
Locally Weighted Learning

Peter Englert
Department of Computer Science

TU Darmstadt
englert.peter@gmx.de

Abstract

Locally Weighted Learning is a class of function approximation techniques, where
a prediction is done by using an approximated local model around the current
point of interest. This paper gives an general overview on the topic and shows two
different solution algorithms. Finally some successful applications of LWL in the
field of Robot Learning are presented.

1 Introduction

The goal of function approximation and regression is to find the underlying relationship between
input and output. In a supervised learning problem training data, where each input is associated
to one output, is used to create a model that predicts values which come close to the true func-
tion. One basic approach for solving this problem is to build a global model out of labeled training
data. Examples for global methods are Support Vector Machine, Neural Networks and Gaussian
Process Regression. All of these methods have in common that they use the complete training data
for creating a global function. This approximated function is used to predict values that come close
to the corresponding true value of the original function. A disadvantage of global methods is that
sometimes no parameter values can provide a sufficient good approximation. Furthermore, the com-
putational costs are for some tasks very high, i.e., if the task needs many predictions in short time
or the model is extended incrementally. An alternative to global function approximation is Locally
Weighted Learning (LWL) [2]. LWL methods are non-parametric and the current prediction is done
by local functions which are using only a subset of the data. The basic idea behind LWL is that
instead of building a global model for the whole function space, for each point of interest a local
model is created based on neighboring data of the query point (cf. figure 1). For this purpose each
data point becomes a weighting factor which expresses the influence of the data point for the pre-
diction. In general, data points which are in the close neighborhood to the current query point are
receiving a higher weight than data points which are far away. LWL is also called lazy learning,
because the processing of the training data is shifted until a query point needs to be answered. This
approach makes LWL a very accurate function approximation method where it is easy to add new
training points.

In this paper, I will describe the general LWL solution method that can solve the function approx-
imation problem accurately. Two different widely used algorithms are described in more detail.
Afterwards, two applications in the field of robot learning are presented where LWL algorithms
have been successfully applied.

2 Locally Weighted Learning

In the following paper a standard regression model like

y = f(x) + ε (1)

1



query point

Figure 1: Example of Locally Weighted Learning, containing in the upper graphic the set of data
points (x,y) (blue dots), query point (green line), local linear model (red line) and prediction (black
dot). The graphic in the middle shows the activation area of the model. The corresponding weighting
kernel (receptive field) is shown in the bottom graphic.

is assumed with a continuous function f(x) and noise ε. The basic cost function of LWL is defined
as

J =
1

2

n∑
i=1

wi(xq)(yi − xiβq)2 (2)

with the components:

- Labelled training data D = {(xi, yi)|i = 1, 2, ..., n} where each data point xi belongs to
a corresponding output value yi.

- Point of interest xq (also called query point), which is the position where we want a pre-
diction ŷq .

- Weights wi describe the relevance of the corresponding training set (xi, yi) for the cur-
rent prediction. They are dependent on the query point and are computed by a weighting
function.

- Regression coefficient βq of our linear model, which we want to obtain for doing the
prediction.

The goal is to find a βq that minimizes equation (2) for the current query point xq . An important
difference to global least square methods is that βq is dependent of the current query point. One of
the most important part of LWL is the way how the weights wi are computed. The computation of
a weight can be separated in to two steps [2]:

I Distance function d(xi, xq): Measures the relevance of training points for the current pre-
diction. The distance function needs two input objects and returns a number (i.e. euclidean
distance d =

√
(x− q)D(x− q) with distance metric D). The distance metric D is a very

important parameter that describes the size and shape of the receptive field.

II Weighting function (Kernel function) K(d): Computes for each distance value a cor-
responding weight wi (i.e. K(d) = exp (−d2)). The smoothness of the used kernel will
influence the smoothness of the output function. Some kernel functions will converge com-
pletely to zero. This property can can be used for decreasing the computational costs by
ignoring all points with zero weight.

2



One advantage of LWL is the possibility to switch very easily between different weighting functions.
There are two major categories in which you can split up LWL algorithms. The first category are
memory-based LWL methods where all training data is kept in memory. The second category are
purely incremental LWL methods that do not need to remember any data explicitly. One method of
each category is described in the following sections.

