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Overview

Today we will look at:

1. Introduction to Structured Prediction
I Problem Statement
I Challenges

2. Some Background
I Conditional Random Fields (CRFs)
I Maximum Margin Markov Networks (M3N)

3. A recent approach
I Efficient Max-Margin Learning using Dual Decompositions
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What is Structured Prediction?

I A special case of (multivariate) Regression/Classification,
i.e. given D = {(x (i), y (i))}i we want to learn

f : X→ Y

I For Structured Prediction each y is a structure
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Examples of Structures

POS-Tagging:

X:   I    know 387420489 di erent ways   to  tag  this sentence.

Y: PRN  VBP         CD             JJ       NNS  PRT  VB  DT       NN

Semantic Parsing:

X: How many people live in Darmstadt?
Y: SELECT population

FROM cities
WHERE STRCMP(name, ’Darmstadt’)
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Examples of Structures

Stereo Matching:
X:

Y:
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Challenges

POS-Tagging:

X:   I    know 387420489 di erent ways   to  tag  this sentence.

Y: PRN  VBP         CD             JJ       NNS  PRT  VB  DT       NN

Two naive ways of applying standard classification:

1. learn a separate classifier for each part (word)
I bad performance
I fails to exploit the dependences

2. define one label for each possible structure
I infeasible, too many labels
I fails to exploit the independences

Structured Prediction is all about exploiting the structure!
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Conditional Random Fields

I We need to model the (in)dependences in order to exploit them
I e.g. by using graphical models like CRFs:

x1 x2 x3

y1

y2

y3

I undirected graph
I discriminative method
I models p(y|x), disregards p(x)
I Prediction by Inference

p(y|x) =
exp

(∑
c θ
>
c φc(x, y)

)∑
y exp

(∑
c θ
>
c φc(x, y)

)
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Conditional Random Fields
Training

CRFs can be trained by maximizing the conditional log likelihood

L =
∑

N

∑
c

θ>c φc(xc, yc)− log Z (x)

using the gradient

∂L
∂θc

=
N∑

i=1

φc(xc
(i), yc

(i))−
N∑

i=1

∑
yc

p(yc|x(i)
c )φc(xc

(i), yc)

"empirical feature counts - expected feature counts"

⇒ Inference needed in the training loop
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Conditional Random Fields
Inference

I We need p(yc|x) for the gradient and f (x) = arg max
y

p(y|x) for prediction

I Inference employs general algorithms for graphical models
I Exact solutions (based on DP) only possible for simple models

(e.g. trees with small tree width)
I Belief Propagation
I Forward Backward
I Viterbi
I Junction Tree

I Otherwise approximations are required
I Loopy Belief Propagation
I Mean Field Inference
I Alpha expansion

June 24, 2015 | CLAS TUD | Oleg Arenz | 9



Maximum Margin Markov Networks
Primal Problem

I We are actually not so much interested in getting p(y|x) right.
I We want to get f (x) = arg max

y
p(y|x) right!

⇒ Instead of learning θML, M3N learns θMM (MM = Maximum Margin)

min
θ

1
2
||θ||2 + C

∑
x∈D

ξx

s.t. ∀x∈D,y θ
>∆φx(y) ≥ ∆tx(y)− ξx

∀x∈D ξx ≥ 0

Here ∆tx(y) =
∑

i 1yi 6=t(x)i defines the per-Label loss.
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Maximum Margin Markov Networks
Dual Problem

max
αx(y)

∑
x,y

αx(y)∆tx(y)− 1
2
||
∑
x,y

αx(y)∆φx(y)||2

s.t. ∀x

∑
y

αx(y) = C

∀x,y αx(y) ≥ 0

I The good news: it’s a quadratic program
I The bad news: one constraint for each possible output label

Two key insights:

1. αx(y) are unnormalized distributions over y (the constraints tell us)

2. αx(y) will factorize exactly like the potential functions (the objective tells us)
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Maximum Margin Markov Networks
Key Insights

