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Abstract

Helicopters performing autonomously different tasks exist already for more than
twenty years. New learning methodologies take each time the complexity of such
tasks at a new higher level. However, the helicopters were always flying in general
flight regimes, like simple directional flight, hovering, etc. Highly challenging ma-
noeuvres were always prerogative of very experienced pilots, and have been for a
long time unattainable for an autonomous helicopter. The main reason for that fact
is the complexity of the helicopter dynamics, and therefore inability to cover all
aerodynamic effects in a control model. In stationary flight regimes the influence
of such unmodelled effects is minimal. However, during extreme manoeuvres they
affect the flight significantly, which makes the simplified model more fallible. The
situation has fundamentally changed in recent years with applying for controlling
tasks reinforcement-learning methods. This approach enables to find an accurate
dynamics model and a trajectory, which are further used to determine the optimal
control policy.

1 Introduction

Autonomous helicopter flight is far away from to be a new task, but is still one of the most com-
plicated in aircraft robotics. There are to date lots of solutions that enable a helicopter to perform
certain tasks in an autonomous mode. The most significant examples were demonstrated in the In-
ternational Aerial Robotics Competition (IARC)1 in the time period from 1991 till now. Altogether
were performed six different competitions, each time with a different and more complicated task
(mission). During this 10 years many research groups from different universities in USA, Canada,
Germany, India, etc. have been taken part in the project, and there were always at least one team,
whose helicopter has done the specified mission perfectly. In a nutshell, the tasks which helicopters
have needed to perform autonomously were:

• 1st mission: move small object from one place to another;
• 2nd mission: identify among others the toxic waste drum and take a sample from this drum;
• 3rd mission: rescue works in a disaster area (fire region); for example, among others it was

required to identify dead and live persons;
• 4th mission: find specified in a task building, fly into one of its windows, take photos inside

and return back;
• 5th mission: orientation inside unknown building without any feedback and control signals

from outside;
• 6th mission (the current one): fly into a building without being noticed by security, find a

certain room and a USB flash drive in this room, replace it with another and return back
again avoiding security.

1http://iarc.angel-strike.com/
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Despite of these really complex and challenging tasks, the helicopters in all such experiments were
always flying in general stationary regimes. The latter ones include taking-off, hovering, directional
flight, landing and some limited number of simple aerobatics (e.g., an axial roll). On the other
hand, performing extreme manoeuvres, like split-S, double loops, chaos, rolls, flips, tic-toc, auto-
rotation landing (see Figure 1), were possible only for experienced pilots, and for long time could
not be successfully replicated in an autonomous mode. There are several reasons for this; each
one corresponds to a certain problem in a flight control. At first, the helicopter dynamics are very
complex, and even though, there are some unknown or mathematically unmodelled aerodynamic
issues. Therefore, dynamics models used for controlling tasks are simplified to a certain degree.
This is mostly not a problem for stationary flight regimes; however, the more complex they are,
the more costly errors are produced by such model simplifications. Second, specifying a good
trajectory for a manoeuvre is also quite a difficult task. Nevertheless, even a good dynamics model
and a known intended trajectory solve the control problem only half. The reason for this is that the
helicopter especially during extreme aerobatics is very unstable, and thus without additional control
would soon significantly deviate from the planned trajectory.

Funnel Hurricane Tic-Toc

Loop Split-S Tail-Slide Eight

Figure 1: Extreme helicopter manoeuvres.

All these tree main complications were successfully solved at Stanford University by Ng et al. [1],
[2], [3] . They first have achieved autonomous helicopter flight, which was consisting of more than
dozen of most challenging manoeuvres. Aerobatics were performed in almost ideally form and
often were even better than the pilot-driven demonstrations. The schema of their approach is shown
in Figure 2. In a nutshell, the algorithm consists of the following steps:

1. build a simplified helicopter dynamics model containing unknown parameters;

2. collect some flight data from a real pilot-driven helicopter;

3. use flight data to find unknown parameters of the model;

4. collect data from several pilot-driven demonstrations, which have the same flight program
that should be replicated in autonomous mode;

5. align data of all demonstrations in time;

6. based on time-aligned data refine the dynamics model;

7. use found intended trajectory and refined dynamics model to build a close-loop control;

8. if results are not sophisticated, repeat the algorithm from step 3, but use as test data, the
data from autonomous flight.

The intent and main approaches of each step are discussed in more detail in the following sections.
However, roughly the whole learning algorithm could be seen as a nested reinforcement learning
(RL) approach [4]. At first, via a model-based RL the parameters of the model are determined, i.e.,
the dynamic model and the trajectory, which in terms of RL are seen as a transition function and
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Figure 2: General schema of apprenticeship-learning approach.

a reward function, respectively. Further this model is used in policy-search RL in order to find the
optimal control policy.

