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Abstract

This paper provides an overview of different approaches for handling extensive
games. It focuses on methods which are able to train game programs in the ab-
sence of domain knowledge and shows that such methods can be used successfully
in Poker, Chess and Go. Counterfactual regret minimization is able to approximate
a Nash equilibrium in heads-up limit Texas Hold’em. Search Bootstrapping can
reach the strength of a strong amateur chess player by tuning the heuristic function
towards the result of a tree search of a given depth. Monte-Carlo Tree Search uses
random simulations to find the most promising move in Go. It can be observed
that the performance of these methods heavily depends on game type.

1 Introduction

Techniques which allow machines to play games with human-like strength - or even better - can
help create autonomous systems capable of fulfilling complex tasks in real world scenarios. Exten-
sive games and games with incomplete information are particularly interesting for AI research as
they demand making decisions which can not be proven best due to computation limitations or lack
of information and thus reflect problems which are often encountered in practice. Additionally, as
domain knowledge might be unavailable or incomplete, machine learning might be required. Sev-
eral different approaches proved successful in increasing the playing strength through self learning
in complex games as chess, go or poker. It could be observed that the effectiveness of these ap-
proaches is depending on the type of the game.
A common approach in the game of poker is to find a strategy for each player so that no player
would profit by changing his strategy if the other players stick to theirs. Such a situation is called
Nash equilibrium. A Nash equilibrium can be approximated through self play by minimizing the
regret of each player independently. In chapter 2 a concept called counterfactual regret minimization
is explained which decomposes regret into different additive regret terms which can be minimized
independently.
In the game of chess Minimax search is the fundamental concept used by all of the strongest chess
programs. Minimax requires a heuristic evaluation function which usually assigns a positive score
for positions which are believed to favor the white player and a negative score for positions which
are believed to favor the black player. Bigger absolute values signify bigger advantages for the corre-
sponding side. Minimax first creates a game tree with a fixed depth and uses the heuristic to evaluate
the positions of the leaf nodes. Then the score of the leaf node which is reached by always choosing
the move that maximizes the minimum guaranteed score if white is to move and minimizes the max-
imum guaranteed score if black is to move is used as the evaluation of the root position. Alpha-beta
search significantly improves Minimax by storing bounds for both the guaranteed maximum score
of the black player and the guaranteed minimum score of the white player and uses this information
to cut off branches which can not be reached by best play from both sides. A method called search
bootstrapping can be applied to tune the heuristic function towards the result of a standard minimax
or alpha-beta search of a given depth. Minimax search, alpha-beta search and search bootstrapping
are presented in chapter 3.
In the game of go, random simulations are used to find the move that statistically scores best in a
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given position. Chapter 4 presents such a sampling based approach called Monte-Carlo Tree Search
and an improvement to it called UCT. UCT was used to create the strong go engine MoGo [5].

2 Counterfactual Regret Minimization

One way to handle the large amount of game states in extensive games is by using abstractions.
Different game states are grouped together and every state of the same group is treated the same
way. By reducing the number of game states which have to be considered these abstractions be-
come solvable. The solution of an abstract game is in general better for the actual game, the fewer
game states were grouped together. In [11] the concept of Counterfactual Regret Minimization was
introduced and shown to solve 1012 game states in the game of poker, which is by two orders of
magnitude larger than previous methods. Before explaining this concept, the following terms have
to be formally defined:

• Information Set: An information set Ii is a set of non-terminal sequences of actions with
the property, that for every sequence within the same set, player i is to act next and has the
same actions available. All information sets are pairwise disjoint.

• Strategies: A strategy of player i, σi, assigns for each information set Ii a probability
distribution over the available actions of Ii. Σi is the set of strategies of player i. A strategy
profile σ assigns a strategy to each player. The strategy profile σ−i assigns a strategy to
each player except player i.

• Utility: The utility function ui(z) from a terminal state z ∈ Z to the reals R assigns for
each player i ∈ N their winnings.

∑
i

ui(z) = 0, in a zero-sum game.

• Nash Equilibrium:
A Nash equilibrium of a two-player game is a strategy profile σ where

u1(σ) ≥ max
σ′1∈Σ1

u1(σ′1, σ2)

u2(σ) ≥ max
σ′2∈Σ2

u2(σ1, σ
′
2).

