
Planning with Multiple Agents

Sabina Kruk
Seminar on Autonomous Learning Systems

Department of Computer Science
TU Darmstadt

sabina.kruk.stud@tu-darmstadt.de

Abstract

In this paper focus is set on models of decentralized cooperative multi-agent sys-
tems. These models are used in settings where multiple agents work together,
possibly on different tasks to fulfill a bigger goal. Agents try to maximize their
joint reward while having their own local observation functions which can differ
according to their information about the world and their resources. Real-world ex-
amples of such planning are mentioned and theoretical models providing formal
solutions to different types of decentralized multi-agent planning situations are in-
troduced. The models differ in their level of agents’ observability of the world as
well as communication between them. It is invesigated how this has effect on the
models complexity and how it can be sometimes reduced by making alterations to
the model. Last but not least, optimal and approximate algorithms providing solu-
tions to the models are regarded and their advantages and drawbacks investigated.

1 Introduction

1.1 Motivation

There are many models for planning under uncertainty and algorithms that solve these planning
problems, but most of them concentrate on single-agent cases. Many processes nowadays require
multiple agents to work together, for example in achieving a certain goal. Such processes are part
of applications used in the military, networking, industry, space research, logistics, games and many
more. In this paper the focus is set on multi-agent planning under uncertainty, where each of the
agents possibly has different tasks to fulfill, as well as resources and information about the world.
Each agent has its own separate observations, but the agents must coordinate their actions to optimize
the joint reward. Such problems are referred to as cooperative decentralized decision problems. They
stand in contrary to the centralized ones, where the knowledge about the world and the decision
making authority is located in a single unit/agent.

In the next section, we illustrate the difference between centralized and decentralized planning prob-
lems through an example firstly introduced by Kaelbling et. al. [3] in a centralized version and then
extended to a decentralized one by Nair et. al. [4].

1.2 Tiger problem

Imagine an agent standing in front of two closed doors. Behind one of them is a tiger and behind the
other a treasure. If the agent opens the door with the tiger, it receives a penalty. But the agent has
another option; it can listen for the tiger to gain some information about the location of the danger
instead of opening one of the doors. But listening has a cost and is not entirely accurate, because
probability of hearing the tiger at a specific door if it actually is behind that door is less than 1. After

1



the agent opens a door and receives a reward or penalty, the game is over. This kind of partially
observable problem is solved using the Partially Observable Markov Decision Process (POMDP)
model where instead of planning in the space of physical world states, you plan in the space of what
you might know about these states. These abstract states are called belief states.

In a decentralized version of this problem with multiple agents, we have two agents who also have
only partial knowledge about the environment. In each step, each agent can independently either
listen or open one of the doors. If one of the agents opens the door with the treasure behind it,
they both get the reward. If either agent opens the door with the tiger, a penalty is received. The
crucial issue is that the agents cannot communicate with each other. They have to come up with a
joint policy for listening and deciding what door to open. It is of huge importance that the agents
coordinate their actions because if both of them open the tiger door at the same time, their penalty is
not as high. After a door is opened and the agents receive a reward/penalty, the problem starts over
again.

1.3 Real-world examples

A real-world example is a system called ”Mobile Communications amongst Heterogeneous Agents”
(MoCHA) [5] which is a mobile communication network where every user creates a personalized
agent. The personalized agents locate and communicate with each other to plan schedules and col-
laborative tasks with personalized agents of the other users. This requires a decentralized planning
model. where a personal agent created by the user plans and schedules collaborative tasks with
personalized agents of the other users.

Another example is a multi-access broadcast channel where two agents control a message channel.
To avoid a collision, only one message at a time can be sent. The agents want to maximize the
global throughput of the channel and the only decision they can make is to send a message or not.
There is a global reward 1 if the message was sent successfully and a penalty/no reward 0 if not.
Every agent has observed information at each step, including their own message buffer, information
about a possible collision or a possible successful message broadcast. The problem here is that the
observations of possible collisions are noisy i.e. the agents can only have uncertain beliefs about the
outcome of their actions.