The rest of the paper is organised as follows. Helicopter basics and an approach of obtaining the
dynamics model from the flight data, as well as possible inaccuracies of the latter are described in
Section 2. An apprenticeship learning algorithm for finding intended trajectory from multiple pilot-
driven demonstrations is explained in Section 3. The method of refining the dynamics model by its
adjustment to the intended trajectory is shown in Section 4. In Section 5 is described the approach of
finding in online regime an optimal control policy. Some details about experimental procedure are
shown in Section 6. In Section 7 briefly discussed some other current research projects and works
in sphere of autonomous helicopter flight; and Section 8 finalizes the paper with some conclusions.

2 Helicopter dynamics model

In fixed-wing aircraft, e.g., airplanes, the main elements of the aerodynamics are supplied by the
separate physical devices. The thrust, which is responsible for the forward moving, is caused by
the jet engine or propeller. Lift - the compensating force for the weight, which enables hovering of
the plane or staying on a certain height, is supplied by the wings. Last not least the direction of the
flight is mainly maintained by the vertical tail wing, as well as by horizontal wings. The control of
the flight refers, respectively, to controlling the properties of these devices.

In contrast to the airplanes, the trust, lift and direction of the helicopter flight are supplied, and
therefore controlled only by one physical device, the main rotor. This fact cause a lot of complex
aerodynamics effects, relationships and influences between them, which in many cases are very
difficult to describe mathematically. Thus, to model the helicopter dynamics is one of the most
complicated tasks in the aircraft. On the other hand, the model, which covers all these aspects,
would be too complex to work with, especially for the autonomous flight task, where the time
constraints are playing significant role. Hence, it seems to be reasonable to apply the simplified
dynamics model.

The model of the helicopter describes the relationships between the state and control elements. The
helicopter has four control elements: three of them control the main rotor (collective, latitudinal and
longitudinal pitches) and one - the tail rotor (tail-rotor pitch) (see Figure 3).

3



Primary purpose of the tail rotor is to compensate the torque of the main rotor (see Figure 4), which
causes the helicopter to rotate in the direction opposite to rotor. When the trust from the tail rotor is
equal to the torque, the helicopter body would not change its orientation during the flight. However,
any deviation from this equation would result in turning the helicopter clockwise or counter clock-
wise depending on which force dominates. Hence, to control the position of the helicopter according
to its vertical axe the trust of the tail rotor should be adjusted. This is one of the four control inputs
(tail-rotor pitch) and done through changing the angle of attack of the blades of the tail rotor.

Latitudinal Pitch

Collective Pitch

Longitudinal 

Pitch

Tail Rotor Pitch

Figure 3: Helicopter control elements.
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Figure 4: Torque and Tail-Rotor Trust.

Vertical rising, descent, hovering and directional flight are caused and controlled through the main
rotor. The main rotor consists typically of two or more blades, which rotate with the roughly constant
speed and produce the lift (cf. wings of airplane). The lift is affected by the angle of attack of each
blade (see Figure 5). With increasing the angle of the blade, increased also the downward air pressure
and further the lift, which results in bigger upward force for the helicopter.

If all blades have the same pitch angle over the whole rotation cycle, the air pressure would be evenly
distributed, and therefore the helicopter could move vertically up or down, or hover. Such change of
the blade’s angle called the collective pitch control and is the second control input of the helicopter.

no

shallow
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Figure 5: Angle of attack.
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Figure 6: Rotation disk during directional flight.

Through the swash plate it is possible for blades to have different pitch angle at different points of
rotation cycle. Thus, the air pressure under the blades changes during the rotation. Since the blades
can also move up- and downward, uneven pressure causes so-called blade flapping. The achieved
in that way tilted rotation disk (see Figure 6) changes the direction of the thrust, further enabling
the flight of the helicopter forward, backward or sideways. Two control inputs that responsible for
forward-backward and right-left flight are called longitudinal and latitudinal cyclic pitch controls,
respectively.

The state of the helicopter at each point of time consists of its position, orientation, liner and angular
velocities. The simplified dynamics model could be defined as following [1]:
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u̇ = vr − wq +Axu + gx + wu,

v̇ = wp− ur +Ayv + gy +D0 + wv,

ẇ = uq − vp+Azw + gz + C4u4 +D4 + ww,

ṗ = qr(Iyy − Izz)/Ixx +Bxp+ C1u1 +D1 + wp,

q̇ = pr(Izz − Ixx)/Iyy +Byq + C2u2 +D2 + wq,

ṙ = pq(Ixx − Iyy)/Izz +Bzr + C3u3 +D3 + wr.

(1)

Here: (u, v, w) – linear velocity; (u̇, v̇, ẇ) – linear acceleration; (p, q, r) – angular velocity; (ṗ, q̇, ṙ)
– angular acceleration; (gx, gy, gz) – gravity; u1, u2, u3, u4 - latitudinal, longitudinal, tail-rotor and
collective pitch controls, respectively; wu, wv , ww, wp, wq , wr – represent the noise for respective
accelerations (result of simplified model); Ax, Ay , Az , Bx, By , Bz , C1 −C4, D0 −D4 – unknown
coefficients.

