Neural network
for reinforcement learning

Tom F. Buchholz
Takayuki Osa

Advanced Topics on Machine Learning, July 8, 2015

Introduction
*We will pick up
Learning Neural Network Policies

with Guided Policy Search under Unknown Dynamics

NIPS 2014, Sergery Levine and Pieter Abbeel

Agenda

Related works on Neural Network for
reinforcement learning

*Method of learning neural network policies with
guided policy search

Some recent results

Neural Network for control

- Neural network has been employed for control since 1980s

ALVINN (Autonomous Land Vehicle In a Neural Network) Project

- Neural network was employed to recognize St S St
. . . Left Ahea ght
the road in the image input

30x32 Sensor
Input Retina

[Pomerleu et al., 1995]

Recent works on
Neural Network for control

Deep Learning Helicopter
Dynamics Models
(Punjani and Abbeel, 2015, ICRA)

- Neural network with rectified
linear unit for learning helicopter
dynamics

Deep Learning for Detectinq

Robotic Grasps
(Lenz, Lee, and Saxena, 2014, IJRR)

- Neural network for detecting
appropriate features for

grasping.

[Lenz, Lee and Saxena, 2014]

Recent works on

Neural Network for control

Neural Fitted Q lteration
(Riedmiller et al. ECML2005,
IJCNN2010)

- Auto-encoders for extracting
features

- Neural Network for learning
Q function

Deep-0O-Learning
(Minh et al, 2015, Nature)

- Estimate Q value directly from
image input

- Convolutional Neural Network
for learning Q function

s } pr— ey —\
o classical solution:
image processing

Low-dimensional -
Reinforcement

o Feature Space [Teamng »| Action
unsupervised
training of deep

autoencoders \ y, —

Visiomotoric Learning
[Lange and Riedmiller, 2010]

Convolution Convolution Fully connected Fully connected
A4 v A4 v

VN? input|
KR
ER
A
[~
y_O
as

[Minh et al., 2015]

DD @%u

El N\

Boeoo.o o
Dt | l u /! :
of | Er O

&

2

Neural Network
for Reinforcement Learning in 1990s

G. Tesauro “TD-Gammon” Communication of ACM, 1995

- First good example of NN for RL

- Autonomous player of backgammon

- Temporal-difference learning

- Neural network was used to represent nonlinear policy

Pollack and Blair “Why td-gammon work™ NIPS 1996

Tsitsiklis and Roy “An analysis of temporal-difference learning
with function approximation” Automatic Control,1997

- It was clarified that TD with nonlinear function
approximation does not converge

Problem of reinforcement learning
with neural network in 1990s

Q learning (Watkins, 1989)

- Learn action-value function

Q*(S’a) — maXE[rt +7rt+1+7/2rt+2 +”'|St =3, :a’ﬂ-]
- Update Q function every time step

Q(s,,2) ¢ Q(5,,2) +afrs + 7 MaxQ(S,.1,2) - Q(s,.2,)

Problem of studies in 1990s

- when the Q function is approximated with a nonlinear function, I

updating with sequential data may cause divergence of the
optimization.

v

- When the Q function is nonlinear, policy may change rapidly with
slight changes to Q values

-> Policy may oscillate

Neural network
for reinforcement learning

hidden variables

Sallans and Hinton “Reinforcement Learning with
Factored States and Actions” JMLR 2004

- Restricted Boltzmann Machines was
used to learn action-value function

state variables action variables
[Sallans and Hinton, 2004]

- Action-value function was approximated with negative free energy

Q(s,a) ~—F/(s,a)

- Action is selected by holding the state variables and sampling the action variables

- But, the problem of convergence was not addressed in this work

“Neural fitted-Q iteration”

Riedmiller et al. ECML2005, IJCNN2010
- Learn Action-value function with neural network

Q*(S1a) = mng[rt +7rt+1+7/2rt+2 +e0|S =8,a = a’ﬂ']
- Update value function at all transition concurrently
- Use whole data to train the Q function, i.e. batch learning
- Computational cost is proportional to the size of data-sets
(o ——— —)

classical solution:
image processing

Low-dimensional

F eature Sp ace Reinforcement

Learning Action

here:
unsupervised
training of deep
autoencoders _ J \ y,

Visiomotoric Learning

v

“Human-level control through
deep reinforcement learning”

Mnih et al. nature, 2015

75y f { \)
state A4« s/ S, action

- State: (preprocessed) image
Action: joystick/button position
Reward: score of the game

