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Analyzing Big Data

Nowadays, huge amounts of data are available.

We want to analyze them using Bayesian methods.

Variational inference is a powerful method for running inference in

complex probabilistic models, but it does not scale to large datasets.
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Analyzing Big Data

Stochastic Variational Inference helps to make Variational Inference

scale to large datasets.

It makes use of three concepts
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The high level story

We consider following model class:

z

βα

x

N

∙ N observations x = x1:N

∙ N local hidden variables z = z1:N

∙ global hidden variables β

∙ fixed hyper-parameters α
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The high level story

z

βα

x

N

Our goal is to calculate the posterior of the hidden variables

p(β, z|x) This is intractable /

Meanfield Variational Inference allows to find approximation

p(β, z|x) ≈ q(β, z) = q(β|λ)q(z|φ)
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The high level story

p(β, z|x) ≈ q(β, z) = q(β|λ)q(z|φ)

This results in optimization problem over λ and φ

Usually solved with a coordinate-ascent algorithm:

1. Update λ leaving q(z|φ) fixed
2. Update φ leaving q(β|λ) fixed
3. Repeat until convergence
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The high level story

Update of q(β|λ) involves all data points x ⇒ not scalable

Stochastic gradient ascent: follow a noisy, but unbiased estimate of

the gradient instead of exact gradient.

Noisy gradient shall be obtained by using small sample of all data

points to solve scalability issue.

However, the (noisy) gradient requires complex computations /

The natural gradient is an alternative, more “sensible” gradient.

In this case, it is also easier to compute.
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The high level story

Stochastic Variational Inference

=

Variational inference with stochastic updates of global

parameter λ along natural gradient.

9



Before we proceed ...
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variational inference



Motivation - Gaussian Mixture Models

Simple example

∙ We are given some data points x = {x1, ..., xn}
∙ We want to fit a Gaussian mixture model to this data

∙ p(x|β) =
∏n

i=1

∑K
k=1 πk N (xi|µk,Σk)
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Maximum likelihood learning

How can we learn model parameters β = {µk,Σk}Kk=1?

Rewrite p(x|β) =
∑

z p(x, z|β) =
∏n

i=1

∑
zi

∏K
k=1 π

zik
k

N (xi|µk,Σk)
zik

z

β

x

N

Now use Expectation Maximization to learn

β∗ = argmaxβ
∑

z p(x, z;β)
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Variational Inference

Shortcomings of maximum likelihood learning?

∙ No assessment of uncertainty in estimate β∗

∙ How many mixture components do we need?

The Bayesian alternative: Treat β as random variable!

α

z

β

x

N
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Variational inference

Instead of learning, compute posterior over latent variables given

observed data

p(β, z|x) = p(β, z, x)∑
β,z p(β, z, x)

Computing p(β, z|x) is usually intractable because of normalization

term.

What can we do now?

∙ Sampling

∙ Approximate Variational Inference
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Variational Inference

∙ We have intractable posterior

p(β, z|x)
∙ Choose family of tractable

distributions q(β, z) ∈ Q

∙ Choose some kind of distance

measure ∆

∙ Find q∗ = argminq∈Q ∆(q,p)

p

q∗

We call Q the family of Variational Distributions.

16



Variational Inference

Depending on choice of Q and ∆, we get different algorithms

∙ Q product of exponential family distributions, ∆ = KL(p||q) leads
to Expectation Propagation1

∙ Q = q(β)
∏

q(zi), ∆ = KL(q||p) leads to mean-field2

Stochastic Variational Inference works in the context of mean-field

inference in a special model class.

1Minka, “Expectation Propagation for Approximate Bayesian Inference”.
2Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics).
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conjugate exponential models



Model Structure

α

z

β

x

N

∙ N observations x = x1:N

∙ N local hidden variables z = z1:N, where each zn = zn,1:J

∙ global hidden variables β

∙ fixed hyper-parameters α
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Conjugate Exponential Models

The joint distribution factorizes into a global term and a product of

local terms

p(x, z, β|α) = p(β|α)
N∏

n+1

p(xn, zn|β)

The complete conditionals have to be in the exponential family

p(β|x, z, α) = h(β) exp{ηg(x, z, α)ᵀt(β)− ag(ηg(x, z, α))}
p(znj|xn, zn,−j, β) = h(znj) exp{ηl(xn, zn,−j, β)

ᵀt(znj)− al(ηl(xn, zn,−j, β))}

base measure h(·) natural parameter η(·)

log-normalizer a(·) sufficient statistics t(·)
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Conjugate Exponential Models

The assumptions on the complete conditionals

p(β|x, z, α) = h(β) exp{ηg(x, z, α)ᵀt(β)− ag(ηg(x, z, α))}
p(znj|xn, zn,−j, β) = h(znj) exp{ηl(xn, zn,−j, β)