For simplicity the velocities in this model are determined in so-called body frame, which is fixed
with the helicopter and placed in its centre of gravity. Thus, with changing the orientation of heli-
copter, the velocities would also change even without additional forces and moments applied to the
helicopter. To reflect such changes the terms (vr − vq), (wp− ur), (uq − vp), qr(Iyy − Izz)/Ixx,
pr(Izz–Ixx)/Iyy, pq(Ixx–Iyy)/Izz are added to the corresponding accelerations.

One possible way to determine unknown parameters of the model from the test data is via linear
regression. However, the typical approach in the rotational aircraft is to use the frequency-domain
system identification method [5]. Originally proposed in 1987 as the dissertation of Mark B. Tis-
chler, this method is used nowadays by U.S. Army and NASA as the standard for identification
model structures and unknown model characteristics, and therefore for analysing and predicting the
behaviour of vehicles. In a nutshell, there are three main steps according to this approach.

• First, the pilot-driven flight data should be collected, verified and filtered. The flight data
is usually a set of state elements and control inputs received with some frequency from
vehicle’s sensors. Some state elements are calculated, i.e., estimated from others, since not
all state elements could be effectively measured. Further, using Kalman filter the log data
is verified for compatibility; and errors caused by sensors and scale factors are eliminated.

• On the second step, the flight data is transformed from time to frequency domain. Here
at the beginning, using techniques of multi-variable spectral analysis, multi-input/multi-
output (MIMO) frequency-responses are obtained. However, the real point of interest is
a set of frequency-responses for all possible input-output pairs, i.e., single-input/single-
output (SISO) frequency-responses. The latter ones are obtained by applying the Chirp-Z
transform and techniques of spectral averaging using composite windows.

• Having the frequency-responses for each pair, the next step is to obtain and verify the
transfer-function models for each pair. The verification is done by applying the determined
transfer-function to the flight data, which was not used in previous identification steps. By
comparing the received time history with the real one, the accuracy of transfer-function
model is checked according to the system requirements, and if needed another transfer-
function is selected.

• At the end, frequency-responses and appropriate transfer-functions are used to determine
the unknown model characteristics, e.g., the unknown coefficients A, B, C, D of the heli-
copter dynamics model.

2.1 Model simplifications and errors

As already mentioned, the applied dynamics model is simplified in order to make easier further
computations. Main simplifications are considered by the model explained in the following.

Each blade depending on the certain rotor system has different number of degrees of freedom (DOF).
The most widely used today are articulated and semi-rigid rotor types. The former provides the blade
with three DOF: up/down (flapping), right/left in the horizontal plane and around its longitudinal
axis (pitch angle, i.e., angle of attack (see Figure 5)). In the latter version the movements of blade
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in the horizontal plane are eliminated. The dynamics model, however, explicitly covers only one
movement of the blade – the pitch angle, since in most cases it is the only one, which is directly
controlled. The flapping effects are not considered by the model.

On the other hand, the current model assumes that the helicopter is the rigid body; however, espe-
cially for blades, it is not the case. The airflow could significantly influence the blade deformation,
which further results in unmodelled aerodynamics effects.

Among other significant simplifications are not considered effects of:

• airflow around the helicopter;

• additional lift during the forward flight;

• inter-influence of control inputs;

• deviations in keeping the constant rotor speed;

• deviations of helicopter weight during the flight (e.g., due to the volume of fuel);

• non-linear correlations between drag forces and velocities.

Naturally, that these unmodelled issues cause inaccuracies and errors. The weightiness of such errors
for the model is the bigger, the more complicated flight regimes the helicopter should perform. Thus,
for some basic regimes, like hovering or directional flight, the differences between the predicted and
actual helicopter states are quite small. In contrast, when the helicopter follows complex trajectories
performing aerobatic manoeuvres (see Figure 1), lots of hidden and unmodelled aerodynamics ef-
fects influence the flight more extremely. This would further result in serious controlling errors, i.e.,
the real trajectory followed by the helicopter would significantly differ from the predicted/modelled
one. The possible solution to this problem is explained in Section 4.

3 Trajectory learning

In an autonomous flight, the helicopter should follow some specific trajectory. However, the term
trajectory here stands not only for the set of the desired geographical positions of the helicopter. In-
stead it defines also at each point of time the helicopter state (e.g., orientation, velocities) and control
elements (e.g., cyclic and collective pitch controls). Therefore, specifying the valid trajectories by
hand is very challenging and complex task, especially for aerobatic manoeuvres. First, it is quite dif-
ficult to predict the trajectory states at all, having only the image of how the manoeuvre should look
like. Second, states and control inputs should be conformed to the dynamics model of the helicopter,
which makes the specification task more complicate and sometimes even impossible. The solution
to these problems could be in learning the trajectory from the real pilot-driven demonstrations.

