

prior to reduce sample count

Soft piecewise linear dynamics



Guided policy search 
- Trajectory optimization -

Optimal policy is given as:

Quadratic cost function

Q-function is estimated recursively as:

where

Tassa et al. “Synthesis and Stabilization of Complex Behaviors through Online Trajectory 

Optimization” IROS 2012
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Time-varying linear-Gaussian controller

Restricting the change of the new controller from the old one

Controller update



Guided Policy Search

Enforce agreement between policy and linear controller



Guided policy search 
- Trajectory optimization -

Cost with policy KL divergence

Add KL divergence constrain of trajectory

Divide by h and introduce
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Guided policy search 
- Trajectory optimization -

second Taylor expansion

linear-Gaussian approximation to the policy

Gaussian mixture model is used to 

model the prior distribution
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Guided policy search 
- Trajectory optimization -

: covariance of 

:Mean and covariance of 

second Taylor expansion

linear-Gaussian approximation to the policy
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Updating variables

How to update

Assuming locally linear dynamics and ignore higher order term

… yield to the following equations.
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Guided policy search 
- Policy optimization -

This is equivalent to train neural network in a manner of supervised learning. 
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Recap



Evaluation

State consists of joint angles and velocities, action correspond to joint torques

Policy representation:

Neural network with one hidden layer and a soft 

rectifier nonlinearity of the form 



Results

http://rll.berkeley.edu/nips2014gps/



Results



Results from ICRA paper

http://rll.berkeley.edu/icra2015gps/index.htm



ArXiv 2 Apr 2015



More recent result
- “End-to-End Training of Deep Visuomotor Policies” -

Learning policies that map raw, 

low-level observations like 

camera images directly to joint 

torques

Practical applications often 

require hand-engineered

components for perception,

state estimation and low-

level control

Observations

instead of states



End-to-End Training of 

Deep Visuomotor Policies

Results from arXiv paper “End-to-End Training of Deep Visuomotor Policies”

Deep Convolutional neural network with 92,000 parameters and 7 layers for 

extracting features and determining control input

The convolutional layer was pre-trained with ImageNet dataset.



More recent result
- “End-to-End Training of Deep Visuomotor Policies” -

Input to the neural network policy: image input



http://sites.google.com/site/visuomotorpolicy



http://sites.google.com/site/visuomotorpolicy



Summary

Learning nonlinear policy in reinforcement learning was not successful 

until recently 

Sergey achieved learning nonlinear policy with neural network by 

using KL divergence constraint on trajectory and policy optimization

Neural network is playing an importance role to enable high 

dimensional regression in reinforcement learning