ᵀt(znj)− al(ηl(xn, zn,−j, β))}

imply an exponential family local context

p(xn, zn|β) = h(xn, zn) exp{βᵀt(xn, zn)− al(β)},

and a conjugate exponential family prior on the global parameters

p(β|α) = h(β) exp{αᵀt(β)− ag(α)}

21



Conjugate Exponential Models

The conjugate exponential model with prior

p(β|α) = h(β) exp{αᵀt(β)− ag(α)}

implies following form of the sufficient statistics and natural

parameters

t(β) = [β,−al(β)]

α = [α1, α2]

The natural parameters of the posterior are given by

ηg(x, z, α) = [α1 +
N∑

n=1

t(zn, xn), α2 + N]
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mean-field variational inference



Mean-Field Variational Inference

∙ Maximize a lower bound on the logarithm of the marginal

probability of the observations log p(x).

∙ Equivalent to minimizing the KL divergence from the variational

distribution to the posterior.

∙ Assume that each hidden variable is independent and governed

by its own parameter.

∙ The variational distributions are in the same family as the

complete conditional distributions.

∙ As a result of the conjugacy of complete conditionals and prior

distributions.
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Evidence Lower Bound (ELBO)

Lower bound on the logarithm of the marginal probability of the

observations

log p(x) = log

∫
p(x, z, β)dzdβ

= log

∫
p(x, z, β)

q(z, β)

q(z, β)
dzdβ

= log

(
Eq

[
p(x, z, β)

q(z, β)

])
≥ Eq

[
log

p(x, z, β)

q(z, β)

]
(1)

= Eq [log p(x, z, β)]− Eq [log q(z, β)]

=: L(q)

1Jensen’s inequality
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Evidence Lower Bound (ELBO)

L(q) = Eq [log p(x, z, β)]− Eq [log q(z, β)]

The ELBO consists of two terms:

∙ the expected log joint likelihood Eq [log p(x, z, β)],

∙ the entropy of the variational distribution −Eq [log q(z, β)].

Maximizing the ELBO is equivalent to finding the member of the

exponential family that is closest (in terms of KL) to the true

posterior

KL(q(z, β)||p(z, β|x)) = Eq [log q(z, β)]− Eq [log p(z, β|x)]
= Eq [log q(z, β)]− Eq [log p(x, z, β)] + log p(x)

= −L(q) + const.
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The Mean-Field Variational Family

Each hidden variable is independent and governed by its own

parameter

q(z, β) = q(β|λ)
N∏

n=1

J∏
j=1

q(znj|φnj).

Thus, the entropy term decomposes into

−Eq [log q(z, β)] = −Eλ [log q(β)]−
N∑

n+1

J∑
j=1

Eφnj

[
log q(znj)

]
.

The expected log joint likelihood can be separated by applying the

chain rule

Eq [log p(x, z, β)] = Eq [log p(x, z)] + Eq [log p(β|x, z)] .
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The Mean-Field Variational Family

The variational distributions are in the same exponential family as

the complete conditional distributions

q(β|λ) = h(β) exp{λᵀt(β)− ag(λ)},
q(znj|φnj) = h(znj) exp{φᵀ

nj
t(znj)− al(φnj)}

the gradients of the ELBO w.r.t the parameters λ and φnj can be

obtained as

∇λL = ∇2
λag(λ)(Eq[ηg(x, z, α)]− λ)

∇φnj
L = ∇2

φnj
al(φnj)(Eq[ηl(xn, zn,−j, β)]− φnj)

This leads to coordinate ascent variational inference

λ = Eq [ηg(x, z, α)]

φnj = Eq

[
ηl(xn, zn,−j, β)

]
28



Mean-Field Variational Inference

How does it work in the end?

1: Initialize λ(0) randomly.

2: repeat

3: for all local variational parameters φnj do

4: Update φnj with φ
(t)
nj

= Eq(t−1)

[
ηl,j(xn, zn,−j, β)

]
.

5: end for

6: Update the global variational parameters,

7: λ(t) = Eq(t) [ηg(z1:N, x1:N, α)]

8: until the ELBO converges.
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FromMean-Field to Stochastic Variational Inference

∙ The global parameter λ is initialized randomly

∙ all local updates are based on this initial random guess.

∙ one could already learn about the structure of the data from a subset.

∙ Better: update the global parameters after each local update

using stochastic optimization.

∙ Sample one data point from the data set.

∙ Compute the optimal local variational parameters.

∙ Form intermediate global parameters

∙ by repeating the sampled data point occured N times

∙ and performing classical coordinate ascent

∙ Set the global parameters to a weighted average of the old estimate

and the intermediate global parameters.

∙ The Gradient is based on a Euclidean metric on the parameters.