Even for experienced pilots, it is quite difficult to perform complex aerobatic manoeuvres. Thus, due
to errors some flight elements would be better in one demonstration, others in another. Performing
and analysing dozens of pilot attempts in order to have the best trajectory is very expensive task in
terms of time, work and money. One can think that calculating the average trajectory from the given
set of demonstrations could be a good idea; however, it is not the case. There is no sense in simple
averaging positions, velocities, etc. at each point of time, because each demonstration has its own
time aligning. This means, that helicopter states and control inputs are, in most cases, unrelated at
the same time in different flights .

Ng et al. [1] have proposed so-called apprenticeship learning algorithm for obtaining the optimal tra-
jectory from demonstrations. The basic idea of that approach is to consider the pilot-driven demon-
strations as the observations of some desired optimal trajectory, which is hidden. The task of finding
the hidden trajectory is then solved using the hidden Markov models (HMM). However, before ap-
plying the maximum likelihood search, some important transformations should be applied. First,
the available data and the one, which is looked for, should be appropriately modelled.

The trajectories are represented through the sequence of elements, where each element comprises
the helicopter state and control inputs at a certain point of time:

intended trajectory: z = {zt|t = 0, ...., T − 1},
trajectories from demonstrations: y = {ykj |j = 0, . . . , Nk − 1; k = 0, . . . ,M − 1},
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where T , Nk – the lengths of trajectories; M – number of pilot-driven demonstrations. The length
of the hidden trajectory T is unknown, and therefore should be selected experimentally. Herewith,
as demonstrations are observations, the length of the searched trajectory preferred to be more or
equal than the length of the longest demonstration. One possible variant could be choosing this
length equal to the double arithmetical mean of the observed trajectories’ lengths. Experiments have
shown that such length effectively covers all time aligned differences, and therefore results in more
accurate result.

Each demonstration’s state ykj is an observation of some state zτk
j

in the intended trajectory:

ykj = zτk
j

+ wj , (2)

where wj – Gaussian noise, which model possible pilot errors during each demonstration. τkj is the
time aligned index, that matches observed and desired (unknown) states. These indices

τ = {τkj |j = 0, . . . , Nk − 1; k = 0, . . . ,M − 1}

are also unknown and should be determined in order to find the intended trajectory. Additionally, the
intended trajectory should satisfy the dynamics model of the helicopter (see Section 2). To meet this
condition, the relation between current and next trajectory states is defined through the helicopter
dynamics:

zτ+1 = f(zτ ) + wτ , (3)

where zτ , zτ+1 – current and next trajectory states; f() – helicopter dynamics model; wτ - Gaussian
noise, which covers errors and inaccuracies in the dynamics model.

Graphically such data model is represented in Figure 7. So far the time indexes are unknown,
unknown is also the correlation between observed ykj and hidden states zt. Thus, for example, the
state yk1 of the k-th pilot-driven trajectory could be an observation of states z1, z2, z3 of the intended
trajectory; the number of possible dependencies increases with the time. Solving the system under
such circumstances would result in enormous high complexity with requiring a lot of time and
resources costs. One possible workaround to the model complexity is to use data estimation in

Figure 7: Data model for the trajectory learning [1].

combination with the dynamic programming. According to this approach, on initial step the time
indexes are estimated based on some expert preferences, thus the model is restricted to one-to-one
relations between observed and hidden states. Such a model is a typical example of a hidden Markov
model, and therefore standard expectation-maximization approaches (e.g., Baum-Welch) could be
applied to find/learn unknown system parameters (e.g., covariance matrices of the Gaussian noise)
and the intended trajectory. The received trajectory is the one that maximizes overall likelihood
of the all observations under defined time indexes. However, as there is no guarantee that current
guess of time indexes is optimal, the dynamic programming is used to estimate new values for t
and alternate the search algorithm. The process stops, when there is a trajectory, for which the total
likelihood of all observations is bigger than the acceptable accuracy threshold.

As already mentioned, the specification of the trajectory by hand results in significant costs and
inaccuracies. However, the existed knowledge about the trajectory could significantly increase the
efficiency and performance of the search algorithm. Among typical examples of such prior knowl-
edge are: the helicopter during a certain manoeuvre should not change its orientation or position; or
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Figure 8: The example of observed and intended trajectories for the “double loop” manoeuvre [1].

at some points it should have zero vertical part of the linear velocity, etc. This knowledge is inte-
grated in the system as a separate observation, which defines at certain points of time prior-known
features of the helicopter state or control inputs. Included in the maximization likelihood search,
this data would positive influence on the accuracy of the intended trajectory.

The example of one intended trajectory, which was identified using the described trajectory learn-
ing approach, is shown in Figure 8. Here for simplicity are presented only 2D positional parts of
four trajectories – three observed (lines) and one intended (dots). The modelled manoeuvre called
“double loop”, and as it can be seen, the found trajectory describes almost the ideal loops.

