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Outline

We discuss the following topics:

1. Approximate samples from Gaussian MRFs

(Papandreou, Yuille, NIPS 2010)

2. Approximate samples from discrete Gibbs MRFs

(Papandreou, Yuille, ICCV 2011)

3. Bounds on the approximation

(Hazan, Jaakkola, ICML 2012)

4. Exact samples from continuous distributions

(Maddison, Tarlow, Minka, NIPS 2014)
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Why do we need to sample?

• Computing expectations of stochastic models

• Generate content from models for applications such as

- inpainting

- interaction with a user
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Sampling Techniques

Left to right: MAP, MCMC, Variational Bayes, Perturbation & Maximization

Sampling by Optimization: Sample from some model p(x | θ) via the

following steps:

a) Perturb the model to p(x | θ + ε).

b) Find x∗ = arg max p(x | θ + ε).
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Approximate samples from Gaussian MRFs

(Papandreou, Yuille, NIPS 2010)
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Efficient sampling from Gaussian Markov Random Fields

Definition

Let a density function with parameters {F, µ0,Σ0} be defined by:

p(x) ∝ N (Fx|µ0,Σ0)

∝ exp(−1

2
(Fx− µ0)TΣ−1

0 (Fx− µ0))

= N (J−1k, J−1)

With J = FTΣ−1
0 F and k = FTΣ−1

0 µ0

Naive Sampling

With Cholesky decomposition of J−1 ⇒ at least O(N2) complexity

Sampling by optimization

Perturb parameters and find approximate MAP ⇒ O(N
3
2 ) complexity
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Efficient sampling from Gaussian Markov Random Fields

Recall: Gaussian MRF

x ∼ N (J−1k, J−1) with J = FTΣ−1
0 F and k = FTΣ−1

0 µ0

Exactness

For µ̃0 ∼ N (µ0,Σ0) and x̃ MAP of N (Fx|µ̃0,Σ0)⇒ x̃ ∼ N (J−1k, J−1)

Proof:

x̃
∆
= arg max

x
N (Fx|µ̃0,Σ0)

x̃ = J−1FTΣ−1
0 µ̃0 (the mean)

x̃ ∼ N (J−1k, J−1FTΣ−1
0 FJ−1) (Affine transformation)

x̃ ∼ N (J−1k, J−1)

The trick

x̃ solution of Jx̃ = B. Instead of inverting J , use approximate methods

(e.g. multigrid) to find x̃ more efficiently
7 / 36



Common questions

• To which parameters should the noise be added?

• Which kind of noise should be added?

• What’s the approximation error of the overall algorithm?
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Approximate samples from discrete Gibbs MRFs

(Papandreou, Yuille, ICCV 2011)
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Sampling by Optimization for Gibbs distributions

Consider the general (finite) Gibbs distribution, with potential function φ,

where for any state x ∈ X we have:

p(x) ∝ exp(φ(x)).

We add to each potential φ(x) a random perturbation εx to obtain the

new (perturbed) potential

γ(x) = φ(x) + εx.

The search for suitable perturbations leads to the Gumbel distribution.
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Gumbel Distribution

A continuous univariate random variable is Gumbel(a) (Gumbel with

location a), if it has log-concave density

g(z) = exp(−(z − a) + e−(z−a)).

Thus it can be efficiently sampled by applying the inverse of its CDF

G(z) = exp(−e−(z−a))

to standard uniform samples.

Gumbel(0): PDF and CDF

11 / 36



Gumbel Perturbations

Let εx be random i.i.d. Gumbel(0) samples. Then

γ(x) = φ(x) + εx ∼ Gumbel(φ(x)),

i.e. the perturbed potential is Gumbel with location φ(x).

Moreover, we have the identity

P[arg maxx γ(x) = x̄] =
exp(φ(x̄))∑
x exp(φ(x))

.
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Proof of the distribution of the argmax

By definition of γ we have

P[arg maxx γ(x) = x̄] = P[γ(x̄) ≥ max
x 6=x̄

γ(x)]

=

∫ ∞
−∞

g(t;φ(x̄))
∏
x 6=x̄

G(t;φ(x)) dt

=

∫ ∞
−∞

eφ(x̄)−t exp(−eφ(x̄)−t)
∏
x 6=x̄

exp(−eφ(x)−t) dt.
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Proof of the distribution of the argmax

We substitute z = exp(−eφ(x̄)−t). This yields

dz = eφ(x̄)−t exp(−eφ(x̄)−t) dt

and

exp(−eφ(x)−t) = exp(−eφ(x̄)−teφ(x)−φ(x̄)) = zexp(φ(x)−φ(x̄)).
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Proof of the distribution of the argmax