2.1 Memory-Based Locally Weighted Regression

Locally Weighted Regression (LWR) is the classic approach to solve the function approximation
problem locally [2]. It is also called Memory-Based Learning, because all training data is kept in
memory to calculate the prediction. The single steps of LWR are outlined in algorithm 1 [4]. This
algorithm has a complexity of O(n2) where n are the number of training points. The column of

Algorithm 1 Memory-Based Locally Weighted Regression
Given:

• query point xq
• n training points {xi, yi}

Prediction:
• Build matrix X = (x̂1, x̂2, ..., x̂n)

T where x̂i = [xTi 1]T

• Build vector y = (y1, y2, ..., yn)
T

• Compute diagonal weight matrix W :

wi,i = exp

(
−1

2
(xi − xq)TD(xi − xq)

)
• Calculate Regression coefficient:

βq = (XTWX)−1XTWy (3)

• Predict
ŷq = [xTq 1]βq

ones is added to the Matrix X due to the offset parameter of the linear regression. The regression
coefficient (3) is obtained in a closed form solution by setting the first derivative of equation (2) to
zero. Algorithm 1 has to be executed once for each query point and the local model is discarded
after each prediction. The only open parameter remaining is the distance metric D, which describes
the size and shape of the receptive field. It is usually chosen as a diagonal matrix. To reduce the
number of open parameters, D can be constructed as D = hdiag([n1, n2, ..., nn]) with a scaling
parameter h. The ni are normalizing the range of the corresponding input space. Then there is only
one open parameter h to estimate. This can be done by leave-one-out cross-validation, as described
in algorithm 2 [4]. Figure 1 shows an example of one prediction with LWR. The advantages of
LWR are the high accuracy due to the local model and the few open parameters that have to be
obtained. Extensions of LWR can include a ridge regression formulation to increase stability, an
outlier removal technique for higher accuracy and the arrangement of the training data in k-d trees
for lower computational costs [2].

2.2 Locally Weighted Projection Regression

Locally Weighted Projection Regression (LWPR) is a purely incremental LWL method [6][8]. It
was developed to solve two major problems that exists with memory-based methods like LWR.
One of them are the cost intensive computations of LWR with high dimensional data that increase
quadratically. This makes the algorithm unusable for tasks that need many predictions in small
time steps. Another problem of LWR is that the matrix inversion in algorithm 1 for obtaining the
regression coefficient cannot handle redundant input dimensions and can become singular.

Instead of throwing away the model after each prediction like in LWR, LWPR is keeping each
model for further predictions in memory. It uses multiple locally weighted linear models which are
combined for approximating non-linear functions (cf. fig 2). Adding new data points requires only
an update to the existing models or the creation of a new model if there is no trustworthy model

3



Algorithm 2 Leave-one-out cross-validation
Initialize:

• Define a set of m reasonable values for h: H = (h1, h2, ..., hm)

Algorithm:
• for k = 1 : m do

hact = hk
sek = 0 {# squared error of current candidate}
for i = 1 : n do

set query point xq = xi
remove training point (xi, yi) temporally from training data
compute LWR [alg. 1] with hact on the remaining training data to obtain ŷq
sek = sek + (yi − ỹq)2

end for
• end for
• choose the scaling factor h∗ with the associated minimal squared error

available. This makes it unnecessary to save large training data in the memory, because the models
are updated incrementally. Furthermore, LWPR is using an online version of the dimensionality
reduction method Partial Least Squares (PLS) to handle redundant and irrelevant input data. The
goal of PLS is to reduce the dimensionality locally to find optimal local projections and eliminate
subspaces of the input space that minimally correlate with the output. This ensures that redundant
and irrelevant input dimensions are ignored.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

X

W
e
ig

h
t

Figure 2: Example for Locally Weighted Projection Regression (LWPR), containing in the upper
graphic the data points (x,y) (blue dots) and the local linear models (red lines). The bottom graphic
shows the Receptive Fields which show the activation weight of the corresponding model.

Each local linear model is described by
yk = βks (4)

where s is the lower dimensional projected input (also called latent variable) from x and βk is the
regression coefficient. The latent variable s is computed by mapping the input x along a projection
directions u

s = uTx (5)
The prediction is done by combining multiple locally weighted linear models

ŷ =

∑K
k=1 wkŷk∑K
k=1 wk

(6)

and the activation weight wk of each model is computed using a Gaussian Kernel

wk = exp

(
−1

2
(x− ck)TDk(x− ck)

)
(7)

4



The weight wk describes the area of validity where the model is active, also known as receptive field
(RF). The fixed center of the model is ck and the size and shape is described by the distance metric
Dk. The models are updated with each training example incrementally. Algorithm 3 describes the
update for one local model, the complete LWPR is described in algorithm 4 and a prediction is done
by executing algorithm 5 [7]. The value wgen is a minimum activation threshold for a receptive

Algorithm 3 LWPR Model Update (for one local model)
Input:

• training point (x, y)
Update mean:

• xn+1
0 =

λWnxn0 + wx

Wn+1
βn+1
0 =

λWnβn
0 + wy

Wn+1

where Wn+1 = λWn + w x00 = 0 u0r = 0 β0
0 = 0 W 0 = 0

Update model:
• z0 = x− xn+1

0 res0 = y − βn+1
0

• for r = 1 : R do
un+1
r = λunr + wzr−1resr−1 {# determine projection}
sr = sTr−1u

n+1
r {# project input data}

SSn+1
r = λSSn

r + ws2r {# memory term}
SRn+1

r = λSRn
r + ws2rresr−1 {# memory term}

SZn+1
r = λSZn

r + wzr−1sr {# memory term}
βn+1
r = SRn+1

r /SSn+1
r {# univariate regression}

pn+1
r = SZn+1

r /SSn+1
r {# regress input data against current projection}

zr = zr−1 − srpn+1
r {# reduce input space}

resr = resr−1 − srβn+1
r

MSEn+1
r = λMSEn

r + wres2i {# Mean Squared Error}
• end for

Algorithm 4 LWPR
Initialize LWPR with no Model
for each new training example (x,y) do

for all Local Models do
compute activation weight w from eq.7
update model according to algorithm 3
check if number of projections R needs to be increased

end for
if no local model was activated above wgen then

create new Receptive Field with R = 2, c = x
end if

end for

Algorithm 5 LWPR Prediction
Input:

• query point xq
Initialize:

• xq = xq − x0 ŷ = β0
Prediction:

• for r = 1 : R do
sr = uTr xq {# compute latent variable}
ŷq = ŷq + srβr {# update prediction}
xq = xq − srpnr {# reduce input space}

• end for

5



field to estimate if it is trustworthy for the current prediction. λ is a forgetting rate which weights
training points earlier recorded down. This is useful for systems that change over time. R defines
the number of projections that is used by PLS and is initialized with 2. The algorithm uses the mean
squared error (MSE) to determine if the number of projections R has to be increased. If the factor
MSEr+1

MSEr
is below a threshold, between 0 and 1, adding new projections is stopped. One of the major

problems in LWL is to determine the region of validity D in which a local model can be trusted.
In LWPR it is possible to optimize Dk for every local model individually with a gradient descent
update of D based on stochastic leave-one-out cross-validation [3]. The complete LWPR algorithm
reaches a complexity of O(n).

LWPR is a method that is well suited for tasks with high-dimensional data, redundant input dimen-
sions and continuous data streams. The biggest strength of LWPR is the combination of the high
accuracy of the prediction and the low computational costs through the model structure and the di-
mensionality reduction with PLS. Another advantage is the adaption over time, which is useful when
the system changes over time.

3 Applications

Locally Weighted Learning has been used in a wide range of application areas. In the following
section two applications in the field of robot learning are described. LWL is well suited for robot
tasks because it can handle continuous input streams very well and it approximates the input space
with local models only on the positions that are relevant for the current task.

3.1 Billiards

One application where Locally Weighted Regression (sec. 2.1) has been applied to, is a billiard
playing robot scenario [1]. Figure 3 shows the basic setup consisting of a small billiard table and
a robot with a cue. The robot has a spring actuated cue and one rotatory joint that allows him to
swivel around the table. They used two cameras as sensors, one on the ceiling looking down to the
table and another one is positioned on the robot looking along the cue direction. Further parts of the
setup are two billiard balls. The cue ball gets hit by the cue and the object ball has to be sank into
one of the pockets. One restriction was that the cue ball has to be for each shot on the same initial
position.

Figure 3: Setup of the billiard task (taken from [1]), containing the billiard table, the robot and two
balls (left) and the aiming procedure of the camera mounted on the robot (right). The cross have to
overlap with the line to reach the desired action.

As training data for LWR they have used the input state x = (xaboveobject, y
above
object) which is the position

of the object ball tracked by the camera from above. The action u is the starting position xcueobject of

6



the cue at the beginning of the shot and is described by the view of the robots camera (see fig. 3
(right)). The output is the position b where the object ball hits the cushion first (cf. fig. 4) which is
tracked by the top camera. This implies an update of the training data in memory with

(xaboveobject, y
above
object, x

cue
object)→ b

where 3 input and 1 output parameter are used.

The standard procedure for performing one shot is:

1. Put the object ball to a random position on the one half of the table. Set the cue ball to its
fixed start position.

2. Create an action u out of the position of the tracked object ball x with a combined inverse
and forward model. The inverse model is used to receive a good initial starting point for
the following search with steepest descent over the forward model.

