An Introduction to Temporal Difference Learning

Florian Kunz
Seminar on Autonomous Learning Systems
Department of Computer Science
TU Darmstadt
fkunz@sim.tu-darmstadt.de

Abstract

Temporal Difference learning is one of the most used approaches for policy
evaluation. It is a central part of solving reinforcement learning tasks. For
deriving optimal control, policies have to be evaluated. This task requires value
function approximation. At this point TD methods find application. The use of
eligibility traces for backpropagation of updates as well as the bootstrapping of
the prediction for every update state make these methods so powerful. This paper
gives an introduction to reinforcement learning for a novice to understand the
TD(\) algorithm as presented by R. Sutton. The TD methods are the center of this
paper, and hence, each step for deriving the update function is treated. Starting
with value function approximation followed by the Bellman Equation and ending
with eligibility traces. The further enhancement of TD in form of linear-squared
temporal difference methods is treated. Both methods are compared in respect
to their computational cost and learning rate. In the end an outlook towards
application in control is given.

1 Introduction

This article addresses the machine learning approach of temporal difference. TD can be classified
as an incremental method specialized in predicting future values for a partially unknown system.

Temporal difference learning is declared to be a reinforcement learning method. This area of ma-
chine learning covers the problem of finding a perfect solution in an unknown environment. To be
able to do so, a representation is needed to define which action yields the highest rewards. Intro-
ducing value functions gives the ability to represent rewards of actions and their distribution in the
future. As machine learning is likely to be applied on huge systems the value functions have to be
represented by an approximation. The use of linear functions for this task has the advantage that the
resulting systems can be solved more easily.

TD methods calculate value functions, or approximations of these. The methods differ from other
approaches as they try to minimize the error of temporal consecutive predictions instead of an overall
prediction error. A core mechanism to achieve this is to rewrite the value function update in form of
a Bellman Equation. Allowing the approach to enhance the prediction by bootstrapping. This effect
reduces the variance of the prediction in each update step. Giving the methods a property, important
for value approximation. Another trick of TD methods to achieve backpropagation of updates, while
saving memory, is the application of a eligibility vector. The sample trajectories are utilized more
efficiently, resulting in good learning rates.

LSTD methods are an enhancement of the original methods, using the mean squared error instead of
a gradient descent approach to minimize the error of the prediction. the LSTD algorithm eliminates
the need for a step size factor, while at the same time increasing the learning rate. However the
number of computations needed is significantly higher compared to the TD method.



The article is organized as follows: the second section gives an overview of reinforcement learning
pointing out the problem for tasks of this character. To establish a common ground for handling
TD methods, basic definitions of this field are given. Section 3 treats temporal difference methods
for prediction learning, beginning with the representation of value functions and ending with an
example for an TD()) algorithm in pseudo code. Section 4 introduces an extended form of the TD
method the least-squares temporal difference learning. Ending with Section 5 by taking an outlook
how TD methods can be used in control problems.

2 Introduction to Reinforcement Learning

The basic idea of reinforcement learning is to utilize the huge information gain of learning in a
previously unknown area. The application of supervised learning methods is limited to systems
that can be interpreted clearly using samples evaluated by an external supervisor. Reinforcement
learning does not depend on preprocessed data, it derives knowledge from its own experience.

Reinforcement learning deals with the problem of mapping states of a system to actions that will
maximize a numerical reward for the agent. Every action effects the future rewards an agent can
achieve, rendering reinforcement learning such a complex problem.

A main characteristic of reinforcement learning is the trade-off between exploration and exploitation.
On the one hand the learner wants to reliably maximize the reward of future actions, which is done
by picking a known action with the highest reward so far. On the other hand the agent should
explore new actions in order to find the action resulting in the highest reward. The unique feature of
reinforcement learning is the principle of trail and error in order to discover the best actions. Another
feature is the handling of delayed rewards. An action taken by the learner may result not only in an
immediate reward, but also have effect on all future rewards. This effect results in a very complex
dynamical system.