Inserting, we conclude

P[arg maxx γ(x) = x̄] = P[γ(x̄) ≥ max
x 6=x̄

γ(x)]

=

∫ ∞
−∞

g(t;φ(x̄))
∏
x 6=x̄

G(t;φ(x)) dt

=

∫ ∞
−∞

eφ(x̄)−t exp(−eφ(x̄)−t)
∏
x 6=x̄

exp(−eφ(x)−t) dt

=

∫ 1

0

∏
x 6=x̄

zexp(φ(x)−φ(x̄)) dz =

∫ 1

0

z
∑
x6=x̄ e

φ(x)−φ(x̄)

dz

=
1

1 +
∑
x 6=x̄ e

φ(x)−φ(x̄)
=

exp(φ(x̄))∑
x exp(φ(x))

.
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Summary

• Take a Gibbs distribution ∝ eφ(x), parametrized by potential

function φ

• Perturb the distribution by adding noise εx ∼ Gumbel(0) to every

φ(x)

• Optimize the new distribution ∝ eφ(x)+εx

• The arg max will be distributed according to ∝ eφ(x)
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Reduced-order Gumbel Perturbation

• However, perturbation of the fully-expanded potential table is not

practically applicable for the main reasons:

i) Too many Gumbel samples needed

ii) No structure of the energy function is exploited for optimization

• Sampling by Optimization is only practical when an efficient

optimization algorithm exists
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Example: Ising Model - Illustration

The Ising model uses a potential function

−φθ(x) = E(x, θ) =

d∑
i=1

λixi +
∑
i∼j

µijxixj ,

which is a sum of unary and binary potential functions linear in its

parameters θ = (λ, µ).

(a) Original model (b) Order-1 perturbation (c) Order-2 perturbation
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Example: Markov Random Fields and Ising Model

• For the binary case, one needs to make sure that the energy function

remains submodular with high probability, i.e. the µij should stay

non-negative.

- Strong links are preferred for perturbation.

• The perturbed energy can then be efficiently minimized by means of

powerful optimization algorithms (commonly known as “graphcuts”).
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Bounds on the approximation

(Hazan, Jaakkola, ICML 2012)
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Theoretical results on low order perturbations

Bounding the error of using lower order perturbation samples for:

• Estimating the Maximum-Likelihood parameter

θ = arg maxθ p (Data|θ)
• Estimating the partition function Z =

∑
x∈X e

φ(x)

Error on the ML estimate will depend on the error on the partition

function
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Estimating the partition function

logZ = E
[
max
x∈X
{φ(x) + εx}

]
+ known constant

Proof:

P

(
max
x∈X
{φ(x) + εx} < t

)
= Πx∈XP (εx < t− φ(x))

= Πx∈X exp
(
−e−t+φ(x)

)
= exp

(
−
∑
x∈X

e−t+φ(x)

)
= exp

(
−e−t · e− logZ

)

Hence, maxx∈X{φ(x) + εx} ∼ Gumbel(logZ) and its expectation is (a

known constant shy of) logZ
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General order perturbations

Let x = (x1, . . . , xn) ∈ X = X1 × · · · ×Xn and let a family of subsets

α ∈ A such that ∪α∈A = {1, . . . , n}
General order perturbations are defined by:

max
x

{
φ(x) +

∑
α∈A

εα(xα)

}

For instance in the Ising model

−φθ(x) =

d∑
i=1

Vi(xi) +
∑
i∼j

Vij(xixj).

• Unary perturbations: A = {α1, . . . , αn} with αi = {i}
• Binary perturbations: unary sets ∪ αi,j = {i, j}, for (i, j) neighbors

• Perturbation of the full potential table: only one set α = {1, . . . , n}
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Results for partition function estimation

Estimating the partition function with samples generated from a general

order perturbation of family A yields an upper bound:

logZ ≤ E

[
max
x
{φ(x) +

∑
α∈A

εα(xα)}

]

Result derives from this identity:

logZ = Eε1 max
x1

. . .Eεn max
xn
{φ(x) +

N∑
i=1

εi(xi)}

Unary: swap expectations and maximizations to get the upper bound

Disjoint subsets α: same

General: need a transformation of the potentials
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Proof of the decomposition of Z

logZ = log
∑
x1

· · ·
∑
xn

eφ(x)

= log
∑
x1

eφ1(x1) (with φ1(.) = log
∑
x2
· · ·
∑
xn
eφ(.,x2,...,xn))