4 Refining the helicopter dynamics model

The applied so far global dynamics model of the helicopter is many places simplified in order to
avoid high complexity, and therefore computation costs. Directly unmodelled aerodynamic effects
are implicitly covered by the model parameters, which are obtained from the flight data using pro-
cedure described in Section 2. However, for extreme aerobatic manoeuvres, the influence of these
implicitly modelled aspects is much more significant than in stationary regimes. Consequently, the
learned from general flight data parameters would inaccurately correspond to the real helicopter
behaviour, which further results in control errors.

Interesting to note, that such errors depend on a specific manoeuvre, and especially on time during
the manoeuvre. This means, that by repeating same aerobatics the model would produce almost the
same errors on certain aligned (not absolute!) time points. The fact could be explained as follows:
the errors are caused by unusual aerodynamics effects; the latter ones are, naturally, common for
certain helicopter state and control inputs, thus similar effects produce similar errors.

The model inaccuracies give the motive for the refining the helicopter dynamics; and the character
of these inaccuracies (i.e., stability of errors) provide the effective approach for such refining. The
basic idea of improving the dynamics model is to provide instead of one general model, which should
cover all possible aerodynamics effects, the set of dynamics model F = {ft|t = 0, ..., T − 1}. Each
of such models would be specific for a concrete time point during the manoeuvre. This approach
concentrates on estimating the model based on relevant flight data, and therefore unrelated effects
would be eliminated.

The test data for the model refining is prepared on the previous step, i.e., as an intermediate result
during the process of finding the intended trajectory, all observed demonstrations have been time-
aligned. Such aligning enables to weight the flight data for a specific dynamics model based on time
index. The weights of data points could be, for example, defined by:

W (t′) = exp (−(t–t′)2/σ2), (4)

where W (t′) is the weight of the data point at aligned time t′ for the dynamics model ft calculated
for time t; σ is the configurable parameter to adjust the data relevance. Thus, the bigger distance
between data point and time, for which model is estimated, the smaller is the weight, i.e., relevance
and influence of this data. Obtained in such way models would with high accuracy cover both ex-
plicit and implicit modelled aerodynamic effects specific for a concrete point of time in the intended
trajectory. One might think that since there are more accurate dynamics models, it would be reason-
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able to recalculate the intended trajectory. However, the experiments [1] have shown that already
obtained level of precision is fully acceptable.

5 Autonomous flight control

The data obtained on previous stages consists of 1) desired helicopter trajectory, and 2) accurate
helicopter dynamics models for each time step of the trajectory. The last, however, definitely not
the least step of the autonomous helicopter flight is to perform an appropriate control. The result of
such control is a sequence of actions, also called control policy, applied by a helicopter during the
autonomous flight. Found intended trajectory already contains the control inputs, which correspond
to the optimal helicopter states. Therefore, one might think, that directly performing these actions
would result in following by helicopter the desired trajectory. The main reason, which interferes
with this idea, is that the helicopter is very unstable in an open-loop control, i.e. by directly per-
forming the control without feedback channel for corrections. The perturbations, and consequently
trajectory deviations are mainly caused by unmodelled aerodynamics effects (see Section 2.1), and
by some external factors (e.g., wind). The typical solution for such unstable systems is to use a
close-loop control via feedbacks. In terms of autonomous helicopter flight, that means the optimal
control policy should be adjusted at runtime, i.e., during the flight, based on actual helicopter states.
Thus, the “optimal” trajectory of states and controls given by the trajectory-learning method (see
Section 3) could be seen as just a ”good” trajectory to optimize around. In a nutshell, the policy
search algorithm, described below, at each time step analyses together current helicopter state, pre-
vious taken action, desired trajectory and helicopter dynamics model to find the next optimal action,
which would minimize trajectory deviations.

For linear models such trajectory following task usually solved via reinforcement learning by using
linear quadratic regulator (LQR), a special case of Markov decision process (MDP). The general
finite-horizon MDP is defined using following 5-tuple:

{S,A, {Psa}, T,R},

where S - set of possible states; A - set of possible actions; {Psa} – state transition probabilities
(e.g., the possibilities of arriving at state s′ after performing some action a at state s; T – time
horizon, i.e., which time period is analysed; R – reward function, which describes expected rewards
of performing actions and transforming the system to another state. LQR concretizes the above
model by the following assumptions:

1. state and action spaces are multi-dimensional:

S ∈ Rn;A ∈ Rd;

2. state transitions are represented via linear (“L” from LQR) time-varying model (e.g., ob-
tained from helicopter dynamics model via linear approximation):

{Psa} : st+1 = Btst + Ctat + wt, (5)

where Bt ∈ Rn×n; Ct ∈ Rn×d; wt – Gaussian noise;

3. reward function is quadratic (“Q” from LQR) and negative (R ≤ 0):

Rt(st, at) = –sTt Dtst–a
T
t Ftat, (6)

where Dt, Ft – positive semi-defined matrices.