- Neural network with

convolutional layers and rectified
linear units

- Learn Action-value function

* Minh et al., 2015
Q (S,a)=ma><E[n+7rt+1+72n+2+-~|8t=S,aT=a,7f] | |
VA

- Optimize the objective using stochastic gradient descent

L(W)=E, vp Kr +y max Q(s’,a’,w)-Q(s,a, W))ZJ

“Human-level control through
deep reinforcement learning”

"Experience replay” - avoids the correlation of sequential data
€ = (St’a‘t’ rt’st+1)

Randomly sample mini-batch |
D, = {el,...et} > Update Q function
“Fixed target Q-network” - avoids the oscillation of policy

Compute Q-learning targets w.r.t. old fixed parameters W
r+ymaxQ(s’,a’,w)
.

Optimize MSE between neural net and Q-learning target

L(w)=E,. b Kr + mgx Q(s’,a’,w)-0Q(s,a, W))zJ

Periodically update fixed parameters W <— W Fix this term for a while

“Human-level control through
deep reinforcement learning”

Mnih et al. nature, 2015

32 4xA4 filters 256 hidden units Fully-connected linear

I output layer

| 6 8x8 filters

4xB84x84 F
1
1
1

Stack of 4 previous _ Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

[Minh et al., 2015]
- Input state is stack of pixel from last 4 frames
- Output is Q value for 18 joystick/button positions

“Human-level control through
deep reinforcement learning”

Before training

https://www.youtube.com/watch?v=igXKQf2BOSE [Minh et al., 2015]

“Human-level control through
deep reinforcement learning”

- “Deep Q learning” works well
- Some heuristic techniques are underlying.

- What will happen if we put a constraint of KL divergence in the optimization?

Complex problems

Model-free methods:
require low dimensional parameterizations

Model-based methods:
require ability to learn an accurate dynamics model

*Graphics from Sergey Levine

Recent publications of
Sergey Levine

*“Guided Policy Search”
*|CML2013

«“Learning Complex Neural Network Policies with Trajectory
Optimization”
*ICML 2014

“Learning Neural Network Policies with Guided Policy Search
under Unknown Dynamics”
*NIPS 2014

«“Learning Contact-Rich Manipulation Skills with Guided Policy
Search”
*ICRA2015

*“End-to-End Training of Deep Visuomotor Policies”
«arXiv 2015

Learning Neural Network Policies with Guided Policy
Search under Unknown Dynamics

Sergey Levine and Pieter Abbeel
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94709
{svlevine, pabbeel}@eecs.berkeley.edu

NIPS 2014

|dea

1. Learn linear dynamics
5. Sample new

trajectories from system
with linear controller

2. Obtain optimal linear /
feedback controller with
DDP

3. KL-Divergence constraint to 4. Use samples to guide highly
fulfill linearity assumption complex and nonlinear policy

Full picture

[

next
1teration

('

run q(u|x;)
on robot =

collect D = {1;
\)

{7} h

)
fit GMM 42

2!

train mg(u, |x;)

fit dynamics

p(Xiqa|x,u) ==

U

L

DP solve dﬁw
for q(uy|x;) =

JH@_J

l update 5]

c:D

Fitting linear dynamic model

4)

run g(u|x¢) ‘

on robot k, '—)> {7'7:7} -—)> pi(Xt+1\Xt,Ut)
\collect D= {7} ,

N (fxext + furue, Fy)

iteratively refitted time-varying local linear model
(Gaussian)

exploit the correlation between

Better dynamics model
N faste?/convergence -9> — nearby time steps and
— successive iterations

Adding a prior

4)

run q(u|x;) :

on rgbot k 'é> {7_7:7} _'9> pi(Xt—l—l‘Xtv ut)
\Collect D = {7} , _l_] T\

Gaussian mixture model as a Soft piecewise linear dynamics
prior to reduce sample count

Guided policy search
- Trajectory optimization -

Tassa et al. “Synthesis and Stabilization of Complex Behaviors through Online Trajectory
Optimization” IROS 2012

Quadratic cost function

Xt+1 ~ fxtXt + 1:utut

t “ut XXt

. 1. . 1,
r(u,x)=xr,+u'r +§XtT" %+

Q-function is estimated recursively as:
T T
Qxxt = rxxt + fxthxt fxt th — r.xt + 1:xtV

xXt+1
T T
Quut — I"uut + 1:uthxt 1:ut Qut — r-ut + 1:utht+1
T
qut =Ty T+ futv f

xXxt © xt
Optimal policy is given as:

g(x)=U+k +K,(x, —X) where k=-QuQ, K =-QuQyu

Controller update

Time-varying linear-Gaussian controller

p(ug|xe) = MGy + ke + K (x¢ — X¢), Ql_l,lut)