An ε-Nash equilibrium in a two player game is a strategy profile σ where

u1(σ) + ε ≥ max
σ′1∈Σ1

u1(σ′1, σ2)

u2(σ) + ε ≥ max
σ′2∈Σ2

u2(σ1, σ
′
2).

• Regret: If player i uses strategy σti on round t the average overall regret of player i at Time
T is:

RTi =
1

T
max
σ∗i ∈Σi

T∑
t=1

(ui(σ
∗
i , σ

t
−i)− ui(σt))

An algorithm is regret minimizing for player i if his average overall regret goes to zero as
t goes to infinity. Regret minimizing algorithms can be used to approximate Nash equilib-
rium.

2.1 Counterfactual Regret

The idea of counterfactual regret minimization is to minimize regret terms for each information
set independently. In order to achieve this goal immediate counterfactual regret RTi,imm(I) was
introduced, which can be minimized by changing only σi(I). Define counterfactual utility ui(σ, I)
to be the expected utility, if all players play according to σ except that player i is playing to reach
I . For all available actions a in I define σ|I→a to be identical to σ except that player i always
choses action a when I is reached. Furthermore, let πσ

t

−i(I) be the probability that information set i
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is reached if all players except player i, by playing according to strategy σt, would always choose
actions leading to information set I . Then the immediate counterfactual regret is defined as

RTi,imm(I) =
1

T
max
a∈A(I)

T∑
t=1

πσ
t

−i(I)(ui(σ
t|I→a, I)− ui(σt, I)).

This is the player’s regret by playing according to σt in I instead of choosing the best action,
weighted by the probability that I would be reached in that round if he had tried to do so. Counter-
factual regret RTi (I, a) is defined for every information set I and for all actions a ∈ A(I) as

RTi (I, a) =
1

T

T∑
t=1

πσ
t

−i(I)(ui(σ
t|I→a, I)− ui(σt, I)).

The following theorems demonstrate both that counterfactual regret can be minimized and that coun-
terfactual regret minimization also minimizes regret.
Let ∆u,i = maxz ui(z) − minz ui(z) be the range of utilities to player i and let RT,+i (I, a) =
max(RTi (I, a), 0) be the positive portion of counterfactual regret. Let |Ii| be the amount of in-
formation sets Ii. Finally let |Ai| be the maximum amount of actions available to player i in any
information set.
Theorem 1.

RTi ≤
∑
Ii

RT,+i,imm(Ii)

Theorem 2. If player i selects actions according to

σT+1
i (I)(a) =


RT,+

i (I,a)∑
a∈A(I) R

T,+
i (I,a)

if
∑
a∈A(I)R

T,+
i (I, a) > 0

1
A(I) otherwise

then RTi,imm(I) ≤ ∆u,i

√
|Ai|/

√
T and consequently RTi ≤ ∆u,i|Ii|

√
|Ai|/

√
T

For both theorems proof is given by the original paper [11].

2.2 Application to Poker

Counterfactual regret minimization was applied to heads-up limit Texas Hold’em (zero-sum with
four rounds of cards dealt and four rounds of betting. This variant of poker has still about 1018

different game states. It was shown in [11] that it was possible to solve abstractions with 1012

game states, which is by two orders of magnitude larger than previous methods. The resulting
poker playing program was able to beat all competitors from the bankroll portion of the 2006 AAAI
Computer Poker Competition [12].