Last but not least, in many cases the agents have isolated missions they need to fulfill and must
optimize their own objectives independent of the other agents. On the other hand, they might have
to complete a task from time to time on which they have to work together and here the optimal
planning depends on all agents’ actions. A good example of such a system is that of controlling
the operation of multiple exploration rovers, such as those used by NASA to explore the surface of
Mars. Each rover is assigned a separate region that it is supposed to explore. Occasionally they
have to solve a problem together, for example make a 3D image of an area. This is possible only by
combining information obtained from all the rovers. Sometimes he rovers can communicate with a
central control unit but it is not always possible.

2 Classification criteria of multi-agent planning models

There are many decision-theoretic models for decentralized multi-agent planning and they can be
categorized in different ways. An important criterion in decentralized multi-agent decision models
is their level of decentralization, determining the extent to which the agents have influence on each
other and how dependent they are on each other. The level of decentralization can be described by
the type of communication between agents and their level of observability. The models marked in
the table are the ones considered in the next chapters.

2.1 Observability

One differentiates between full observability, joint full observability and partial observability. Full
observability implies that each agents partial view (local observation) is sufficient to uniquely de-
termine the global state of the system. Joint full observability implies that the tuple of observations
made by all the agents uniquely determines the current global state of the world. Partial observability
refers to a case where all agents observations together still do not determine the global state.

2



Table 1: Decentralization levels

Full observ. Joint full observ. Partial observ.
No comm. MMDP [1] DEC-MDP [1], [2] MTDP [1], DEC-POMDP [1], I-POMDP [1]
General comm. MMDP DEC-MDP COM-MTDP [1], DEC-POMDP-COM [1]
Free comm. MMDP MMDP MPOMDP

2.2 Communication

Communication can be free, general or there can be no communication at all. In this paper commu-
nication refers to agents simply communicating their observations with each other. Agents with free
communication share all observations with each other any time they want and it does not cost them
anything. In the case of general communication, at least one communication action has to have a
cost.

3 Theoretic models

In this chapter different models according to their level of decentralization are introduced. All of
the models mentioned in this paper are a modification of a general one. This general model is called
DEC-POMDP and its assumptions are a fundament for all others.

DEC-POMDP (decentralized partially observable Markov decision process) In this model agents
cannot communicate with each other. It is defined as a tuple < I, S, {Ai} , P, {Ωi} , O,R, T >,
where:

• I is a finite set of agents indexed 1, ..., n

• S is a finite set of states, with distinguished initial state s0.

• Ai is a finite set of actions available to agent i and ~A = ⊗i∈IAi is the set of joint actions,
where ~a =< a1, ..., an >

• P : S × ~A → ∆S is a Markovian transition function. P (s
′ |s,~a) denotes the probability

that after taking joint action ~a in state s a transition to state s
′

occurs.

• Ωi is a finite set of observations available to agent i and ~Ω = ⊗i∈IΩi is the set of joint
observations, where ~o =< o1, ..., on > denotes a joint observation.

• O : ~A × S → ∆~Ω is an observation function. O(~o|~a, s′) denotes the probability of ob-
serving joint observation ~o given that joint action ~a was taken and led to state s

′
. Here

s
′ ∈ S,~a ∈ ~A,~o ∈ ~Ω.

• R : ~A × S → < is a reward function. R(~a, s
′
) denotes the reward obtained after joint

action ~a was taken and a state transition to s
′

occurred.
• For a finite-horizon problem, the agents act for a fixed number of steps, which is called the

horizon and denoted by T .

Local policy for a DEC-POMDP A local policy for agent i, δi , is a mapping from local histories
of observations o = oi1 , ..., oit pver Ωi to actions in Ai, δi : Ω∗i → Ai.

Joint policy for a DEC-POMDP A joint policy, δ =< δ1, ..., δn >, is a tuple of local policies, one
for each agent.

Solving a DEC-POMDP Finding a joint policy that maximizes the expected total reward. Such
a policy can be found by maximizing its value. This is obtained by considering every possible
sequence of rewards, multiplying it by the probability that it will happen and then averaging. It
is nothing but the expected sum of future rewards. We use expectation (E) and not simply sum of
future rewards, because the transition from state to state is not deterministic.

The value of a joint policy δ for a finite-horizon DEC-POMDP with initial state s0 is

3



V δ(s0) = E
[∑T−1

t=0 R(~at, st)|s0, δ
]

.

