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ANALYZING BIG DATA

Nowadays, huge amounts of data are available.
We want to analyze them using Bayesian methods.

Variational inference is a powerful method for running inference in
complex probabilistic models, but it does not scale to large datasets.



ANALYZING BIG DATA

Stochastic Variational Inference helps to make Variational Inference
scale to large datasets.

It makes use of three concepts

Stochastic
Gradient
Ascent

Variational Natural

Inference Gradients

Stochastic
Variational
Inference




THE HIGH LEVEL STORY

We consider following model class:

e

- N observations x = Xq.y

- N local hidden variables z = 7.y
- global hidden variables 3

- fixed hyper-parameters «



THE HIGH LEVEL STORY
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Our goal is to calculate the posterior of the hidden variables
p(B,z|x) Thisis intractable ®

Meanfield Variational Inference allows to find approximation

p(B,2x) = q(B,2) = a(B|A)a(z|$)



THE HIGH LEVEL STORY

p(B,2x) = q(B,2) = a(B|A)a(z|$)

This results in optimization problem over A and ¢
Usually solved with a coordinate-ascent algorithm:
1. Update X leaving q(z|¢) fixed

2. Update ¢ leaving q(5|\) fixed
3. Repeat until convergence



THE HIGH LEVEL STORY

Update of g(5|A) involves all data points x = not scalable

Stochastic gradient ascent: follow a noisy, but unbiased estimate of
the gradient instead of exact gradient.

Noisy gradient shall be obtained by using small sample of all data
points to solve scalability issue.

However, the (noisy) gradient requires complex computations @

The natural gradient is an alternative, more “sensible” gradient.

In this case, it is also easier to compute.



THE HIGH LEVEL STORY

Stochastic Variational Inference

Variational inference with stochastic updates of global
parameter X\ along natural gradient.



BEFORE WE PROCEED ...




VARIATIONAL INFERENCE



MOTIVATION - GAUSSIAN MIXTURE MODELS

Simple example

- We are given some data points x = {X1, ..., Xn }
- We want to fit a Gaussian mixture model to this data

- p(X1B) = TTiey oty ™ N (Xil s o)
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MAXIMUM LIKELIHOOD LEARNING

How can we learn model parameters 8 = {pu, TiH_,?

Rewrite p(x|8) = 3, p(x.2I8) = [Tiey 22y, TTer T AN (il e, i)

B

BERS

N

Now use Expectation Maximization to learn
p* =argmaxg >, p(x, z; B)



VARIATIONAL INFERENCE

Shortcomings of maximum likelihood learning?

- No assessment of uncertainty in estimate g*

- How many mixture components do we need?

The Bayesian alternative: Treat 3 as random variable!

e
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VARIATIONAL INFERENCE

Instead of learning, compute posterior over latent variables given
observed data

__pBzx)
p(ﬂa Z|X) - EB’Z p(ﬁ, Z, X)

Computing p(8,z|x) is usually intractable because of normalization
term.

What can we do now?

- Sampling
- Approximate Variational Inference



VARIATIONAL INFERENCE

- We have intractable posterior
p(8,2|x)

- Choose family of tractable
distributions q(8,z) € Q

- Choose some kind of distance
measure A

- Find g* = argmingcq A(q, p) >

We call Q the family of Variational Distributions.
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VARIATIONAL INFERENCE

Depending on choice of Q and A, we get different algorithms

- Q product of exponential family distributions, A = KL(p||q) leads
to Expectation Propagation’

- Q=q(8)Ia(z), A =KL(qg||p) leads to mean-field?

Stochastic Variational Inference works in the context of mean-field
inference in a special model class.



CONJUGATE EXPONENTIAL MODELS




MODEL STRUCTURE

e

- N observations x = xy.y
- N local hidden variables z = z;.n, where each z, = zp 1

- global hidden variables 3
- fixed hyper-parameters «
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CONJUGATE EXPONENTIAL MODELS

The joint distribution factorizes into a global term and a product of
local terms

N
p(x,Z, Bla) = p(Bla) [] p(xn, 201B)
n+1
The complete conditionals have to be in the exponential family
pP(BIx,z, &) = h(B) exp{mg(X, z, ) t(B) — ag(mg(X, 2, ))}
p(znj‘xﬂa Zﬂ,—j7 6) = h(zm) eXp{Wl(Xn, Zl’l,—ja ﬂ)Tt(Zm) - al(77 (XFH Zl’l 35))}

base measure h(-) natural parameter 7(-)

log-normalizer a(+) sufficient statistics t(-)
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CONJUGATE EXPONENTIAL MODELS