Two key insights:

1. αx(y) are unnormalized distributions over y (the constraints tell us)

2. αx(y) will factorize exactly like the potential functions (the objective tells us)

⇒We don’t need to know the α-distributions, but just their marginals:

E.g.:
∑

x,y αx(y)∆tx(y) =
∑

x,y αx(y)
∑

c ∆tc,xc (yc) =
∑

x

∑
i

∑
yi
µx(yi )∆tx(yi )

using the marginals µx(yc) =
∑

y∼[yc] αx(y)

⇒ By solving directly for µxc (yc) instead of αx(y) we need to solve for less
variables.
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Maximum Margin Markov Networks
Factored Dual

max
µx(y)

∑
x

∑
i ,yi

µx(yi )∆tx(yi )−
1
2

∑
x,x′

∑
c,c′

∑
yc

∑
y′

c′

µx(yc)µx′ (y′c′ )∆φx(yc)>∆φx′ (y′c′ )

s.t. ∀x

∑
i ,yi

µx(yi ) = C

∀c,x,yc µx(yc) ≥ 0

Unfortunately it’s not that simple. We still need to ensure that the marginals are
consistent.

Assuming pairwise potentials, i.e. ∀cyc = [yc,1, yc,2]> and a tree, consistency can
be enforced by adding constraints

∀c
∑
yc1

µx(yc1 , yc2 ) = µx(yc2 ).
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Maximum Margin Markov Networks
Learning θ

Once, the dual variables have been computed, solving the primal problem is easy:

θ =
∑

x

∑
(i ,j)

∑
yi ,yj

µx(yi , yj )∆φ(yi , yj )
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Dual Decompositions for Max Margin Learning

Let’s assume we don’t want to restrict ourselves to trees with pairwise potentials.
⇒ Let’s look at hyperedges instead of edges:

V1

e1

V7

V4

e4
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Dual Decompositions for Max Margin Learning
Potential Function

Let’s define the potentials of our CRF/MRF on the hypergraph as follows:

I a unary potential for each node: u = {up}p∈V

I a higher-order potential for each hyperedge: h = {hc}c∈C

We want the potentials to be parameterized based on their features:

uk
p (yp|w) = w>φ(yp, xk )

hk
c (yc |w) = w>φc(yc , xk )

We can then denote the potential of training input k for Hypergraph G as:

EG(uk (yk |w), hk (yk |w)) :=
∑
p∈Vk

uk
p (yk

p ) +
∑
c∈Ck

hk
c (yk

c )

June 24, 2015 | CLAS TUD | Oleg Arenz | 16



Dual Decompositions for Max Margin Learning
Max Margin

Recall our primal objective

min
w

R(w) + C
∑

k

ξk

s.t. ∀y ξk ≥ EG(uk (yk |w), hk (yk |w))−
(
EG(uk (y|w), hk (y|w))−∆(y, yk )

)
Since we penalize

∑
k ξk , the optimal values ξ∗k satisfy

ξ∗k = EG(uk (yk |w), hk (yk |w))−min
(
EG(uk (y|w), hk (y|w))−∆(y, yk )

)
We will assume that the loss decomposes just like our potential.
Let ūk (y|w) and h̄k (y|w) be the loss-augmented potentials. Then

ξ∗k = EG(ūk (yk |w), h̄k (yk |w))−min EG(ūk (y|w), h̄k (y|w)) := Lk
G(w)

is a hinge loss.
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Dual Decompositions for Max Margin Learning
Unconstrainted Problem

Substituting ξ∗k in our primal objective we get an unconstrained optimization
problem:

min
w

R(w) + C
∑

k

Lk
G(w)

⇒ Max Margin Learning is regularized empirical loss minimization based on Lk
G(w).

Unfortunately, evaluating Lk
G(w) is NP-hard.