The models illustrated in the next section, can be seen as special cases of the general DEC-POMDP
model.

3.1 Partial observability

3.1.1 No communication

MTDP (multi-agent team decision problem)

In 2002, Pynadath and Tambe [7] presented the MTDP framework, which is very similar to the
DEC-POMDP framework. It differs only in the fact that it assumes perfect recall for each agent
i.e. the agent does not ”forget” any decisions made in the past. At any time, it has also access
to every piece of information it ever received. This includes its local observations as well as local
observations it received from other agents, if it was able to communicate with them.

To describe the idea, a space of belief states is introduced. Bi denotes the set of possible belief states
for agent i. Each agent i ∈ α forms an abstract belief state bti ∈ Bi about the world. A belief state
of an agent with perfect recall incorporates its current observation as well as all the information it
ever received from other agents.

Since the MTDP model assumes no communication, the belief state is based solemnly on its ob-
servations seen through time t. This leads to an alteration in the definition of policies. Instead of
mapping an agent’s observations to actions, as it was done in the DEC-POMDP, the observations
are replaced by the agent’s belief states:

Domain-level policy for an MTDP The set of possible domain-level policies in a MTDP is defined
as the set of all possible mappings from belief states to action, πiA : Bi → Ai.
(Ai is a set of actions available to agent i, just as in the DEC-POMDP).

Joint-domain-level policy for an MTDP A joint domain-level policy for an MTDP,
παA

=< π1A
, ..., πnA

>, is a tuple of domain-level policies, one for each agent.

Solving an MTDP Finding a joint policy that maximizes the expected global reward.

The function preforming the mapping is called the state estimator function.

I-POMDP (interactive POMDP)

The last model to mention in this category. It is an alternative to the DEC-POMDP with an important
difference. In MTDP and DEC-POMDP agents have only beliefs about their own local state. I-
POMDP, on the contrary, is based on so called explicit belief representation. This means agents
maintain a belief about their own local states and about the other agents (their states, their policies
etc.), as well.

To model the richer belief of the agents, an interactive state space for each one is used. A belief over
an interactive state subsumes the belief over the underlying state of the environment, as well as the
belief over the other agents.

In order to understand how such an interactive state space is created, the definition of an agent’s
model has to be introduced. Agents can have models of other agents. We differentiate between
subintentional and intentional models. An intentional model of an agent j, IMj provides informa-
tion about its beliefs i.e. how agent j maps possible histories of observations to distributions of
actions. On the contrary, its subintentional model SMj merely makes other agents who have it,
aware of its existence. Every agent j has a set of possible models Mj which consists of the subin-
tentional SMj and intentional models IMj . An agent having access to the model mj ∈ Mj is not
only aware that agent j is somewhere out there, but can also a possible belief about the agent.

Now we can use the models of agent SMj to form the interactive set state ISi of agent i: ISi =
S×Mj , where S is the set of states of the physical environment andMj is the set of possible models

4



of agent j. Put together, agent i’s belief is now a probability over states of the environment and the
models of the other agent, agent j: bi ∈ ∆(ISi) ≡ bi ∈ ∆(S ×Mj).

3.1.2 General communication

One can extend the DEC-POMDP and MTDP to models by allowing communication. The agents
need to have conventions about how to interpret the communication messages and how to combine
this information with their own local information.

It is assumed in both models that the agents simply communicate their observations. Now, after
performing an action, all agents send a message to the other agents with the observation they made
at that point. In case of general communication, each such message has a specified cost. Costs for
communication actions can be defined either implicitly by the reward function or explicitly by a
separate cost function.

DEC-POMDP-COM (decentralized partially observable Markov decision process with general
communication)

In the case of DEC-POMDP-COM, there is an overall distinction between communication actions
and regular actions, and i.e. they also have separate cost functions and policies. The total reward
function incorporates the reward for communication and regular actions.

Σ is the alphabet of communication messages. σi ∈ Σ is an atomic message sent by agent i, and
~σ =< σ1, ..., σn > is a tuple of all messages sent by the agents in one time step, a joint message.

CΣ : Σ→ < is the message cost function.

Joint policy for a DEC-POMDP-COM A joint policy δ =< δ1, ..., δn > is a tuple of local policies,
one for each agent, where each δi is composed of the communication and action policies for agent i.