= Eε1 max
x1

{log
∑
x2

· · ·
∑
xn

eφ(x1,x2,...,xn) + ε1(x1)}

= Eε1 max
x1

. . .Eεn max
xn
{φ(x) +

N∑
i=1

εi(xi)} (follows by induction)
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Parameter estimation (1/2)

Let φθ(x) = θTψ(x) a linear parametric potential over features ψ of x,

and D = {x1 . . . xK} a dataset. The ML parameter is:

θ∗ = arg max
θ

1

K
log ΠK

i=1e
φθ(xi) ∗ Z−1

= arg max
θ

1

K

K∑
i=1

θTψ(x)− logZ

By maximizing the surrogate function:

J(θ) = arg max
θ

1

K

K∑
i=1

θTψ(x)− E[max
x
{φθ(x) +

∑
α∈A

εα(xα)}]

It immediately follows (from the bounds on the partition function) that

J(θ) is a lower bound of the data log-likelihood
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Parameter estimation (2/2)

Recall:

J(θ) = arg max
θ

1

K

K∑
i=1

θTψ(x)− E[max
x
{φθ(x) +

∑
α∈A

εα(xα)}]

J is concave in θ and smooth with moment matching gradient:

∂

∂θ
J(θ) =

1

K

K∑
i=1

ψ(x)− E[ψ(x̂)]

Where x̂ ∼ arg maxx{θT · ψ(x) +
∑
α∈A εα(xα)} are approximate

samples of the model
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Exact samples from continuous distributions

(Maddison, Tarlow, Minka, NIPS 2014)
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Gumbel-Max Trick

Consider again a distribution with density

p(x) ∝ exp(φ(x))

for any x ∈ X. As before, let εx ∼ Gumbel(0) be i.i.d. samples and put

γ(x) = φ(x) + εx ∼ Gumbel(φ(x)).

If X is continuous, then we have for any B ⊆ X

max
x∈B

γ(x) ∼ Gumbel

(
log

∫
x∈B

exp(φ(x))

)
,

arg maxx∈B γ(x) ∼ exp(φ(x))∫
x∈B exp(φ(x))

.

In particular, these quantities are independent random variables!
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Decomposition

Goal: find arg max γ(x)

Suppose we can decompose

φ(x) = τ(x) + β(x)

into a tractable part (i.e. allows efficient sampling) τ(x) and a bounded

part β(x) which satisfies

β(x) ≤M(B) ∀x ∈ B ⊆ X,

where M(B) is a tractably computable bound depending on the region

B.

Recover the Gumbel noise sample γ(x) by adding the difference β(x) to

a tractable sample from Gumbel(τ(x)). More precisely,

γ(x) = εx + φ(x) = εx + τ(x) + β(x) ∼ Gumbel(τ(x)) + β(x).
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Upper and Lower Bounds

Thus, an upper bound uB on our target value maxx∈B γ(x) can be

obtained via

max
x∈B

γ(x) = max
x∈B

εx + τ(x) + β(x) ≤ max
x∈B

εx + τ(x) +M(B) =: uB ,

while a lower bound (over the whole space X) is provided by

` := γ(x̄) = εx̄ + τ(x̄) + β(x̄),∀x̄ ∈ X

This allows for finding arg maxx γ(x) by applying a procedure similar to

branch-and-bound.
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Sampling Algorithm

Basic idea:

1. Initialize lower and upper bounds for the target quantity.

2. Sample εx + τ(x) on subregions B.

3. Partition the space into further subsets and update bounds (such

that the gap becomes narrower).

4. Discard subregions where the lower bound violates the upper bound.

5. Proceed recursively until no more subregions are left and return the

optimal point.
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Visualization

Algorithm:

1. Initialize lower and upper

bounds ` and uX .

2. If ` ≤ uB for B, sample

x̄ = arg maxx∈B εx + τ(x).

3. If ` ≤ γ(x̄), update ` and

proceed.

4. Partition into subspaces

L,R of B and update

bounds uL, uR.

5. Proceed recursively until all

regions are searched.
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Summary

• When the bounding function M(B) does not depend on the region,

behavior similar to rejection sampling

• Else, experimentally demonstrated to be more efficient than adaptive

rejection sampling

• In all cases, it is only reasonable for small dimensions
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Conclusion

We have seen algorithms for:

• Approximate sampling from Gaussian MRF, useful in high dimensions

• Approximate sampling from Gibbs distributions with potential linear

in the features (and some guaranties on the sampling)

• Exact sampling from continuous distributions with small dimensions

where a bounding function M(B) can be defined
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