3 Search Bootstrapping

A common method to incorporate domain knowledge in game playing programs is to create an
evaluation function which tries to calculate the outcome of the game by examining only the current
game state. The game of chess has three possible outcomes: White wins, Black wins or the game is
drawn. An evaluation function, which could calculate the outcome perfectly would be able to solve
the game by only evaluating the resulting positions for each move in the current game state. In Chess
finding such a perfect evaluation function is too difficult in practice, as the amount of needed domain
knowledge is too large. Instead, heuristic evaluation functions are used, which usually estimate the
advantage of White by assigning a score to the position in centipawns. A score of -100 centipawns
corresponds to the advantage black would have if the position was equal, besides that he would have
an extra pawn. The heuristic value can be calculated by a linear combination of weighted features
of the position. Important features in chess are material balance, activity of the pieces, king safety
and the strength of the pawn formation. Although the strongest chess programs use heavily tuned
heuristic functions, these heuristics would not suffice to find reasonable moves by only evaluating
the next resulting positions. Nevertheless these chess programs can beat even the strongest human
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chess players by using the heuristic function for a depth-limited game tree search. Minimax and
Alpha-Beta are the two fundamental algorithms for this kind of tree search. After explaining both
algorithms we will look at a concept called search bootstrapping, which tunes the heuristic function
towards a Minimax or Alpha-Beta search of a given depth D.

3.1 Minimax Search

Choosing the move only on the basis of the heuristic evaluations of the next positions did not give
satisfying results, as the heuristic functions do not provide sufficiently accurate evaluations, espe-
cially due to tactical combination. Minimax [3] search evaluates all positions which could arise after
a certain number of moves. Therefore it creates a game tree with a depth D, which corresponds to
this number of moves. Minimax is able to find the path of best play by both player in respect to
the leaf node evaluations. The algorithm works by propagating the leaf node evaluations to the root
node layer-wise. For all nodes within the same layer the same side is to move. If white is to move
for the current layer, Minimax assigns to each node within the layer the maximum of the scores
of its children if black is to move the minimum is used respectively. Therefore White is called the
maximizing player and Black is called the minimizing player. The value, which was propagated to
root node can be used as the evaluation of the root position; the path taken to propagate this value,
is the path of best play by both sides.

3.2 Alpha-Beta Search

Alpha-Beta [9] search is a crucial improvement of Minimax and is used by all of the strongest
chess engines currently available. Alpha-Beta always finds the same path as Minimax but does not
necessarily need to evaluate all nodes in the game tree. The fundamental idea of the algorithm is
as follows: Imagine that for a given node in the game tree the side to move was able to reach the
score s1 by playing move m1. If, by examining a different move m2 from the same node, Minimax
finds a reply leading to score s′2 which is worse for the side to move than s1, the move m2 can be
discarded without examining other replies. Alpha-Beta uses two additional variables than Minimax:
α is initially set to −∞ and updated during search to the minimum score white is able to reach, β is
initially set to∞ and updated to the maximum score black needs to allow. Alpha-Beta profits from
good move ordering; if strong moves are examined earlier, the α-β-window shrinks faster leading
to more cut-offs.

3.3 Search Bootstrapping

Search Bootstrapping [10] tunes the heuristic function towards the result of a Minimax or Alpha-
Beta search of depth d. If the evaluation of the tuned heuristic function was able to assign to every
position the same score as the Minimax search, a depth k search with the tuned heuristic would
produce the same results as a depth k + D search with the original heuristic. In theory a search
with the tuned heuristic could be used to further tune the heuristic function, and so on. However,
tuning a heuristic function to exactly match the result of a tree search is an unrealistic goal, as the
search can not be applied to every possible game state in an extensive game. Furthermore, the
possible parameter settings of the heuristic function are limited. Nevertheless, the concept of search
bootstrapping was successfully used to train a chess engine called Meep up to the strength of strong
human chess player by self-play [10].

Meep was used with two different search bootstrapping algorithms, RootStrap and TreeStrap,
both algorithms can be used with Minimax and Alpha-beta search. The explanation of these
algorithms will use the following definitions:

• A heuristic function Hθ(s) assigns a value to a state s, based on a parameter vector θ.

• V Ds0 (s) denotes the value of state s from a minimax search of depthD which started in state
s0.

• θ← notates a backup that updates a heuristic function towards some target value.
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3.3.1 RootStrap

The RootStrap algorithm updates the heuristic value of the root node towards a depth D Minimax
search:

Hθ(st)
θ← V Dst (st)

The parameters are updated by gradient descent on the squared error between the heuristic value and
the Minimax search value:

δt = V Dst (st)−Hθ(st)

∆θ = −η
2
∇θδ2

t = ηδt∇θHθ(st)

where η is a step-size constant. By using a heuristic function of the form Hθ(s) = φ(s)T θ, with the
feature vector φ(s) and the weighting vector θ, the equation can be further simplified to:

∆θt = ηδtφ(st)

This algorithm needs no modifications to work with Alpha-Beta search instead of Minimax.