That’s why we need dual decomposition.
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Dual Decompositions for Max Margin Learning
Dual Decomposition

Idea:
I Decompose G into smaller sub-Hypergraphs Gi
I Solve the slave problems (min

y
EG1 , min

y
EG2 , ... )

I Approximate the solution of the master problem (min
y

EG)

G should be decomposed such that

V = ∪iVi and C = ∪iCi .

Gi inherit higher-order potentials but have own unary potentials, i.e.

EGi (u
i (y|w), h̄(y|w)) :=

∑
p∈V

ui
p(yp) +

∑
c∈Ck

h̄c(yc)

The unary potentials should satisfy∑
i∈Ip

ui
p(yp) = ūp(yp)
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Dual Decompositions for Max Margin Learning
Dual Decomposition

We then attain a lower bound on the master problem:∑
i

min
y

EGi (u
i (y), h̄(y)) ≤ min

y
EG(u(y), h̄(y))

Let’s choose the unary potentials such that the bound is as tight as possible:

DUAL{Gi}(u
k, h̄k) = max

uk ,i
1≤i≤N

∑
i

min
y

EGi (u
k ,i (y), h̄k (y))

s.t. ∀p∈V
∑
i∈Ip

ui
p = ūp
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Dual Decompositions for Max Margin Learning
The Unconstrained Problem (Again)

min
w

R(w) + C
∑

k

Lk
G(w)

Lk
g(w) = EG(ūk (yk |w), h̄k (yk |w))−min EG(ūk (y|w), h̄k (y|w))

≈ EG(ūk (yk |w), h̄k (yk |w))− max
uk ,i

1≤i≤N

∑
i

min
y

EGi (u
k ,i (y), h̄k (y))

= min
ui

1≤i≤N

(
EG(ūk (yk |w), h̄k (yk |w))−

∑
i

min
y

EGi (u
k ,i (y), h̄k (y)

)

= min
ui

1≤i≤N

∑
i

(
EGi (u

k (yk |w), h̄k (yk |w))−min
y

EGi (u
k ,i (y), h̄k (y)

)
= min

ui
1≤i≤N

∑
i

Lk
Gi

(w, uk ,i )
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Dual Decompositions for Max Margin Learning
Relaxed Problem

min
w,uk ,i

R(w) + C
∑

k

∑
i

Lk
Gi

(w, ui )

s.t. ∀p∈V ,k

∑
i :p∈Vi

uk ,i
p = ūp

The min in LGi is not differentiable, however the subgradient is easy

∇sub −min
y

EGi (u
k ,i (y), h̄k (y)) = ∇− EGi (u

k ,i (ŷk ,i ), h̄k (ŷk ,i ))

We can now learn w and uk ,i using their subgradients.
However, instead of updating uk ,i directly, we make use of an auxiliary variable

λk ,i
p = uk ,i

p −
uk

p

|Ip|

Such that the constraint maps to ∀p :
∑

i∈Ip
λk ,i

p = 0.
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Dual Decompositions for Max Margin Learning
Subgradients

The subgradients are given by:

∂ − EGi (u
k ,i (ŷk ,i ), h̄k (ŷk ,i ))
∂w

= −
∑
p∈Vi

φ̂p(ŷk ,i
p , xk )
Ip

−
∑
c∈Ci

φ̂c(ŷk ,i
c , xk )

∂ − EGi (u
k ,i (ŷk ,i ), h̄k (ŷk ,i ))

∂λk,i
p (l)

= −[ŷk ,i
p = l ]

However we still need to enforce the constraint.
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Dual Decompositions for Max Margin Learning
Projected Subgradient Descent

After each update, λk ,i
p has to be projected back to the convex, feasible set

Λ =
{
λk ,i

p

∣∣∣∑
i∈Ip

λk ,i
p = 0

}
Hence, after each update we have to subtract

∑
i∈Ip

λk ,i
p

|I|p
. The update then becomes

λk ,i
p (l)← λk ,i

p (l)− αtC
(
[yk

p = l ]− [ŷk ,i
p = l ]