Restricting the change of the new controller from the old one

Lo Epll(nlst. D (p(r)lIp(n) < ¢

Liraj(p(7), 1) = Ep[€(7)] + n[Dkr(p(7)[|P(7)) — €]

Guided Policy Search

Enforce agreement between policy and linear controller

min B, [0(7)] st Dir(mo(ue|xe)||[pi(uelx)) =0 Vi

0,p(7)

Laps(0,p,)) = By [((T)] + D Mt Dicr(mo(ue|xe)||pi (ue [xe)

it
=== optimize ZE|ZE| optimize

v L(0,q,A) L(0,q,)
"'Z'-TF; w.r.t. ¢(7) _,:f; w.r.t. 6

o

——

o

update A with
subgradient descent:

At < At + nDKL()

e

Guided policy search
- Trajectory optimization -

Cost with policy KL divergence

Lers(P) = Epi 12T+ 2 4D (POX) 7, (U 1)1 POX,, ui))

Add KL divergence constrain of trajectory

Lors (P) = By [1(2) =l0g ()] =r7H () + 3 4D (P07, (U X)1 POX,,u,))

Divide by n and introduce r(xt’ut) :%I(Xt’ Ut)—|0g ﬁ(ut |Xt)

%Leps(p) =E,oll @1-H(p) +Z% Dy (PO)7, (U [%11 pCX, u,)

Guided policy search
- Trajectory optimization -

% Leps(P) = Ep(r)[r(f)]— H(p) +Z_:% Dy (P(¢)7, (U, [%)l p(x,,u)

p(ut | Xt) - W(Ktxt + kt’Ct)
second Taylor expansion
linear-Gaussian approximation to the policy
7o (U [X¢) = N (U a5 (X)X + 45 (X), Z¢)
\

Gaussian mixture model is used to
model the prior distribution

Guided policy search
- Trajectory optimization -

% Leps(P) = Ep(r)[r(f)]— H(p) +Z_:% Dy (P(¢)7, (U, [%)l p(x,,u)

p(ut | Xt) - W(Ktxt + kt’Ct)
second Taylor expansion
linear-Gaussian approximation to the policy

7o (Up [X0) = V(U 26 (X)X, + 1 (X)), ()

(X,,0,)",Z, :Mean and covariance of P(X;,U;)

~ T
X, | = 1 1
gt}{ﬂj l, + 2tr(ztlXu Xut) Iog\Ct\+

t

>
>

T 1 T
LGPS(p) Z§|: ti| XU, xut|:
t=1 t

;t—nlog\c ‘+ 77(— 1 ()A(t))T Ct_l(ﬂt - ()A(t))+221_77tr(ctlzf)+
221—77“‘((K —Hy (X)) (t_ﬂtﬁ(kt)))

S, : covariance of P(X;)

Updating variables

How to update K., K,,C,

qut _ Ixut + 1:xut th+1

Qxxt o Ixu Xut + fxu I-x xt+1 fxu
Assuming locally linear dynamics and ignore higher order term
A A -1{A T (G
L, = Qu ut Y +Qu X T Qu + 4G, (ut — K, (Xt))
L +ACH

.. yield to the following equations.
CiQuuC: + (4 -1)C,-AM =0

AQuu +ACT) Qe+ ACT T (R))
K= _(Qu,ut +ﬂ1ct_1) (Qu xt T AC 2 (Xt))

U,Ut U ut

Guided policy search
- Policy optimization -

Lers (8) = 2.4 2 Di (7, (U %)l P(Uc X))

=304 ()G Togle 06,) (Ko + 06 €2k + k7))

t=1 =1

This is equivalent to train neural network in a manner of supervised learning.