3.3.2 TreeStrap

TreeStrap updates the heuristic function for all nodes of the Minimax search tree, instead of only
updating the root node:

Hθ(s)
θ← V Dst (s),∀s ∈ TDst

where TDst is the set of all states within the game tree of a depth D Minimax search starting in state
st.
The following update function was used for TreeStrap(minimax):

δt(s) = V Dst (s)−Hθ(s)

∆θ = −η
2
∇θ

∑
s∈TD

st

δt(s)
2 = η

∑
s∈TD

st

δt(s)φ(s)

The TreeStrap algorithm was also modified to work with Alpha-Beta search by using a one-sided
loss function and by exploiting transposition tables. This modification is omitted here for simplicity,
but can be found in the original paper [10].

3.4 Application to Chess

TreeStrap(αβ), TreeStrap(minimax) and RootStrap(αβ) were also tested in [10]. The algorithms
were implemented in Meep, a modification of the tournament chess engine Bodo. For testing pur-
poses the parameters of the heuristic function were initially set to small random numbers and then
updated by self-play. After training a freely available program called BayesElo was used to com-
pute maximum likelihood Elo ratings. TreeStrap(αβ) performed best with a playing strength of
approximately 2157 Elo. TreeStrap(minimax) was able to reach approximately 1807 Elo and
RootStrap(αβ) reached about 1362 Elo. The playing strength of an untrained heuristic with ran-
dom parameters was estimated to be 250 Elo.

4 Monte-Carlo Tree Search

Monte-Carlo methods in game playing do not depend on a heuristic function as they use the results
of randomly simulated games to evaluate possible moves. A basic way of using the Monte-Carlo
method for game playing could have the following characteristics:

• All possible moves in the root position are chosen equally often.
• The resulting positions are simulated randomly and the outcome of each simulation is used

to update the empirical winning rate of the corresponding first move.
• When the algorithm stops, the move with the best winning rate is played.
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Figure 1: The four steps of Monte-Carlo Tree Search. Diagram taken from ”Cross-Entropy For
Monte-Carlo Tree Search”, Chaslot et.al 2008 [6].

Although this algorithm is very basic it shows two benefits of Monte-Carlo methods in game playing:

1. Besides the game rules, no further domain knowledge is required.

2. The algorithm is anytime, i.e. whenever it is stopped it can suggest a move by making full
use of all simulations done so far.

However, in this basic form the method has two main drawback. The first drawback is actually a
critical weakness: imagine a movem1 which leads to a position with ten different moves available to
the opponent. Further image, that for nine of those replies the opponent would be losing immediately
and by playing the remaining reply the opponent would immediately win. After sufficient iterations
the basic Monte-Carlo method would estimate a winning chance of about 90% form1. When playing
against a good opponent, however, m1 would always lose. The second drawback results from the
fact, that it is not optimal to spend as much time in examining bad moves as in examining good
moves.
A more sophisticated way to apply the Monte-Carlo method to game playing is called Monte-Carlo

Tree Search (MCTS) [4]. MCTS can solve these drawbacks while keeping the mentioned benefits
of the basic Monte-Carlo method. In the game of go, programs based on MCTS turned out to
outperform programs based on Minimax. The MCTS algorithm gradually adds nodes to the game
tree in an asymmetric best-first manner and stores for each node the number of visits and the overall
utility. In the following explanation of the algorithm the score reached by the white player is used as
the utility for all nodes and therefore the utility is independent of the side to move. Hence, the best
scoring move in a position is to be understood as the move with the least utility if Black is to move.
This is similar to the Minimax approach described above. However, because we store the utilities for
every node independently - opposed to Minimax, where initially only the leaf nodes store a utility -
we can make the correct decisions by just comparing the utilities of the child nodes. MCTS can be
divided into four different phases:

1. Select: The selection phase starts in the root node and recursively chooses a child node until
a node is reached, which has more valid moves than edges in the current game tree. The
selection strategy should prefer moves which scored well in the previous iterations over
moves which scored badly (exploitation). On the other hand it should prefer moves which
have been visited less often over moves which have been visited more often (exploration)
in order to estimate their real score better. Both goals are contradicting, which is called the
exploration-exploitation dilemma in the multi-armed bandit problem [2]. A good strategy
to solve this dilemma is shown in the section about UCT.