)
−

∑
i∈Ip

λk ,i
p (l) + αtC

(
[yk

p = l ]− [ŷk ,i
p = l ]

)
|Ip|

= λk ,i
p (l)− αtC

(
[yk

p = l ]− [ŷk ,i
p = l ]−

∑
i∈Ip

[yk
p = l ]− [ŷk ,i

p = l ]

|Ip|

)

= λk ,i
p (l) + αtC

(
[ŷk ,i

p = l ]−
∑

i∈Ip
[ŷk ,i

p = l ]

|Ip|

)
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Dual Decompositions for Max Margin Learning
Choosing The Decompositions

We have two requirements on the decomposition:

1. The slave problems should be tractable

2. We want a good bound on the loss function

Some notes:
I The dual relaxation with Gsingle (one hyperedge per subgraph) corresponds to

the LP relaxation of the IP formulation
I For any decomposition better that Gsingle there will be one sub-hypergraph for

which the LP relaxation is not tight
I You can get better than Gsingle by including small loops
I different decompositions that yield the same loss may have different speeds of

convergence. E.g. for pairwise MRFs, Gtree will correspond to the same
relaxation as Gsingle but information can propagate faster.
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Dual Decompositions for Max Margin Learning
Experiments: Image Denoising

Approach:
I A pairwise model is assumed
I Unary potentials are known: up(`) = |`− Ip|
I Pairwise potentials should be learned: hpq(`p, `q) = V (|`p − `q|)
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Dual Decompositions for Max Margin Learning
Experiments: Image Denoising
Learned V
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Dual Decompositions for Max Margin Learning
Experiments: Image Denoising
Performance
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Dual Decompositions for Max Margin Learning
Experiments: Stereo Matching

Approach:
I A pairwise model is assumed
I Unary potentials are known: up(`) = |I left

p − Iright
p−`|

I Pairwise potentials should be learned: hpq(`p, `q) = f (|I left
p − I left

q |)[`p 6= `q ]
I A-priori knowledge that f should be decreasing is encoded using an additional

Projection on w
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Dual Decompositions for Max Margin Learning
Experiments: Stereo Matching
Learned V
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Dual Decompositions for Max Margin Learning
Experiments: Stereo Matching
Performance

I simple model yields larger disparity errors on middlebury dataset than SOTA
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Dual Decompositions for Max Margin Learning
Experiments: Knowledge Based Segmentation

Approach:
I generates n control points on the boundary of the known object
I pairwise cliques for the object boundaries
I triplet-cliques to learn sparse, pose-invariant shape priors
I one triplet-clique for each possible combination of three points
I two inner angles αc(yc) and βc(yc) as pose-invariant properties
I higher-order potentials are based on a probabilistic model

hc(yc) = −wc log pc(αc(yc),βc(yc))
I L1 regularization to learn sparse w
I dissimilarity function ∆(y, y′) is also zero if y ′ and y are connected by a

similarity transformation
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Dual Decompositions for Max Margin Learning
Experiments: Knowledge Based Segmentation
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Dual Decompositions for Max Margin Learning
Experiments: Knowledge Based Segmentation

June 24, 2015 | CLAS TUD | Oleg Arenz | 34



Dual Decompositions for Max Margin Learning
Experiments: Knowledge Based Segmentation
Performance

Learned w has only 5.6 percent non-zero elements.
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Recap

We looked at
1. Conditional Random Fields

I model conditional distribution p(Y|X)
I require inference for training/prediction

2. Maximum Margin Markov Networks
I concentrate on the decision boundary
I aim at maximizing the loss-augmented margin
I training can get feasible by replacing the dual variables by marginals
I specifying the constraints only feasible for simple potential/graph-structures

3. Efficient Max-Margin Learning with Dual Decompositions
I dual relaxation based on (almost) arbitrary graph decompositions
I loss function has to decompose over the graph
I How to decompose the graph?
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