3. Perform the shot with the selected u and track the trajectory of the ball with the camera.

4. Update the model with one training pair.

They have used locally weighted regression for both models with an outlier removal technique. The
kernel width was determined with cross validation. Duration of the control choice was around 0.8
seconds on a Sun-4. Figure 4 (right) shows the learning rate of this task. It can be recognized that

Figure 4: Trajectory of the balls (taken from [1]) recorded from the upper camera (left) and the
success rate (right).

the highest success rate 80% was received after 115 experiences. This rate can be interpreted as
a very good result for such an easy setup in a high precision task with only one output parameter.
Causes for unsuccessful shots have been identified in outliers and visual tracking errors. Due to the
random position of the object ball, there also have been some shots that were extremely difficult to
perform.

3.2 Inverse Dynamics Learning

Another successful application of LWL is the online learning of an robots inverse dynamics model
[3] [4] [7]. An Inverse dynamics model describes the mapping of the joint positions, velocities
and accelerations to corresponding motor torque commands. LWPR (sec. 2.2) is well suited for
learning the inverse dynamics, because it can handle high dimensions and it can predict values in
real time which is necessary for the fast execution of commands. One example can be found in [7]
where LWPR is used to learn the inverse dynamics of a 7 degree of freedom anthropomorphic robot
arm. The learning was done with 21 input dimensions (position, velocity, acceleration) and 7 output

7



dimensions (torque). For each joint one LWPR system was used with a special neighbor structure
of the local models to speed up the algorithm. The robot task was to perform a desired figure-8
pattern Xdes in front of his body (fig. 5) with its end effector. Xsim is the trajectory performed in a
simulation with a perfect inverse dynamics model, Xparam is the performance obtained with a rigid
body dynamics model and Xlwpr shows the results of LWPR after learning. Figure 5 (right) shows
the development of the result after 10, 20, 30 and 60 seconds. The learning process started without
any inverse dynamics model and converges after 60 seconds of learning very close to the desired
pattern. This example shows the high accurate predictions and the fast learning rate of LWPR.

Figure 5: Result of LWPR (taken from [7]) in comparison to other methods (left) and the learning
speed of LWPR (right) after 10, 20, 30 and 60 seconds.

4 Conclusion

This paper gave an general overview on algorithms and applications of Locally Weighted Learning.
The classic method Locally Weighted Regression was introduced which is well suited for tasks that
need very accurate predictions. Restrictions for this method are high dimensional and redundant
input spaces. Incremental methods like Locally Weighted Projection Regression solve those restric-
tions. Through dimensionality reduction techniques and an incremental model update it is possible
to use LWPR in real-time tasks with high dimensions. Nevertheless, some parameters still have to
be selected manually. Current research focuses on a full Bayesian treatment of Locally Weighted
Regression to avoid cross validation and manual parameter tuning [5]. Finally it can be said that
Locally Weighted Learning provides some powerful methods that are well suited for many differ-
ent tasks and the results are comparable to current state of the art global function approximation
methods.

8



References

[1] C.G. Atkeson, A.W. Moore, and S. Schaal. Locally weighted learning for control. Artificial
Intelligence Review, 11(1):75–113.

[2] C.G. Atkeson, A.W. Moore, and S. Schaal. Locally weighted learning. Artificial intelligence
review, 11(1):11–73, 1997.

[3] S. Schaal, C.G. Atkeson, and S. Vijayakumar. Real-time robot learning with locally weighted
statistical learning. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Interna-
tional Conference on, volume 1, pages 288–293. IEEE, 2000.

[4] S. Schaal, C.G. Atkeson, and S. Vijayakumar. Scalable techniques from nonparametric statistics
for real time robot learning. Applied Intelligence, 17(1):49–60, 2002.

[5] J.-A. Ting, S. Vijayakumar, and S. Schaal. Locally weighted regression for control, pages 613–
624. Springer, 2010.

[6] S. Vijayakumar, A. D’souza, and S. Schaal. Incremental online learning in high dimensions.
Neural Computation, 17(12):2602–2634, 2005.

[7] S. Vijayakumar, A. D’souza, T. Shibata, J. Conradt, and S. Schaal. Statistical learning for
humanoid robots. Autonomous Robots, 12(1):55–69, 2002.

[8] S. Vijayakumar and S. Schaal. Locally weighted projection regression: An o(n) algorithm for
incremental real time learning in high dimensional space. In Proceedings of the Seventeenth In-
ternational Conference on Machine Learning (ICML 2000), volume 1, pages 288–293. Citeseer,
2000.

9