MatricesBt, Ct,Dt, Ft change over time and assumed to be known in advance. In order to solve the
task of trajectory following the states and actions in the reward functions are defined as deviations
from desired values, i.e., (st − s∗t ) and (at − a∗t ); therefore the bigger errors, the more system is
penalized by the negative reward value. The value function Vt represents the total expected system
reward at each time step t as a sum of current reward Rt from performing action at at state st and
all other expected rewards for remaining time:

Vt(s) = E[Rt(st, at) +Rt+1(st+1, at+1) + ...+RT (sT , aT )]. (7)
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The policy π is defined as a mapping from states to actions, π : S → A. The task is to find such
optimal policy π∗, which would result at each step in maximal total expected system reward, i.e.,
V ∗t (s):

π∗ = {π∗t (s)|t = 0, ..., T ;π∗t (s) = arg max
a

E[Rt(st, at) + ...+RT (sT , aT )]}. (8)

V ∗t (s) and π∗t (s) could be recursively represented as follows:

V ∗t (s) = max
a

[Rt(st, at) +
∑

Psat(s
′)V ∗t+1(s′)],

π∗t (s) = arg max
a

[Rt(st, at) +
∑

Psat(s
′)V ∗t+1(s′)],

(9)

where the term Psat(s
′)V ∗t+1(s′) is the expected total reward from new state s′ weighted by the

probability, that the system turns to this state; thus summing these terms over all possible states
gives the total system reward. Standard approach to find the sequence V ∗t (s), and therefore the
optimal policy π∗t (s) is to use dynamic programming. In the last time step t = T , since the system
has no more state transitions, the term

∑
PsaT (sT )V ∗T+1(s′) = 0, and equations 9 have the form:

V ∗T (s) = max
a

[RT (sT , aT )] = max
a

[–sTTDT sT –aTTFTaT ],

π∗T (s) = arg max
a

[RT (sT , aT )],
(10)

which could be easily solved (e.g., aT = 0 ⇒ V ∗T (sT ) = –sTTQT sT ; π∗T (sT ) = 0). Then us-
ing dynamic programming V ∗T (s) is recursively propagated backwards (using discrete time Riccati
equation) to find all V ∗t (s) and π∗t (s):

V ∗T (s)→ V ∗T−1(s) → V ∗T−2(s)→ V ∗T−3(s) → ...→ V ∗0 (s),

π∗T (s)→ π∗T−1(s) → π∗T−2(s)→ π∗T−3(s) → ...→ π∗0(s).
(11)

In order to apply LQR controller for non-linear system, which in reality helicopter dynamics is,
the above algorithm should be appropriately modified. The modified approach, also called Gauss-
Newton LQR, is an iterating process, which continues until the optimal control policy not obtained.
Each iteration consists of two steps.

• First, having current policy (from intended trajectory or from previous iteration) we com-
pute the linear approximation of the dynamics model (e.g. linear approximating of non-
linear function using its derivative at some point).

• Thus the typical LQR problem is obtained, by solving which at the second step, we receive
an optimal policy for the current model.

To refine the linear model approximation, and therefore to obtain a better “optimal” policy, the pro-
cess is repeated using the policy from previous iteration (i.e., current policyi = optimal policyi−1

for approximation.

As the policy search is done online, there are quite limited time windows for the search algorithms to
be performed. Because of this, in practice the time horizon of the LQR is selected to nearest future
(e.g., 2 sec.) and number of search iterations is restricted (e.g., 3 iterations).

The quality of autonomous flight strongly depends on accuracy of the dynamics model, which is ap-
plied during the policy search. Thus if the observed helicopter flight is not satisfactory, the learning
algorithm turns back to the defining the dynamics model (see Section 2). Model refining is done
based on current flight data, obtained from autonomous flight; therefore recent aerodynamic effects
could be modelled. The new policy search is further done using improved helicopter dynamics.

6 Experimental Procedures

The experimental results provided in [1] prove the efficiency of the described above reinforcement
learning approach for autonomous helicopter flight. The tests were performed on the remote control
helicopter XCell Tempest (see Figure 9). The helicopter has the following characteristics: weight
ca. 5 kg, length 135 cm and the height 51 cm. Additionally, the XCell was equipped with sensors,
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Figure 9: RC helicopter X-Cell Tempest.

like: camera, GPS receiver and sonar for measuring the position; accelerometers; tachometer, rate
gyros and magnetometers for measuring the trust and speed of both rotors; and the radio transmitter
which sends data from these sensors to the base. The base is a stationary PC, which receives the
current state of the helicopter, runs the policy search algorithm and transmits encoding actions back
to the helicopter. The price for the helicopter itself is about 1.000 Euro2, and with the additional
equipment it could even reach the point of 5.000 Euro (e.g. price for orientation sensor vary from
1.500 to 3.000 Euro3).