The core problem of reinforcement learning is evolving a mapping of states to actions yielding the
highest reward. The policy 7 of an agent describes the mapping from states to actions as a set of
probabilities. For each state s it holds the probabilities 7(a|s) for selecting a possible action a .

Reinforcement learning describes a class of problems, it is not characterized as a class of learning
methods. A method for supervised regression learning may also fit the requirements of reinforce-
ment learning. In order to be able to apply these machine learning algorithms to systems of states,
actions and rewards, these have to be modeled. Typically a Markov Decision Process is used for this
purpose.

2.1 Markov Decision Process

A process with the Markov Property is called memoryless as the transition probabilities for future
states depends solely on the current state of the system. None of the preceding states will give
an advantage in form of further knowledge when predicting the next state and the corresponding
reward. In [SuttonBarto98] this fact is illustrated with a game of checkers. In this case the state
of the process can be modeled by the configuration of all pieces. Further Knowledge about the
sequence of positions which led up to this configuration do not influence the future of the game.

Formally the Markov Property can be displayed under the assumption of a process with finite states,
actions and rewards. While in the general case the probability distribution of future states is a
function of all past states

!
Pa(st41 =8, re41 =784,04,7¢,8t-1,a-1,T¢—1, - - -, 50, Q0),
in a process having the Markov Property it is a function only of the current state
/
Pur(st41 = 8", me401 = 7| 54, a1),

for all s’, 7, s;, a; and all possible s;_1,a;_1,7¢_1, ..., S0, ag. A process has the Markov Property,
if P equals Py, for all possible states and past states.

A reinforcement learning task can be modeled as a Markov Decision Process (MDP), which is a
stochastic process satisfying the Markov Property. The MDP is composed of state and action spaces.
A finite Markov Decision Process only holds a countable number of states and actions.



Whether a problem runs infinitely long or is guaranteed to terminate in an finite amount of time
affects the choice of MDP. The model can be episodic, meaning it will at some point enter a terminal
state and never leave it again. The sequence of states leading up to entering the terminal state is called
episode. In case the terminal state will be reached after a fixed number of states, this is called a finite-
horizon task. For a indefinite-horizon task the length of the episode is not limited by a fixed number.
Problems that could run for infinite time without termination are called infinite-horizon tasks and
need to be captured in a ergodic model. In contrast to episodic MDPs there is the possibility that the
system will never enter a terminal state. This circumstance demands that a subsection of the model
has the characteristic that each state can be reached from any other state.

This article is restrained to the definition of a finite MDP. It is formally defined as
M= (S, A,P,R,7), consisting of sets of states S = {s1,82,...,8,} and actions A =
{a1,a2,...,a,}. v € [0,1] denotes a discount factor, for discounting future rewards. The set

P, = Pr{si1 =5'|s; = s,a; = a}
holds the probability for a transition from s to s’ when taking action a. Similarly
Riy = E{riyi1]|se = s,a0 = a, 8041 = SI}

holds the rewards for the transition (s % s’). P is also called a Markovian transition model. For a
given state-action pair the expected reward can be calculated to

R(s,a) = Y _ PLRY, (1)

s'eS
2.2 Value Functions

In reinforcement learning, the learner needs information about the quality of a state in order to find
an optimal policy. A value function V™ represents the expected future reward for a current state, if
the agent follows a policy 7. Based on the introduced MDP the state-value function can be formally
defined as

V7™ (s) = Ex{R¢|st = s} = E, {Z ’yerk Sy = s} . 2)
k=0

More specific, the action-value function describes the expected reward for taking action a in state s
and then following policy 7

Q7 (s,a) = Ex{R¢|s; = s,a, = a} = E, {Z'ykrt+k S¢ = S, ap = a} . 3)

k=0

While the state-value function calculates the sum of all possible actions multiplied by their proba-
bility, the action-value function calculates the reward for an explicit action a at time step ¢ in state
s. The action-value function is based on a proper policy of state-action pairs. Policy evaluation is
based on this calculation.