Recap

Algorithm 1 Guided policy search with unknown dynamics

1: for iteration £k = 1 to K do

2: Generate samples {77 } from each linear-Gaussian controller p;(7) by performing rollouts
3 Fit the dynamics p; (x¢+1|x¢, ut) to the samples {77 }

4: Minimize Y, A+ Dk (pi(x¢)mo (ue|x¢)||pi (x4, 1)) with respect to 6 using samples {7; }
5. Update p; (u;|x;) using the algorithm in Sectionand the supplementary appendix

6: Increment dual variables \; ; by oDk (pi(x¢)mo (0 |X¢)||ps (%4, 1t))

7: end for
8: return optimized policy parameters ¢

run g(w|x;)
on robhot
collect D = {T7

() |
T -\-\
0 ZEIZE optimis SEEZE imize update A with
fit GMM ///7 train ﬂ-g(UL‘XL) v (ZIEHHEM/\@) - 2):1?;112.17;‘) subgradient descent:
4 \7,,; b= i EA & = 1 Y
a e w.r.t. g(7 - w.r.t. f At — A +nDger (...
next = () = t t IsL()
iterati \) .

p
fit dynamics
p(xe1]x,u) =

DP 501\L ‘_‘,},ﬁ)

|

Evaluation

State consists of joint angles and velocities, action correspond to joint torques

Policy representation:
Neural network with one hidden layer and a soft
rectifier nonlinearity of the form a = log(1 + exp(z))

Results

Walking Controllers Learning Neural Network
Additional Results Policies with Guided Policy Search

under Unknown Dynamics

http://rll.berkeley.edu/nips2014gps/

Results

—e— CEM (100 samp)
—il— CEM (20 samp)
—&— RWR (100 samp)
—l— RWR (20 samp)
—l— ours (20 samp)

—#&— ours (with GMM, 5 samp)

” walking policy
©
Q2
D15t
>
©
S
*10
@
(&)
c
© 5
e
A%
© 0
100 200 300 400 500 600 700 8OO
samples
; octopus arm
8 4
% o
E 3
5
— 2
@
)]
| 1 |
cU
e
0 L 1 L 1 1 1
100 200 300 400 500 600 700 800

samples

— iLQG, true model
—&— REPS (100 samp)
REPS (20 + 500 samp)
—&— CEM (100 samp)
—l— CEM (20 samp)
—&— RWR (100 samp)
—i— RWR (20 samp)
=—— P|LCO (5 samp)
—— ours (20 samp)
—&— ours (with GMM, 5 samp)

Results from ICRA paper

Learning Contact-Rich Manipulation SKkills

with Guided Policy Search

Sergey Levine, Nolan Wagener, Pieter Abbeel

Department of Electrical Engineering and Computer Science

University of California at Berkeley

ops/index.htm

End-to-End Training of Deep Visuomotor Policies

Sergey Levine”, Chelsea Finn", Trevor Darrell, Pieter Abbeel
Department of Electrical Engineering and Computer Sciences, UC Berkeley
{svlevine,cbfinn,trevor,pabbeel } @eecs.berkeley.edu

ArXiv 2 Apr 2015

More recent result
- “End-to-End Training of Deep Visuomotor Policies” -

Practical applications often
require hand-engineered
components for perception,
state estimation and low-
level control

Learning policies that map raw,
low-level observations like
camera images directly to joint
torques

T (U |0y) 4= ovsenvaions

End-to-End Training of
Deep Visuomotor Policies

Results from arXiv paper “End-to-End Training of Deep Visuomotor Policies”

RGB image conv conv3 spatial softmax feature motor

points torques

fully fully fully
expected connected connected connected
2D paosition RelLU RelLU linear
40
109

Deep Convolutional neural network with 92,000 parameters and 7 layers for
extracting features and determining control input

mil, 7x7 conv
stride 2
RelLU

The convolutional layer was pre-trained with ImageNet dataset.

More recent result
- “End-to-End Training of Deep Visuomotor Policies” -

Input to the neural network policy: image input

run g(ug|x;)
on robot =

collect D = {7;}

e " A
requires robot

collect visual
| pose data l

:ﬂ [pretrain ||[train pose
trajectories CNN

train ’rg(uL x:) | - > 1 I

[=2] — initial initial visual

fit GMM f ff/

next trajectories features
iteration
fit dynamics end-to-end
P(Xi 1%, 1) i
L l training J
U ;
policy
(DP solve ‘;aﬁ“
date n
for g(ue|x¢) T
k i)

Learned Visuomotor Policy: Hanger Task

http://sites.google.com/site/visuomotorpolicy

End-to-End Training of
Deep Visuomotor Policies

Learned Visual Representations

http://sites.google.com/site/visuomotorpolicy

Summary

Learning nonlinear policy in reinforcement learning was not successful
until recently

Sergey achieved learning nonlinear policy with neural network by
using KL divergence constraint on trajectory and policy optimization

Neural network is playing an importance role to enable high
dimensional regression in reinforcement learning