The assumptions on the complete conditionals

p(ﬁ|X,Z,0¢) = h(,@) eXp{Ug(XaZa Oz)Tt(/B) - ag(ng(x,z,a))}
P(Znj[%n, Zn,—j, B) = h(zqj) exp{m(Xn, Zn,—j, B)T(zZnj) — alm(Xn, Zn,—j, B))}

imply an exponential family local context

P(Xn,Zn|B) = h(Xn,zn) eXp{BTt(Xn, Zn) — a(B)},

and a conjugate exponential family prior on the global parameters
p(Bla) = N(B) exp{a™t(8) — ag(a)}
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CONJUGATE EXPONENTIAL MODELS

The conjugate exponential model with prior

p(Bla) = h(B) exp{aTt(B) — ag(a)}

implies following form of the sufficient statistics and natural
parameters

1) = 18, —a(b)]

a = [an, o)

The natural parameters of the posterior are given by

N
ng(X,Z, o) = [ag + Zt(zn,XnL a; + N]

n=1

22



MEAN-FIELD VARIATIONAL INFERENCE




MEAN-FIELD VARIATIONAL INFERENCE

- Maximize a lower bound on the logarithm of the marginal
probability of the observations log p(x).

- Equivalent to minimizing the KL divergence from the variational
distribution to the posterior.

- Assume that each hidden variable is independent and governed
by its own parameter.

- The variational distributions are in the same family as the
complete conditional distributions.

- As a result of the conjugacy of complete conditionals and prior
distributions.

24



EVIDENCE LOWER BouND (ELBO)

Lower bound on the logarithm of the marginal probability of the
observations

log p(x) log/p (x,z,8)dzdg

(

B p(x,z B)

“Og@q{ a /3)D
p(x,z,3)

q(z, 8) ] v

= Eq [logp(x, z, 8)] — Eq [logq(z, B)]

25



EVIDENCE LOWER BouND (ELBO)

L(q) = Eq [logp(x,z, B)] — Eq [logq(z, )]
The ELBO consists of two terms:

- the expected log joint likelihood Eq [log p(x, z, 3)],
- the entropy of the variational distribution —E, [log q(z, 3)].

Maximizing the ELBO is equivalent to finding the member of the
exponential family that is closest (in terms of KL) to the true
posterior

KL(a(z, B)lIp(z, BIx)) = Eq [log a(z, B)] — Eq [log p(z, BIX)]
= Eq [lOg q(Z7 ﬂ)] - Eq [log p(X, 27 B)] + log p(X)
= —L(q) + const.
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THE MEAN-FIELD VARIATIONAL FAMILY

Each hidden variable is independent and governed by its own
parameter

N )
a(z 8) = a(B8I») [T 1T azailén)-
n=1 J:]

Thus, the entropy term decomposes into

N

J
—Eq[logq(z, 8)] = —Ex [loga(8)] — > Y Eq, [loga(zy)] -

n+1 j=1

The expected log joint likelihood can be separated by applying the
chain rule

Eq [logp(x, 2, 8)] = Eq [log p(x, 2)] + Eq [log p(5[X, 2)] -
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THE MEAN-FIELD VARIATIONAL FAMILY

The variational distributions are in the same exponential family as
the complete conditional distributions

q(BIA) = h(B) exp{ATt(B) — ag(M)},
q(znj|¢nj) = h(an) eXp{Qj);jt(an) - al(d)nj)}

the gradients of the ELBO w.r.t the parameters A and ¢,; can be
obtained as

V)\E = Viag(A)(Eq [ng(XJa Oé)] - )‘)
Vo, £ = v; mat(¢nj)(Eq[nl(Xn,Zn,ﬂv5)] — &nj)

This leads to coordinate ascent variational inference

A= Eq [Ug(xv Z O‘)]
bnj = Eq [m(Xn, Zn,—j, 8)]

28



MEAN-FIELD VARIATIONAL INFERENCE

How does it work in the end?

1. Initialize X(®) randomly.

2. repeat

3 for all local variational parameters ¢nj do

4 Update ¢m with (b q(t 1) [’17[71(Xn,2n7_j,6)].
5 end for

6: Update the global variational parameters,

7 2O = Eq [ng(zin, xan, )]

8 until the ELBO converges.