A typical experimental autonomous flight consisted of sequentially (without pauses) performed
high-challenging manoeuvres (e.g., 12-15 manoeuvres), and has taken in a usual about two min-
utes. However, to perform such a flight, at first, it was needed about half an hour in order to collect
the pilot-driving demonstrations of the same manoeuvres in the same sequence. The number of
demonstrations was usually 10, but only five of them with the better performance were further used
for learning. Second, the offline part of the reinforcement learning algorithm (intended trajectory
and refining the dynamics model) was taking another half an hour. Therefore, about an hour was
required altogether to be able performing with a high accuracy (sometimes even better than the pi-
lot) a two-minute autonomous flight. The deviations in performing challenging manoeuvres, such
as: split-S, tic-toc, flips, rolls, loops, chaos, etc. (see Figure 1), were only about a meter or less from
the intended “optimal” trajectory.

A separate attention should be paid to, probably, the most difficult helicopter aerobatics, so-called
auto-rotation landing. This manoeuvre usually can be performed only by very skilled pilots, who
have already more than two thousands hours of flight time as experience. It is actually more an
emergency manoeuvre, which enable save and successful landing of the helicopter in case of engine
failure. The main idea is to rotate the blades of the main rotor (which is not more driven by engine)
using the potential energy of the helicopter (i.e., U = mgh). By falling down, the air goes through
the blades and forces them to rotate. When the speed of the rotor is enough, the pilot uses this
accumulated energy (already kinematic) for producing the lift, which decreases the vertical down-
oriented speed up to zero near the ground, and therefore enables safe landing. The general dynamics
model of the helicopter described in Section 2 is actually not suited for the auto-rotation manoeuvre,
since it assumes a constant main rotor speed, which is here not more the case. To overcome this
problem, the general model should be enlarged with the following equation:

Ω̇ = D5 + C5Ω + E5u4 + F5

√
u2 + v2 +G5(u2

1 + u2
2) + wΩ, (12)

where Ω is a speed of a main rotor; D5, C5, E5, F5, G5 are unknown parameters, which identified
using flight data. Apart from this modification the learning algorithm remains unchanged. For
performing this manoeuvre the engine of the helicopter was being turned off. The control policy
considering the current height tries at first, in so-called glide phase, to maximize the rotor speed
during the descending. Then about 10 meters above the ground it switches into the flare phase, where
takes place the slowdown of the helicopter. And at last, having zero (ideally) vertical velocity, the
helicopter using remaining rotor speed corrects its orientation and performs a safe landing. As it is
shown in [3], all experiments of auto-rotation flight were successful and never produce any damage
of the machine. Therefore, this extreme challenging manoeuvre, which has never been done in
autonomous control mode before, proves once more the efficiency of the proposed learning strategy.

2http://www.heliproz.com/products.asp?dept=41
3http://www.microstrain.com/inertial/sensors
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7 Related Research Work

Autonomous unmanned aerial vehicles (e.g., helicopter, quadrotor, etc.) are not new, but are still
a subject for many research groups in science, industry and military. The tasks, which could be
executed by such aircraft robots, have changed from simple to very challenging and complex (e.g.,
rescue works, indoor flying, etc.); and sometimes even with results that outperform ones from expe-
rienced pilots. Some of current research projects and results in this sphere are described below.

Sensing, Unmanned, Autonomous Aerial Vehicles (SUAAVE)4 is a project carried out by the Uni-
versity of Oxford. Its main focus is to create the swarm of autonomous helicopters, which would
collaborate with each other in order to perform the specified task (e.g., environment exploration).
The “team” of autonomous vehicles has significant advantages over single robot: higher level of
robustness, performance, complexity of performed tasks, etc. On the other hand, synchronization
between agents causes additional implementation problems.

The Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC)5 is another
example of research project (Stanford University, USA), which also specializes on autonomous co-
operative behavior of multiple quadrotor helicopters (see Figure 10). Quadrotors comparing to stan-
dard helicopters are more stable during the flight, have better power-size ratio and are significantly
cheaper. Applicability of autonomous quadrotors for different civil tasks is also research interest of
the SkeyeCopter6 project at Chemnitz University of Technology (Germany).

Figure 10: Quadrotor (STARMAC project).

A. Saxena et al. in [6], [7] described the main principles of indoor autonomous helicopter flight
using a single onboard camera as the only one available sensor. They have combined different image
processing techniques to build in a runtime the 3D map of environment, which allows safe flight in
unknown, narrow indoor spaces. Similar results, however using multi-camera visual feedback have
been also achieved by H. Oh et al. [8].