Solving a DEC-POMDP-COM Finding a joint policy that maximizes the expected total reward.

COM-MTDP (communicative multi-agent team decision problem)

In a COM-MTDP the communication actions are separated from the normal actions, but the cost of
communicating is incorporated in the reward function.

Σα is a set of combined communication messages, defined by Σα ≡ Πi∈αΣi, where {Σi}i∈α is a
set of possible messages for agent i.

There is only one reward function now, that directly incorporates the cost of communication.

The policies are defined as follows:

Communication policy for a COM-MTDP A communication policy for a COM-MTDP is a map-
ping from the extended belief state space to communication messages, i.e. πiΣ : Bi → Σi

Joint communication policy for a COM-MTDP A joint communication policy for a COM-MTDP
is a tuple of communication policies, one for each agent.

Joint policy for a COM-MTDP A joint policy for a COM-MTDP is a pair consisting of a joint
domain-level policy and a joint communication policy, < παΣ, παA >.

Solving a COM-MTD Finding a joint policy that maximizes the expected total reward.

3.1.3 Equivalence and Complexity Properties

It has been proven that a non-deterministic Turing machine can solve any instance of a DEC-POMDP
in at most exponential time. This means that DEC-POMDP is NEXT-complete.

One can determine the complexity of the other models (except I-POMDP) by showing that they are
equivalent, where equivalence is defined as follows:

Equivalence of models: Two models are called equivalent if their corresponding decision problems
are complete for the same complexity class.

5



Instead of converting the models to decision problems and then finding a proof for the completeness,
it can be simply shown that the two obtained decision problems are reducible to each other in some
specified time.

Here is an example of showing that DEC-POMDP and MTDP are equivalent. The only syntactical
difference is the estimator function in MTDP, which maps observations to belief states. In a MTDP,
agents remember all local observation received from other agents i.e. the resulting belief states in
the MTDP are simply lists of observations. If we look at the estimator function in this simplified
way, we can see that it implicitly exists in a DEC-POMDP, too.

It can be proved that DEC-POMDP, MTDP, DEC-POMDP-COM and MTDP-COM are all reducible
to each other after redefining the models without changing their semantics. This means they are all
NEXT-complete.

Unfortunately, I-POMDP is likely to be at least as hard to solve as DEC-POMDP, even though it
expresses more information about the world. It has a problem of nesting beliefs. A second agents
belief might also include a belief over the first agents belief and so on. This makes finding optimal
solutions very complicated.

3.2 Joint full observability

This category includes a model called DEC-MDP (decentralized Markov decision process) which is
simply a DEC-POMDP with joint full observability. Each agent still has only partial observability
of the world, but the joint observations of all the agents provide full information about the world.

DEC-MDP is NEXT-complete, but the complexity can be reduced by making some variations to the
model and changing its decentralization level.

3.2.1 Factored MDPs

One of these variations is factoring the world state into n+ 1 components S = S0 × S1 × ...× Sn
where n is the number of agents involved. The s0 state describes the worlds external features and
the other ones describe the local state of agent i. Making such a discrimination guarantees the local
state of agent i to be only dependent on its private state features and on the external features.

In the next step, the agents transitions and observations are made independent from those of the other
agents. i.e. the agent is able to determine the local state given its local observation. This changes
the models decentralization level and makes the factored DEC-MDP locally fully observable.

In addition, the model can be made reward-independent i.e. the overall reward is composed of a
function of the local reward functions, each of which depends only on the local state and local
action of one of the agents. Maximizing each of the local reward functions individually is sufficient
to maximize the overall reward function.

Taken into account that the model is transition, observation and reward independent, it can be de-
composed into n independent local MDPs and making the problem P-complete.

If one of those independencies is missing though, it is not that easy to reduce the complexity.

3.2.2 Problematic sub-classes of Factored MDPs

An important subclass of a factored, locally fully observable DEC-MDP is one with no reward
independence. The reward function has a specific form in such cases.

It consists of two different components. The first is a set of local reward functions that are indepen-
dent. The second component is an additional global reward that depends on the actions of all the
agents. Such a model is NP-complete and can be applied to settings where the whole system gets a
reward after multiple agents have successfully completed a task.