29



FROM MEAN-FIELD TO STOCHASTIC VARIATIONAL INFERENCE

- The global parameter X is initialized randomly
- all local updates are based on this initial random guess.
- one could already learn about the structure of the data from a subset.
- Better: update the global parameters after each local update
using stochastic optimization.

- Sample one data point from the data set.

- Compute the optimal local variational parameters.
- Form intermediate global parameters

- by repeating the sampled data point occured N times
- and performing classical coordinate ascent

- Set the global parameters to a weighted average of the old estimate
and the intermediate global parameters.

- The Gradient is based on a Euclidean metric on the parameters.
- The natural gradient accounts for the information geometry in the
parameter space.

30



NATURAL GRADIENT




CLASSICAL GRADIENT ASCENT

Maximize a function by taking small steps in the direction of the
gradient

AED =20 4 v, f(AD)

The classical gradient points in the direction of the steepest ascent
constrained by the Euclidean metric in the parameter space.

V) = arg rr(ﬁxf(/\ +d)\) st ||[dAP <€ withe—0

This might not be the best option for probability distributions...
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CLASSICAL GRADIENT ASCENT

Consider the two Gaussian distributions A(0,1000) and N(50,1000).

04

Z

+ + + +
—3,000 —2,000 —1,000 0 1,000 2,000 3,000

The distributions are nearly identical, but the Euclidean distance
between the parameter vectors is 50.
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CLASSICAL GRADIENT ASCENT

Now consider the two Gaussians A/(0,0.01) and N(0.1,0.01).
° N\

20

—0.04 —0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.4

The distributions barely overlap, however, the Euclidean distance of
their parameter vector is only 0.1.
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NATURAL GRADIENT ASCENT

Apply a different measure: the symmetrized Kullback-Leibler
divergence

o 4(81) 4(8Y)
Did” (4, X) = Ei [log Q(ﬁX)] R [‘Og q(ﬁu)]

We want a Riemannian metric G(A) that transforms the squared
Euclidean distance to the symmetric KL divergence

dATG(A)dA = DY™(A, A + dA)

The natural gradient is the the gradient premultiplied by the inverse
Riemannian metric3

A

Vaf(\) = G(A\)T'VAf(N)

85



NATURAL GRADIENT ASCENT

We can derive the matrix G() by plugging the first-order Taylor
approximations

logq(B|X + dA) = logq(BIA) + dATVx log q(B|A) + O(dA?)
q(BIA + dX) = a(BIA) + a(BIA)dATV log q(B|A) + O(dX?)

into the symmetric Kulback-Leibler divergence (X' = X + d\)

s A aBY)
ORI X) = B Jlog 0| + B log U5

/ [G(BIN) — a(BIN)] [log a(BI1X) — log a(B1A)] dB

_ /ﬂ [a(BIN)AATV, log q(B]A) + O(dA?)]

[dATV ) log q(B|A) + O(dA?)] dB

36



NATURAL GRADIENT ASCENT

DIM(A, X) = /@ [A(BIAYAATY » log a(B1) + O(dA2)]
[dATV log q(B|A) + O(dA?)] dB
— O(dN) + /ﬁ G(8IN) [AATV log (B 0B
~E, [(dATV logq(BIA))] = dATE, [(Va loga(8IA))’] dA

G(\) = Ey {(V,\ log q(ﬁ\)\))z} is the Fisher information matrix.

For the exponential family, the Fisher information matrix is the
second derivative of the log-normalizer V3a(\).
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STOCHASTIC GRADIENT ASCENT




STOCHASTIC GRADIENT ASCENT

Follow noisy estimates of the gradient.

- Noisy estimates are often cheaper to compute.

- Allow to escape from shallow local optima.
Assuming we have

- an objective function f(A) and
- arandom function B(X), where Eq [B(A)] = VAf(}),

we update the parameters by
AO = AED 4 by ( ,\(H)) ,

where by is a sample of the random function B(AM).

39



STOCHASTIC GRADIENT ASCENT

If the step size p satisfies

Zpt:oo, ZP%<OO,

then A® will converge to the optimum \* or a local optimum of f.4

The same applies if the gradient is premultiplied by a sequence of
positive-definite matrices G;":

A0 = A 4 56, ( ,\(t—n)

E.g, the Fisher information matrix G(\).