The connection between the state-value function and the action-value function is displayed by
Vi(s) =Y _m(s.a)Q"(s,a). )

V7™ denotes a mean expectation of the future reward over all possible actions a, weighted by the
probability distribution 7(a|s). Q™ represents an actual reward for a fixed choice of actions.

Taking a closer look at the state-value function it is not only possible to calculate the expected reward
for a state at a given time and future policy, but also to do this incremental, basing each calculation
on the result of the preceding update.

V7(s) = Ex{re + 7V (5141) | 51 = s} )
=Y s,0) > Pe Ry + V()

Equation (5) shows the Bellman Equation. Solving the linear system returns the explicit values for
V7. However for large trajectories the computation is expensive and requires knowledge of the
complete trajectory to the last state.



2.3 Linear Function Approximation

To be able to apply reinforcement learning on real problems there is need for a representation that is
capable of holding all possible states in an efficient way. Until now, V' was assumed to be represented
as a lookup table without awareness for use of memory. For tasks with a huge number of states a
representation is needed that generalizes well, while being memory efficient.

In machine learning, the standard approach for representing values is a linear function approxima-
tion. Introducing a feature vector ¢(s), holding linear basis functions, and a parameter vector 6,
used to align the functions, the value function can be approximated as

V(s) ~ Vy(s) = 0" ¢(s) (6)

The dimensionality of the parameter vector # € R¥ is equal to the number of features K of the
function ¢(s). For most tasks the features are hand picked, using expert knowledge. The major
advantage using linear function approximation is the dimensionality reduction from the number of
states to a fixed number of basis functions K. However the dimensionality reduction also causes
an approximation error. ¢(z) can only capture a finite number K of linear functions, resulting in a
limited precision and hence an error in state representation.

3 Temporal Difference in prediction learning

Temporal Difference methods find application in reinforcement learning tasks. In [SuttonBarto98],
three classes are listed to solve these tasks: Dynamic Programming, Monte Carlo methods and
Temporal Difference Learning, of which the latter is called the most central and novel idea in rein-
forcement learning.

Dynamic Programming is based on the Bellman Equation and breaks down a problem into subprob-
lems. Dividing a big task into smaller steps, this approach is depending on a perfect model of the
environment.

Monte Carlo methods do not need a model of the learning environment. From experience in form
of sequences of state-action-reward-samples they can approximate future rewards. However the
methods only update after a complete sequence, when the final state is reached. The Markov Return
is defined as:

-1
Re= Z Y R = e T2 Vs o Ay T ey (N

i=t

Temporal Difference methods combine both procedures - there is no need for a model of the learning
environment and updates are available at each state of the incremental procedure. The method learns
directly from the raw experience in a partially unknown system with each recorded sample.

An often used example is the weather forecast for a future day, lets say Saturday. In [Sutton88]
it is pointed out that learning to predict Saturday’s weather from a earlier day by evaluating the
prediction using the actual outcome is a supervised learning approach. In this scenario the change
of weather over the course of time leading up to Saturday is ignored, only the forecast from the time
the prediction was made is compared to the weather at Saturday. Taking the approach of Temporal
Difference methods all days from the time of prediction up to Saturday are taken into account. In
the process of learning, this means that the prediction of Saturday’s weather at one day is compared
to the succeeding prediction and an increment is calculated to adjust the prediction. TD methods
are called bootstrapping methods, as they do not learn by the difference to the final outcome but
the difference between each update step. Instead of a single update, TD methods calculate 7' — 1
updates for a episode of 7' time steps.

The TD method aims to achieve a approximation V" as close to the value function V'™ as possible.
The error of the approximation can be measured by the mean squared error function

MSE(9) = - Y (V7 (50) = V7 (s0))* ®

i=1



By minimizing the mean squared error the approximation of the value function can be optimized.
As V™ (s) is unknown, it is estimated by applying Equation (5) on the current approximation V"

V™(st) = E{re + Vg (se41)} - (€))

The application of the Bellman Equation is the core idea of Temporal Difference Learning and allows
to calculate the error denoted by Equation (8). However analytic computation of the minimum of
the error is not possible for systems with huge state spaces. Instead, a local minimum is searched
numerically by Stochastic Gradient Descent. The method calculates new search positions 6’ by
following a approximation of the gradient of the error function. A learning rate factor « is used to
adjust the step size of the SGD method and prevent overshooting.