∙ The natural gradient accounts for the information geometry in the

parameter space.
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natural gradient



Classical Gradient Ascent

Maximize a function by taking small steps in the direction of the

gradient

λ(t+1) = λ(t) + ρ∇λf(λ
(t))

The classical gradient points in the direction of the steepest ascent

constrained by the Euclidean metric in the parameter space.

∇λ = argmax
dλ

f(λ+ dλ) s.t. ||dλ||2 < ε2 with ε → 0

This might not be the best option for probability distributions...
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Classical Gradient Ascent

Consider the two Gaussian distributions N (0, 1000) and N (50, 1000).

−3,000 −2,000 −1,000 0 1,000 2,000 3,000

0

2

4
·10−4

The distributions are nearly identical, but the Euclidean distance

between the parameter vectors is 50.
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Classical Gradient Ascent

Now consider the two Gaussians N (0, 0.01) and N (0.1, 0.01).

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

20

40

The distributions barely overlap, however, the Euclidean distance of

their parameter vector is only 0.1.
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Natural Gradient Ascent

Apply a different measure: the symmetrized Kullback-Leibler

divergence

D
sym
KL (λ, λ′) = Eλ

[
log

q(β|λ)
q(β|λ′)

]
+ Eλ′

[
log

q(β|λ′)

q(β|λ)

]
We want a Riemannian metric G(λ) that transforms the squared

Euclidean distance to the symmetric KL divergence

dλᵀG(λ)dλ = D
sym
KL (λ, λ+ dλ)

The natural gradient is the the gradient premultiplied by the inverse

Riemannian metric3

∇̂λf(λ) = G(λ)−1∇λf(λ)

3Amari, “Natural gradient works efficiently in learning”.
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Natural Gradient Ascent

We can derive the matrix G(λ) by plugging the first-order Taylor

approximations

log q(β|λ+ dλ) = log q(β|λ) + dλᵀ∇λ log q(β|λ) + O(dλ2)

q(β|λ+ dλ) = q(β|λ) + q(β|λ)dλᵀ∇λ log q(β|λ) + O(dλ2)

into the symmetric Kulback-Leibler divergence (λ′ = λ+ dλ)

D
sym
KL (λ, λ′) = Eλ

[
log

q(β|λ)
q(β|λ′)

]
+ Eλ′

[
log

q(β|λ′)

q(β|λ)

]
=

∫
β

[q(β|λ′)− q(β|λ)] [log q(β|λ′)− log q(β|λ)]dβ

=

∫
β

[
q(β|λ)dλᵀ∇λ log q(β|λ) + O(dλ2)

]
[
dλᵀ∇λ log q(β|λ) + O(dλ2)

]
dβ
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Natural Gradient Ascent

D
sym
KL (λ, λ′) =

∫
β

[
q(β|λ)dλᵀ∇λ log q(β|λ) + O(dλ2)

]
[
dλᵀ∇λ log q(β|λ) + O(dλ2)

]
dβ

= O(dλ3) +

∫
β

q(β|λ) [dλᵀ∇λ log q(β|λ)]2 dβ

≈ Eλ

[
(dλᵀ∇λ log q(β|λ))2

]
= dλᵀEλ

[
(∇λ log q(β|λ))2

]
dλ

G(λ) = Eλ

[
(∇λ log q(β|λ))2

]
is the Fisher information matrix.

For the exponential family, the Fisher information matrix is the

second derivative of the log-normalizer ∇2
λa(λ).
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stochastic gradient ascent



Stochastic Gradient Ascent

Follow noisy estimates of the gradient.

∙ Noisy estimates are often cheaper to compute.

∙ Allow to escape from shallow local optima.

Assuming we have

∙ an objective function f(λ) and

∙ a random function B(λ), where Eq [B(λ)] = ∇λf(λ),

we update the parameters by

λ(t) = λ(t−1) + ρtbt

(
λ(t−1)

)
,

where bt is a sample of the random function B(λ(t)).
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Stochastic Gradient Ascent

If the step size ρ satisfies∑
ρt = ∞,

∑
ρ2t < ∞,

then λ(t) will converge to the optimum λ∗ or a local optimum of f.4

The same applies if the gradient is premultiplied by a sequence of

positive-definite matrices G−1
t :

λ(t) = λ(t−1) + ρtG
−1
t bt

(
λ(t−1)

)
E.g., the Fisher information matrix G(λ).

4Robbins and Monro, “A stochastic approximation method”.

40



stochastic variational inference



Stochastic Variational Inference
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Stochastic Variational Inference

1. Sample a data point from the data set.

∙ Optimize the local variational parameters.

2. Form intermediate global parameters.

∙ Classical coordinate ascent.

3. Update the global variational parameters.

∙ Weighted average of the intermediate and the old global parameters.