40



STOCHASTIC VARIATIONAL INFERENCE




STOCHASTIC VARIATIONAL INFERENCE

Variational Gradient
Inference Ascent

N

‘ Stochastic |

Mean-Field Stochastic
Natural

Gradients

Variational
Inference
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STOCHASTIC VARIATIONAL INFERENCE

1. Sample a data point from the data set.
- Optimize the local variational parameters.

2. Form intermediate global parameters.
- Classical coordinate ascent.

3. Update the global variational parameters.
- Weighted average of the intermediate and the old global parameters.

This algorithm is stochastic natural gradient ascent on the global
variational parameters.
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THE NOISY NATURAL GRADIENT OF ELBO

Recall the evidence lower bound (ELBO)
L()‘v ¢(>\)) = Eq [log p(X, Z, /B)] - Eq [q(Z, 6)]

Let ¢(\) be a function that returns a local optimum of the local
variational parameters

Vo L(A, ¢(A)) =0

Locally maximized ELBO, with fixed A and locally optimal ¢(X)
L(A) = L(X, o(N))

The gradient is the same as for the ELBO

VAL(A) = VAL, 6(A) + (Vad(A)TVeL(A, (1))
= VaL(A 6(N))

44



THE NOISY NATURAL GRADIENT OF ELBO

Recall the evidence lower bound (ELBO)

‘C()‘a (b()‘)) = Eq [lOg p(X, Z, B)] - ]Eq [(](Z, B)]

L(A) can be decomposed into a global term and a local term

L(X) = Eq [logp(B)] — Eq [log q ()]
N

+y° max (Eq [log p(xn, znlB)] ~ Eq [l0g 0(z0)])

n=1
Define the random function £;(\) of the variational parameters with
a uniformly drawn index i ~ Unif(1,...,N)
Li(A) = Eq [log p(B)] — Eq [log q()]
+ N max (Eq [log p(x;, 218)] ~ Eq llog a(z)))

Eynif[£(AN)] = Eynie[£i(N\)], so the noisy natural gradient is unbiased.
45



THE NOISY NATURAL GRADIENT OF ELBO

Because
VAL, () = VAL(N) and L) = £i(N),
supposed that the data set {x( ) (N)} is formed by N replicates of

the sampled data point (xj, zj), the noisy natural gradient is

~

VaLi = 6(A) " Vhag(NEq [me(",2™, )] - A

|
=Eq [Ug (Xi(N)in(N)’O‘)] —A

Exploiting the assumptions on the prior p(8|a) and the distribution
of the local context p(xj, zi|3)

n (XY, 2%, 0) =@+ N (t(x,2),1)

46



THE NOISY NATURAL GRADIENT OF ELBO

The noisy natural gradient becomes
VaLi = a+N- (Eg o [t6,2)],1) — X
The intermediate global parameters are
Av=a+ N (Eg o [t 2)],7)
The global variational parameters are updated as

AD =\ )y (gt _ A(H))

= (1= p)AY + o

47



STOCHASTIC VARIATIONAL INFERENCE

1. Initialize A(©) randomly.

2. Choose an appropriate step-size schedule py

3. repeat

4; Sample a data point x; uniformly from the data set.
5 Compute its local variational parameter,

¢ij = Exe-n [my (%i,2i—j, 8)]
6: Compute intermediate global parameters,
N N N
o= B [ (5, 27)].
7: Update the global variational parameters,

AD = (1= p)AED 4 p.

8: until convergence.
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APPLICATIONS & EXTENSIONS




ToPIC MODELS

SVI applied to

- Latent Dirichlet Allocation David M. Blei, Ng, and Jordan, “Latent
Dirichlet Allocation”

- Hierarchical Dirichlet Processes Teh et al,, “Hierarchical Dirichlet
processes”

Evaluated on corpora:

# documents # words vocabulary size

Nature 350k 58M 4200
New York Times 1.8M 461M 8000
Wikipedia 3.8M 482M 7700
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TopriC MODELS

Results for HDP
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STRUCTURED STOCHASTIC VARIATIONAL INFERENCE®

Relax fully-factorized mean-field assumption.

a(8:2) = a(81») [T a(zalen(5))

- 0(zn|¢n(B)) does not need to factorize into q(z, | .. .)
- d(zn|#n(B)) may depend on j

Several ways of updating ¢,(3) with fixed g(8|A)
Update of X still stochastic
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TIME SERIES®
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(b) SVI vs Batch HDP-HSMM

Local parameters: hidden states :
of each observations.

held-out predictive likelihood

Global parameters: Parameters
governing state transition and
observation distribution.

54



	Variational Inference
	Conjugate Exponential Models
	Mean-Field Variational Inference
	Natural Gradient
	Stochastic Gradient Ascent
	Stochastic Variational Inference
	Applications & Extensions