A good example of such a system is the mentioned rover mission on Mars. The rovers have in-
dependent transitions and observations. They have isolated tasks to fulfill for which they get their
own independent reward but sometimes they have to work together for example when building a
3D model of an area, where every agent can only take pictures of one part. Completing a task that
involves joint planning requires a separate reward that depends on the actions of all the agents.

6



3.3 Full observability

MMDP (multi-agent Markov decision process is a DEC-POMDP with full observability)

An MMDP is a straightforward extension of the completely observable MDP model for multiple
agents where a single action is replaced by a vector of actions. The complexity is though the lowest
possible, P-complete.

The mapping from states to actions in the transition function of the DEC-POMDP becomes a map-
ping from observations to actions, since we assume that the agents can now observe all available
information.

What is interesting about this model is that it can be achieved by different combinations of observ-
ability and communication between agents. Full observability always guarantees a MMDP problem
but so does joint full observability combined with free communication. Allowing the agents in a
DEC-MDP to freely communicate with each other whenever they want without any costs for their
communication messages implies they achieve full observability. They can obtain any information
that is available, simply by communicating with each other. This reduces the planning problem to
the solution of a MMDP.

4 Optimal solutions

A policy of agent i can be represented as a policy tree qi ∈ Qi. It is a decision tree, where nodes
are labeled with actions and arcs are labeled with observations. The total number of possible policy
trees Qi for agent i is the number of possible ways to assign different combinations of actions. This
means that the tree grows exponentially. In addition, the problem is also exponential in the number
of agents, as the number of joint policies is the product of the number of possible policies for all
agents. Different algorithms take different approaches in order to reduce the exponential blowup.

4.1 MAA∗ a heuristic search algorithm for DEC-POMDPs

4.1.1 Approach

The algorithm finds an optimal joint policy for a DEC-POMDP. It is based on the search algorithm
A∗ and searches through the space of possible joint policies. Heuristics are used to make it more
effective. A following representation is used:

qti is a depth-t policy tree for agent i and δt = (qt1, ..., q
t
n) is a policy vector of trees, one for each

agent. T -depth means that the agents have been acting for a t fixed number of steps. V (s0, d)
denotes the expected value of executing policy vector d from state s0. Finding the optimal policy is
thus identical to finding a policy vector that maximizes V (s0, d).

The algorithm works as follows: A policy vector of trees is built, where nodes of the tree at level
t correspond to partial solutions of the problem for all the agents, namely policy vectors obtained
from t steps. The algorithm searches through this space of policy vectors, but not all nodes at every
level are fully expanded. Instead, a heuristic function is used to evaluate the leaf nodes of the search
tree. The node with the highest heuristic estimate is expanded in each step.

The figure below illustrates the algorithm for 2 agents with horizon 3. Each of them can have one of
the two observations {o1, o2} and choose one of two actions {a, b}.
Suppose that the horizon 2 policy for agent 1, δ2

1 is described by the corresponding policy tree q2
1 .

This means that in the first step, agent 1 should pick action a. In the second step, if it has observed
the observation o1 it should choose action a, otherwise b. The analog mechanism applies to agent
2. Its horizon 2 policy is reflected by the policy tree q2

2 . For both agents, these are only one of the
possible policies for horizon 2. This makes the policy tree vector δ2, where it is simply a vector of
the two chosen individual policies, also only one of the possible solutions to this 2-agent problem.
Assuming the aim is to find a solution for horizon 3, the horizon 2 policy vector trees need to be
expanded. This is where the heuristic comes into the picture. Only the nodes, alias horizon 2 policy
vectors, with the best heuristic estimate will be chosen for expansion to horizon 3. In this figure,
this node happens to be the described policy vector tree. After making the optimal node choice, the

7



agents’ individual horizon 2 policy trees are expanded. This leads to all possible horizon 3 policy
vector trees that could be obtained from the chosen horizon 2 node.

Figure 1: A section of the multi-agent A* search tree, showing a horizon 2 policy vector with one
of its expanded horizon 3 child nodes (courtesy of Daniel Szer)

4.1.2 Effectiveness

So far, the MAA∗ algorithm runs out of time relatively fast when computing higher horizons.