0 =0 — aVMSE(0)
=0 — Vi (si) = V7 (s:)] Vo, Vo, (50)- (10)
The value function approximation applied on Equation (10) results in a sum, calculating the gradient.

To reduce the number of computations needed, the gradient is approximated by ¢(s;). The update
function of the TD learning method can be displayed as:

9t+1 = Gt + a5tet (ll)
6 = re1 + Vo, (se41) — Vo, (s1)
et = ¢(st).-

The vector §; denotes the temporal difference. By comparing the prediction at the current state
Vo, (s¢) to the prediction of the next state Vp, (s;+1) the temporal difference d, is used for adapting
the prediction itself. This behavior is called bootstrapping. The variance of the approximation is
limited at each update by this correction.

The vector e; denotes the approximation of the gradient Vy, Vj,. It can be pictured as the algebraic
link along which the update is propagated. For this formulation the update resulting from the TD
error only effects the current state s;. Learning by this equation takes long, as the rewards only
propagate one state with each update.

To speed up the process of reward propagation, eligibility traces are introduced. This vector allows
the method to carry rewards backward over the sampled trajectory without the need to store the
trajectory itself. The reach of this effect is depending on the factor A € [0, 1]. The eligibility traces
replace the approximation of the gradient in Equation (11) with

¢
er = Z )\t_k‘/{get (sk)-

k=to

The backpropagation of rewards using eligibility traces is a basic mechanism of TD methods. The
factor \ determines the degree to which extend the changes are propagated. For application on real
tasks the value of A is of such importance that the algorithm is named TD()). The algorithm is
displayed as pseudo code in Algorithm I following [Boyan2002] for the example of linear approxi-
mation of the undiscounted value function of a fixed proper policy.

The TD method is modified by A so much that for A=1 the method yields the same results as super-
vised linear regression learning on Monte Carlo returns, while a A=0 results in a one-step lookahead.
The behavior for A=1 is problematic for value function approximation. Monte Carlo returns repre-
sent all states traversed by looking at the complete trajectory from ¢ to T', as shown in Equation (7).
A large variance results from observing the long stochastic sequence of all future states. On the
opposite the TD(0) algorithm has low variance, but uses samples inefficiently, as with each update
the reward only propagates to the next state.

The TD(A) algorithm has to be adapted for each task by tuning the step size parameter « to achieve a
low error. Furthermore the choice of the A value has influence on the error, as well as the efficiency
of the use of samples. The step size factor is also a source of error. In a worst case scenario a poorly
chosen « factor corrupts the minimum search by SGD. In the next chapter the dependency on a step
size factor is eliminated by the introduction of linear least-squares temporal difference learning.



Algorithm 1: TD(\) for approximate policy approximation:

Data: a simulation model for a proper policy 7 in MDP M.

. . f
a feature function ¢ : S — R, mapping states to feature vectors, ¢(T") e 0;

a parameter A € [0, 1]; and
a sequence of step sizes o, as, ... for incremental coefficient updating.

Output: a coefficient vector 6 for which V7 (s) ~ 87 ¢(s).

Set @ := 0 (or an arbitrary initial state), ¢ := 0.

forn:=12,... do

Set d :=0.

Choose a start state s; € S.

Set e; := d(sy).

while s; = T do
Simulate one step of the process, producing a reward 7; and next state ;1.
Setd =6 + et(rt + (¢(St+1) — ¢(Sf))T0)
Set €ty1 = )\et + ¢)(St)
Sett:=t+ 1.

end

Set 0 :=0 + «,,0.

end

4 Least-Squares Temporal Difference Learning

The LSTD algorithm introduced by [BradtkeBarto96] eliminates the need of adapting a step size
factor ov. Furthermore, it improves the learning speed compared to TD by utilizing samples more
efficiently. The function approximation introduced in Equation 4 limits the value function represen-
tation to linear functions, satisfying the limitation for the application of LSTD. In [BradtkeBart0o96]
the LSTD algorithm is introduced with the limitation of A=0. An extended algorithm LSTD(}) is
presented in [Boyan2002].