2. Expand: After a node was selected it is expanded by adding a child node to it. The child
node represents the resulting position after making a random legal move which was not yet
represented in the game tree.
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3. Simulate: The position corresponding to the newly created child is simulated, by making
random moves until a terminal game state is reached.

4. Update: After the simulation, all nodes visited in the selection phase as well as the node
which was created in the expansion phase are updated by increasing their number of visits
by 1 and increasing their overall utility depending on the result of the simulation. In case
of a win by White the overall utility is increased by 1; in case of a draw it is increased by
0,5; in case of a win by Black the overall utility remains unchanged.

MCTS prefers moves which scored well over moves which scored badly and therefore creates an
asymmetrical game tree, where more time is spent in analyzing good moves.
If a move allows the opponent to play a strong reply, this reply will be selected more often than other
replies and the score of the initial move will therefore decrease.

4.1 UCT

The idea of applying an algorithm from the multi-armed bandit problem [2] for Monte-Carlo Tree
Search was examined in [7]. The bandit algorithm UCB1 was used to formulate a new algorithm
called UCT (UCB applied to trees). UCT selects the next child, based on the following formular:

ichosen = arg max
i∈1,...,K

(
ui
ni

+

√
2 lnn

ni
)

where ui is the utility of child i, ni is the number of visits of child i, n is the number of iterations
done so far (which equals the number of visits of the root node), K is the number of childs of the
current node and ichosen is the chosen child.

4.2 Application in Go

UCT was used to create the top level Go program Mogo [5]. The most notable improvements used
to create Mogo are:

• Mogo uses UCB1-TUNED [1] instead of UCB1.

• Domain knowledge was used to create more meaningful simulations by using patterns to
find local answers to the last played move.

• Pruning was used to reduce the tree size.

4.3 Future Work

UCT did not yield as good results in Chess as in Go. [8] identifies shallow tactical threats, which
occur more often in Chess than in Go, as one reason for the bad performance of UCT in Chess. How-
ever, creating a chess program based on UCT which uses the improvements used by the strongest
UCT based Go engines, might provide further insights into the strengths and weaknesses of both
approaches. An interesting idea to improve UCT for chess programs is by exploiting the fact that
chess endgames with only few pieces left have already been solved. N -piece endgame tablebases
can be queried to get the best-play result of any chess position withN pieces left on the board. While
Minimax is not able to make big use of endgame tablebases if two many pieces are remaining, UCT
would profit by shorter simulations. Therefore, the simulations would be both faster (assuming that
querying the tablebase is faster than simulating the endgame) and more accurate (as the N -piece
endgame could not be misplayed in the simulation).

5 Conclusion

Due to their large state space, extensive games can not be solved by exhaustive search. Nevertheless
strong computer players have been already developed for Poker, Chess and Go. This paper focused
on approaches which can be used to increase the playing strength of computer programs by self-play.
Counter-factual regret minimization is able to minimize overall regret by minimizing the regret for
each information set independently. It uses self-play to approximate an Nash-equilibrium in Poker.
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Search Bootstrapping is able to find good parameters for a heuristic function by shifting the heuristic
towards aD-depth Minimax or Alpha-Beta Search. This method was used by the chess engine Meep
which was able to reach playing at the strength of a strong club player by self-play. Monte-Carlo
Tree Search simulates possible game continuation in order to find the most promising move. The go
engine Mogo was able to beat all previous go engines by employing Monte-Carlo Tree Search.
Interestingly, the performance of these methods heavily depends on the game they are used for. It
is remarkable, that although Chess and Go are both two-player games with full information, Monte-
Carlo Tree Search could not be used to create a good chess engine. On the other hand, Minimax did
not lead to good go engines. The reasons for theses difference are not fully explored yet.
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