4.2 Dynamic Programming for DEC-POMDPs

4.2.1 Approach

The main idea of dynamic programming for DEC-POMDPs is to incrementally search through the
space of possible policies, pruning dominated policies as early as possible in the construction process
to avoid the exponential blowup.

(Dominated policy trees) A policy tree qj ∈ Qt with corresponding value vector vj ∈ V t is consid-
ered dominated if for all b ∈ B there exists a vk ∈ V t\vj such that b · vk ≥ b · vj .
This can be described as follows: B is here a state set that consists of all possible beliefs about the
current state. qj is a policy tree for agent i. Each such policy tree has a corresponding value vector
vj made up of all rewards received while pursuing the policy corresponding to that particular tree.
Such a tree is considered dominated if for all possible beliefs about the current state, there is a value
corresponding to that belief state and the pursued policy, such that it is higher or equal to any other
policy.

4.2.2 Effectiveness

Unfortunately, the dynamic programming algorithm runs out of memory after the 4th iteration due
to the rapid growth in the number of policies trees.

8



5 Approximate solutions: Sub-solution for Multi-agent Planning with
Factored MDPs

5.1 Motivation

This section illustrates a near optimal solution to a multi-agent planning problem using the notion
of factored MDPs. The main idea is to avoid the exponential blowup in the state and action space
that you achieve when you search through a joint policy tree to find the best one.

5.2 Approach

5.2.1 Factoring

In case of a single MDP, solving it means finding a policy that maximizes the value function. In this
approach, we factor the joint value function of all agents into local value functions. They can be
approximated as a linear combination which can be solved efficiently by a single linear program.

The local value function for each agent is the sum of an immediate reward and a value that they
expect to receive one step in the future.

The key of this approach is to notice that the action, current and future states of an agent depend only
on a small collection of variables (states, actions), namely only the ones belonging to a small set of
agents. This means that the action space as well as state space can be factored into local state/action
spaces that depend only on a small subset of variables. We thereby avoid the exponential blowup in
the state and action space. This reduces the complexity of finding the immediate reward and value
expected to receive one step in the future, thus simplifying the calculation of a local value function.

5.2.2 Approximating value functions

Here is an example of how a joint value function for such a factored MDP can be optimized to a
form in which it can be solved by the linear program. We can imagine this as follows:

A collection of agents is presented where each agent i chooses an actionAi. Each agent i has a local
Q function Qi, which represents its local contribution to the total utility function. The joint value
function is denotedQ =

∑
Qi and depends on the agents’ actions. The agents have to work together

and coordinate their actions. This can be represented using a coordination graph. There is a node for
each agent and an edge between two agents if they must directly coordinate their actions to optimize
some particular Qi. The task is now to select a joint action that will maximize the value function
Q. The key idea is that, rather than summing all functions Qi and then doing the maximization, we
maximize over the action variables ai one at a time.

Suppose that the joint Q function that is to be maximized looks as follows:

Q = Q1(a1, a2) +Q2(a2, a4) +Q3(a1, a3) +Q4(a3, a4)

where Q1(a1, a2) implies that the Q function of agent 1 depends on its own actions as well as the
actions of agent 2. This leads to this coordination graph:

Figure 2: Coordination graph for a 4-agent problem

9



1. The functionQ can be optimized by maximizing over one of the ai ’s at a time. This means
that only summands involving ai participate in the maximization. The optimization for
agent 4 looks as follows. To optimize A4, functions Q3 and Q1 are irrelevant. This leaves:
max(a1,a2,a3)Q1(a1, a2) +Q3(a1, a3) +max(a4)[Q2(a2, a4) +Q4(a3, a4)]

2. Agent 4 can summarize the value that it brings to the system in the different circumstances
using a new function e4(a2, a3), having one fewer agent and whose value at the point a2,
a3 is the value of the internal max expression. The problem reduces to computing:
max(a1,a2,a3)Q1(a1, a2) +Q3(a1, a3) + e4(a2, a3).

3. Next, agent 3 makes its decision, giving: max(a1,a2)Q1(a1, a2) + e3(a1, a2), where
e3(a1, a2) = max(a3)[Q3(a1, a3) + e1(a2, a3)].