This algorithm is stochastic natural gradient ascent on the global

variational parameters.
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The Noisy Natural Gradient of ELBO

Recall the evidence lower bound (ELBO)

L(λ, φ(λ)) = Eq [log p(x, z, β)]− Eq [q(z, β)]

Let φ(λ) be a function that returns a local optimum of the local

variational parameters

∇φL(λ, φ(λ)) = 0

Locally maximized ELBO, with fixed λ and locally optimal φ(λ)

L(λ) := L(λ, φ(λ))

The gradient is the same as for the ELBO

∇λL(λ) = ∇λL(λ, φ(λ)) + (∇λφ(λ))
ᵀ∇φL(λ, φ(λ))

= ∇λL(λ, φ(λ))
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The Noisy Natural Gradient of ELBO

Recall the evidence lower bound (ELBO)

L(λ, φ(λ)) = Eq [log p(x, z, β)]− Eq [q(z, β)]

L(λ) can be decomposed into a global term and a local term

L(λ) = Eq [log p(β)]− Eq [log q(β)]

+
N∑

n=1

max
φn

(Eq [log p(xn, zn|β)]− Eq [log q(zn)])

Define the random function Li(λ) of the variational parameters with

a uniformly drawn index i ∼ Unif(1, . . . ,N)

Li(λ) = Eq [log p(β)]− Eq [log q(β)]

+ Nmax
φi

(Eq [log p(xi, zi|β)]− Eq [log q(zi)])

EUnif[L(λ)] = EUnif[Li(λ)], so the noisy natural gradient is unbiased.
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The Noisy Natural Gradient of ELBO

Because

∇λL(λ, φ(λ)) = ∇λL(λ) and L(λ) = Li(λ),

supposed that the data set
{
x
(N)
i

, z
(N)
i

}
is formed by N replicates of

the sampled data point (xi, zi), the noisy natural gradient is

∇̂λLi = G(λ)−1∇2
λag(λ)Eq

[
ηg(x

(N)
i

, z
(N)
i

, α)
]
− λ

= Eq

[
ηg

(
x
(N)
i

, z
(N)
i

, α
)]

− λ

Exploiting the assumptions on the prior p(β|α) and the distribution

of the local context p(xi, zi|β)

ηg

(
x
(N)
i

, z
(N)
i

, α
)
= α+ N · (t(xi, zi), 1)
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The Noisy Natural Gradient of ELBO

The noisy natural gradient becomes

∇̂λLi = α+ N ·
(
Eφi(λ) [t(xi, zi)] , 1

)
− λ

The intermediate global parameters are

λ̂t = α+ N ·
(
Eφi(λ) [t(xi, zi)] , 1

)
The global variational parameters are updated as

λ(t) = λ(t−1) + ρt

(
λ̂t − λ(t−1)

)
= (1− ρt)λ

(t−1) + ρtλ̂t
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Stochastic Variational Inference

1: Initialize λ(0) randomly.

2: Choose an appropriate step-size schedule ρt
3: repeat

4: Sample a data point xi uniformly from the data set.

5: Compute its local variational parameter,

φij = Eλ(t−1)

[
ηlj

(
xi, zi,−j, β

)]
6: Compute intermediate global parameters,

λ̂t = Eφi

[
ηg

(
x
(N)
i

, z
(N)
i

)]
.

7: Update the global variational parameters,

λ(t) = (1− ρt)λ
(t−1) + ρtλ̂t.

8: until convergence.
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applications & extensions



Topic Models

SVI applied to

∙ Latent Dirichlet Allocation David M. Blei, Ng, and Jordan, “Latent

Dirichlet Allocation”

∙ Hierarchical Dirichlet Processes Teh et al., “Hierarchical Dirichlet

processes”

Evaluated on corpora:

# documents # words vocabulary size

Nature 350k 58M 4200

New York Times 1.8M 461M 8000

Wikipedia 3.8M 482M 7700
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Topic Models

Results for LDA
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Topic Models

Results for HDP
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Structured Stochastic Variational Inference5

Relax fully-factorized mean-field assumption.

q(β, z) = q(β|λ)
∏
n

q(zn|φn(β))

∙ q(zn|φn(β)) does not need to factorize into q(zn,i| . . . )
∙ q(zn|φn(β)) may depend on β

Several ways of updating φn(β) with fixed q(β|λ)

Update of λ still stochastic

5Hoffman and David M Blei, “Structured Stochastic Variational Inference”.
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Time Series6

Application of SVI

∙ Bayesian Hidden (Semi-)Markov

Models

∙ Their non-parametric

extensions with HDPs

Local parameters: hidden states

of each observations.

Global parameters: Parameters

governing state transition and

observation distribution.

6Johnson and Willsky, “Stochastic Variational Inference for Bayesian Time Series Models”.
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