Applying the limitation to linear functions ¢(s) the TD learning rule in Equation (11), for conver-
gence analysis can be rewritten in the form 6 := 6 + «,,(d + C6 + w), resulting in:

T T
d:E{Zem}; C ZE{Zei((b(SiJrl) —¢(Si))T} , (12)
i=0 i=0

where d € R¥ and dim(C) = K x K. The vector w denotes a zero-mean noise vector of dimension
K. Proof for the convergence of 6 to a fixed value 05, satisfying d + C6, = 0 is given in [Bert-
sekasTsitsiklis96]. In the course, it is shown that C is negative definite and that w has only small
variance from its zero-mean, which combined with the requirement for a decreasing step size o,
results in the above stated. The TD algorithm does not store sampled trajectories, and hence, wastes
data which results in a low learning speed.

The LSTD()) algorithm does not perform gradient descent, but builds explicit estimates of C and b
and stores them between trajectories. The algorithm directly solves the equation d + C#, = 0. The
estimates calculated are denoted as:

t t
b=> emr; A=) elo(si)—d(si)) (13)
=0 =0

The algorithm converges after n independent sample trajectories to unbiased explicit estimates
b = nd; A = -—nC.
Using Singular Value Decomposition the inverse of A can be computed in order to solve the equation
0y = A7 'b.

In [Boyan2002], it is stated that the LSTD(\) algorithm for A=1 produces the same results as the
supervised linear regression method, trained on Monte Carlo results. For A=0 the algorithm per-
forms as the LSTD algorithm presented by [BradtkeBarto96]. The LSTD(\) algorithm is shown in
pseudocode in Algorithm 2, to illustrate the update steps.



Algorithm 2: LSTD(\) for approximate policy approximation:

Data: a simulation model for a proper policy 7 in MDP M;

. . f
a feature function ¢ : S — R, mapping states to feature vectors, ¢(T") e 0;

a parameter A € [0, 1]; and
a sequence of step sizes o, as, ... for incremental coefficient updating.

Output: a coefficient vector 6 for which V7 (s) ~ 87 - ¢(s).

Set A:=0,b:=0,t:=0.

forn:=1,2,... do

Choose a start state s; € S.

Set € = ¢)(St)

while s; # T do
Simulate one step of the chain, producing a reward 7; and next state s; .
Set A := A+ ey (p(s) — P(s141))7.
Setb:=b+ €:Tt.
Set ery1 := Aer + P(St41)-
Sett:=t+ 1.

end

Whenever update coefficients are desired: Set 6 := A~ 'b.

end

The LSTD()) algorithm calculates a matrix inversion at the cost of O(K?) for every update of 6.
The update is most likely needed for every sampled trajectory. Furthermore the computation costs
per time step are of O(K?). Compared to the TD()) algorithm the amount of computation is much
higher, as the TD() algorithm updates its coefficients at a linear cost of O(K). For larger numbers
of features K the LSTD()) algorithm causes significantly more computational load. Compensating
this disadvantage, [BradtkeBarto96] lists the significant advantages. The TD(\) algorithm can
reuse trajectories for learning to compensate for the inefficient use of the samples. LSTD()) is data
efficient, hence there is no need for reusing samples. Using less samples the LSTD(\) algorithm
converges faster than TD(\). Another advantage is the omission of the step size parameter. On the
one hand an advantage in usability is achieved by eliminating the need for tuning the parameter. On
the other hand the LSTD(\) algorithm can not be slowed down by a bad choice of parameter.