4. Agent 2 now makes its decision, giving:
e2(a1) = max(a2)[Q1(a1, a2) + e3(a1, a2)].

5. Agent 1 can now simply choose the action a1 that maximizes e1 = max(a1)e2(a1).

The maximizing set of actions can be recovered by performing the entire process in reverse: The
maximizing choice for e1 selects the action a∗1 for agent 1. To fulfill its commitment to agent 1,
agent 2 must choose the value a∗2 which maximizes e2(a∗1). This, in turn forces agent 3 and then
agent 4 to select their actions appropriately. The cost of computing this maximization is linear
and overcomes the exponential blowup in the state and action spaces. This leads to the conclusion
that the algorithm’s complexity is linear as well. The size of the linear program used to solve the
maximization problem is dependent on the width of the corresponding coordination graph used by
the agents to negotiate their action selection. The wider the graph, the more dependencies there are
between the agents and the single Qi functions depend on more ai’s.

6 Conclusion

As one can easily see, the models used to solve a multi-agent planning problem depend strongly on
the level of observability and communication between agents i.e. level of decentralization.

These models have different complexities which are inherently dependent on the level of decentral-
ization, as well. In case of models with full observability, it does not matter if we change the type
of communication between agents because they can already observe all the available information.
The problem occurs when the observability is limited. If the agents are able to communicate freely
without any cost, the problem can be described by a model belonging to a lower complexity class.
An example is the DEC-MDP, which becomes an MMDP given free communication. We have seen
that there are optimal algorithms for solving decentralized planning problems, but most of them
run out of time or memory for bigger horizons, more agents etc. This leads to the idea to create
approximate algorithms that provide sub-optimal solutions, but function for larger settings. Such
an example is the introduced algorithm for factored MDPs. Another idea for approximate solution
is to combine optimal algorithms to create approximate ones, that function for larger settings. An
example is combining the heuristic approach of MAA* to identify relevant belief sates and dynamic
programming, that can then evaluate the policy trees and select the best joint policy.

The aim to solve a multi-agent decision problem is to reduce the complexity as much as possible
and look for approximate algorithms that provide solutions that are accurate enough for the situation
but do not fail on slightly bigger settings.

References

[1] Sven Seuken and Shlomo Zilberstein (2008). Formal Models and Algorithms for Decentralized Decision
Making Under Uncertainty. In Journal of Autonomous Agents and Multi-Agent Systems, 17:2, pp. 190-250

[2] Carlos Guestrin, Daphne Koller and Ronald Parr. Multiagent Planning with Factored MDPs; In Advances
in Neural Information Processing Systems (NIPS-14), pp. 1523 - 1530, Vancouver, Canada, December 2001.

[3] Kaelbling, L. P., Littmann, M. L., and Cassandra, A. R. (1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(2), 99134.

10



[4] Nair, R., Pynadath, D., Yokoo, M., Tambe, M., and Marsella, S. (2003). Taming decentralized POMDPs:
Towards efficient policy computation for multiagent settings. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI) (pp. 705711). Acapulco, Mexico, August 2003.

[5] Carnegie Mellon University, Robotics Institute, Projects. MoCHA

[6] Multiagent Planning: A Survey of Research and Applications. Brad Clement, Artificial Intelligence Group,
Jet Propulsion Laboratory, California Institute of Technology. Keith Decker, Dept. of Computer and Informa-
tion Sciences, University of Delaware

[7] Pynadath, D. V., & Tambe, M. (2002). The communicative multiagent team decision problem: Analyzing
teamwork theories and models. Journal of Artificial Intelligence Research (JAIR), 16, 389423.

11


	Introduction
	Motivation
	Tiger problem
	Real-world examples

	Classification criteria of multi-agent planning models
	Observability
	Communication

	Theoretic models
	Partial observability
	No communication
	General communication
	Equivalence and Complexity Properties

	Joint full observability 
	Factored MDPs 
	Problematic sub-classes of Factored MDPs

	Full observability 

	Optimal solutions 
	MAA* a heuristic search algorithm for DEC-POMDPs
	Approach
	Effectiveness

	Dynamic Programming for DEC-POMDPs
	Approach
	Effectiveness


	Approximate solutions: Sub-solution for Multi-agent Planning with Factored MDPs 
	Motivation
	Approach
	Factoring
	Approximating value functions


	Conclusion