There are lots of other research groups, which concentrate either on outdoor or indoor autonomous
helicopter flight. The differences in tasks and environments between these two types result in solv-
ing quite different design (e.g., size, power of robot) and control problems (e.g., level of flight
accuracy; navigation, communication principles, etc.). However, in almost all such applications the
helicopters are flying in general, stationary flight regimes. Extreme helicopter aerobatics performed
in autonomous mode are, in opposite, less popular field among research community. One of the
main reasons for this is, probably, the character of achieved results – more scientific than practical.
Nevertheless, this statement is only explicit true, in reality solving such complex control problems
at the edge of machine’s capabilities, takes not only aircraft robotics, but the robotics in all at a new
research level. Therefore, the work of A. Ng et al. [1], [2], [3], the main ideas of which were in a
nutshell presented in this paper, has significant meaning for autonomous systems.

4http://www.cs.ox.ac.uk/projects/SUAAVE/
5http://hybrid.eecs.berkeley.edu/starmac/
6http://www.tu-chemnitz.de/etit/proaut/forschung/quadrocopter.html.en
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8 Conclusions

The nested reinforcement learning approach enables the helicopter to perform autonomously very
challenging aerobatic manoeuvres. The higher level model-based RL overcomes errors from simpli-
fied dynamics model and extracts the intended trajectory from multiple pilot-driven demonstrations.
Then policy-search RL methods use this model in combination with online helicopter feedback to
find the optimal control policy. All performed according to this control strategy manoeuvres have
a high accuracy and in some cases are even better than the pilot-driven examples. Moreover, the
major part of these aerobatics, e.g., tic-toc, chaos, auto-rotation landing, etc., has been never before
done in an autonomous mode.

References
[1] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aerobatics through

apprenticeship learning. International Journal of Robotics Research, 29(13):1608–1639, 2010.
[2] Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, and Shankar Sastry. Autonomous helicopter

flight via reinforcement learning. Advances in Neural Information Processing Systems (NIPS),
16:363–372, 2004.

[3] Pieter Abbeel, Adam Coates, Timothy Hunter, and Andrew Y. Ng. Autonomous autorotation
of an rc helicopter. In Experimental Robotics, The Eleventh International Symposium, ISER
2008, July 13-16, 2008, Athens, Greece, volume 54 of Springer Tracts in Advanced Robotics,
pages 385–394. Springer, 2008.

[4] Michael L. Littman. Model-based reinforcement learning. WWW Page, 2009. http://
mlg.eng.cam.ac.uk/mlss09/mlss_slides/Littman_1.pdf [Accessed Jan. 23,
2012].

[5] Mark B. Tischler. System identification methods for aircraft flight control development and
validation. National Aeronautics and Space Administration (NASA), Ames Research Center :
US Army Aviation and Troop Command, 1995.

[6] Sai Prashanth Soundararaj, Arvind K. Sujeeth, and Ashutosh Saxena. Autonomous indoor
helicopter flight using a single onboard camera. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5307–5314. IEEE Press, 2009.

[7] Cooper Bills, Joyce Chen, and Ashutosh Saxena. Autonomous mav flight in indoor environ-
ments using single image perspective cues. In ICRA’11, pages 5776–5783, 2011.

[8] Hyondong Oh, Dae-Yeon Won, Sung-Sik Huh, David Hyunchul Shim, Min-Jea Tahk, and
Antonios Tsourdos. Indoor uav control using multi-camera visual feedback. Intelligent and
Robotic Systems, 61:57–84, 2011.

[9] Andrew Y. Ng. Reinforcement Learning and Linear Quadratic Regulator.
Video Lecture no. 18, 2008. http://www.virtualprofessors.com/
machine-learning-stanford-cs-229-andrew-ng [Accessed Jan. 24, 2012].

[10] J. Andrew Bagnell and Jeff C. Schneider. Autonomous helicopter control using reinforcement
learning policy search methods. In International Conference on Robotics and Automation,
pages 1615–1620. IEEE Press, 2001.

[11] Mathias Ramskov Garbus, Gustav Hogh, Rasmus Nielsen, Soren Lynge Pedersen,
Jeppe Moller Holm, and Jan Vestergaard Knudsen. Trajectory tracking control of autonomous
helicopter for terrain following. Master Thesis, AALBORG University, 2007. http://
projekter.aau.dk/projekter/files/9578164/report.pdf [Accessed Jan.
24, 2012].

13

http://mlg.eng.cam.ac.uk/mlss09/mlss_slides/Littman_1.pdf
http://mlg.eng.cam.ac.uk/mlss09/mlss_slides/Littman_1.pdf
http://www.virtualprofessors.com/machine-learning-stanford-cs-229-andrew-ng
http://www.virtualprofessors.com/machine-learning-stanford-cs-229-andrew-ng
http://projekter.aau.dk/projekter/files/9578164/report.pdf
http://projekter.aau.dk/projekter/files/9578164/report.pdf

	1 Introduction
	2 Helicopter dynamics model
	2.1 Model simplifications and errors

	3 Trajectory learning
	4 Refining the helicopter dynamics model
	5 Autonomous flight control
	6 Experimental Procedures
	7 Related Research Work
	8 Conclusions