5 Application to control problems

LSTD makes efficient use of sample data and converges faster than other temporal difference meth-
ods. However it is limited to prediction learning problems, as stated in [LagoudakisParr2003].
LSTD can be used for approximating the state-value function, however with out a model this knowl-
edge can not be utilized for policy search. The method of policy iteration is an approach to the
control problem in reinforcement learning. It is based on a loop of policy evaluation and policy
improvement. To apply the idea of TD methods in policy evaluation, the LSTDQ algorithm is in-
troduced. The algorithm learns an approximation for the action-value function, where as the TD(\)
algorithm approximates the state-value function. For the computation of V'™ sample trajectories of a
policy where given. The LSTDQ algorithm is given a source of sample sets of the form (s, a,r, ")
from which it picks training samples arbitrarily. By this method the action-value function of different
policies can be approximated using the same source of samples.

The same way the representation of state-value functions was realized by a linear function approxi-
mation it is possible to represent action-value functions as

Q" (s,a) = Q" (s, a; w).
where w denotes the adjustable parameter vector of the approximation function. The LSTDQ al-
gorithm used in the policy evaluation step is based on the LSTD method presented in [Lagoudak-
isParr2003], requiring a linear representation of the value function

k
Q(s,a5w) = Y _ (s, a)w;. (14)
j=1



Policy improvement is not at the focus of this paper, for completeness a basic approach is presented.
The improvement is achieved by computing a greedy policy 7’ based on Q™ for all states s:
7’ (s) = argmaxQ" (s, a). (15)

acA

In the step of policy evaluation the LSTDQ algorithm solves the Bellman Equation for w. The
parameter vector is only updated after all samples have been learned. Learning from the samples,
the matrix A and the vector b are refined by the update rules

T T T
b= 6(sia;)ri; A=) o(si,a) (¢(5i>ai) - ¢(5i+17'77r(5i+1)> : (16)
i=0 i=0

After D is depleted the parameter of the linear function approximation is updated. This step re-
quires single value decomposition, which comes at a high computational cost, as mentioned for the
LSTD(\) algorithm.

w=A""b (17)
The updated action-value function is used in the policy improvement step, as depicted in Equation
(15), for computing a new policy 7/, which is inserted in Equation (16), closing the loop of policy
iteration.

With the LSTDQ algorithm displayed as pseudocode this paper leaves the reader to hit the ground
running and get a good start at understanding reinforcement learning roughly and temporal differ-
ence methods in particular.

Algorithm 3: LSTDQ for approximate policy evaluation:

. . . def
Data: j feature function ¢ : S — R, mapping states to feature vectors, ¢(T') =0;

a discount factor y €]0, 1];
a source of samples D; and
the policy 7, whose value function is sought

Output: a weight vector w for which Q™ ~ ¢w™.
Set A:=0,b:=0.

for (s,a,r,s') € D do
Simulate one step of the policy, producing a reward r and next state s'.
Set A 1= A + (s, ) [¢(s,a) — y¢(s',7(s")] "
Setb:=b+ ¢(s,a)r.

end

Set w™ := ;1_1 b.

References

[Sutton88] Sutton, Richard S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning 3: 9-44. Boston: Kluwer Academic Publishers.

[LagoudakisParr2003] Lagoudakis, Michail G. & Parr, Ronald (2003). Least-Squares Policy Iteration. Journal
of Machine Learning Research 4: 1107-1149.

[SuttonBarto98] Sutton, Richard S. & Barto, Andrew G. (1998). Reinforcement Learning: An Introduction.
Cambridge: MIT Press.

[BradtkeBarto96] Bradtke, Steven J. & Barto, Andrew G. (1996). Linear Least-Squares Algorithms for Tem-
poral Difference Learning. Machine Learning 22: 33-57. Boston: Kluwer Academic Publishers.

[Boyan2002] Boyan, Justin A. (2002). Technical Update: Least-Squares Temporal Difference Learning. Ma-
chine Learning 49: 233-246. Boston: Kluwer Academic Publishers.

[Dann2012] Dann, Christoph (2012). Algorithms for Fast Gradient Temporal Difference Learning. Au-
tonomous Learning Systems Seminar, TU Darmstadt.

[BertsekasTsitsiklis96] Bertsekas, D. & Tsitsiklis, J. (1996). Neuro-dynamic programming. Belmont: Athena
Scientific.



