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Abstract

In robotics good physical models are needed to provide appropriate motion
control for different types of robots. Classical robotics falls short, when
models are hand-crafted and unmodeled features as well as noise cause
problems and inaccuracy. Based on the paper Scalable Techniques from
Nonparametric Statistics for Real Time Robot Learning [4] by
Stefan Schaal, Christopher G. Atkeson and Sethu Vijayakumar this review
paper discusses the model learning problem, describes algorithms for locally
weighted learning and presents some real world applications.

1 Introduction

Motion-Control is one of the most important basic tasks in robotics. The classical robotics
approach, where a physical model of the robot is hand-crafted by an engineer before the
robot is actually used, quickly comes to its limits because of the lack of accuracy in the
model and noise caused by unmodeled features and change in characteristics due to envi-
ronmental influence. In classical robotics simple control laws (e.g. PID-Controller) are used
to compensate these errors.

In contrast the robot learning approach is to constantly learn and improve a physical model
of the robot using recorded data from the robots joints. The concept of self-improvement
has the flexibility to handle noise and unmodeled features. Hence, using learned models can
help generating better control-laws, thus motion-control tasks can be performed with higher
accuracy.

Challenges in model learning for robots are the high dimensionality of the problem (e.g up
to 90 dimensions for a humanoid robot) and the need to calculate and improve the model
in real-time given a continuous stream of data. Furthermore using on-line robot learning
on autonomous systems requires fast algorithms since high performance hardware usually
is not available.

There are many different learning methods to solve a learning problem. But since large
amounts of data has to be handled and inexpensive algorithms are preferred for on-line
model learning, not all of these can be applied to model learning for robots.

In this paper locally weighted learning methods (LWL) are described, which are suitable for
robot learning problems. Before the algorithms are presented in section 3, some foundations
of model learning are discussed in the next section which will also give a short overview
about statistics, different types of models and learning architectures. Finally real-world
model learning applications are described in section 4.



2 Foundations of Model Learning

This sections gives an overview about model learning. First the Model Learning Problem
and a solution using regression methods and gradient descent search are shown. Afterwards
different types of models are explained. At last learning architectures, which make use of
models, are described.

2.1 The Model Learning Problem

In robot control, generally different model learning problems are interesting.
These are:

e Forward Kinematics

x fla
= J(q)q (1)
= J(@dq+I(a)g
e Inverse Kinematics
a=f"'(z) (2)
e Forward Dynamics
4=M""(q)(u-c(q,q) - gla)) (3)
e Inverse Dynamics
u = M(q)da + c(4,q) + g(q) (4)

All of these model learning problems except the inverse kinematics can be solved using
regression methods. The forward dynamics equation 3 describes the joint accelerations q
given the applied torque u using the physical parameters M1, c(¢, q) and g(q). In contrast
the inverse dynamics equation 4 describes which torques have to be applied to the actuators
to achieve the desired joint accelerations qq. Hence, the task to learn a physical model of a
robot is to determine the parameters M, ¢(q,q) and g(q).

More generally the model can be written as:

y="fy(x) + e (5)

The function fy(x) can also be written as ¢(x)T@ with parameters 6 and features ¢. €
denotes Gaussian distributed noise.

The goal of model learning is to find parameters 6, so that a cost-function J is minimal. J
usually is defined as a least squares cost-function:

I=3 Z(yi — £5(x1))* (6)

Which can also be written as:

1
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To find parameters 6 with minimum cost-function J can be done with gradient descent
search (see section 2.1.1). A closed form for the solution can be derived from gradient
descent search and can be written as:

0=(6T¢) '¢TY (8)

Equations 5 to 8 show how a model learning problem looks like and how it can be solved
using basic linear regression methods.



2.1.1 Gradient Descent Search

Figure 1: Gradient Descent Search

Gradient descent search is an iterative method to find a local minima of a multi-variable
function F(x). The idea is to iteratively take small steps into the direction of the function’s
gradient at a certain point Xy, given a random starting point. The step-size can be modified
with a parameter . The iteration-step can be written as:

Xi1 = Xk — YVF (xk) (9)

Figure 1 shows how the gradient descent search methods works in a quadratic function.

2.2 Types of Models

The goal of model learning is to learn the behavior of the system given some observed
quantities. Therefore missing information has to be predicted. Depending on what kind of
information is missing, different types of models can be defined (see [1] section 2.1).

Forward Models predict a future state of the system sky1 given the current state
and action sk and ag. Since the forward model directly describes the physical properties
of the system, which represents a causal relationship between states and actions, learning a
forward model is a well-defined problem.

Inverse Models in contrast are used to compute an action ax which is needed to get
from state sk to sky1. Since this mapping in general is not unique, learning an inverse
model is not always a well-defined problem. But for a robot’s inverse dynamics it is
well-defined, thus the robot’s inverse dynamics model can be learned using regression
methods.

Forward and inverse models are the most important types of models. Although a
combination of both models can be useful. The forward model can help to create a unique
mapping for an inverse model learning problem. These models are called Mized Models.
Furthermore in some applications it is important to know not just the next state of the
system, but several states in the future. Models that provide this information are called
Multi-Step Predicton Models.



2.3 Learning Architectures

Depending on the type of model and the learning problem different learning architectures
can be defined. The learning architecture describes what quantities are observed to learn
the model (see [1] section 2.2).

Using Direct Modeling a model is learnt by observing the system’s inputs and out-
puts. The idea is to obtain the systems behavior and therefore the model by observing
an input action and the resulting output state of the system. This learning architec-
ture can basically be used to learn all types of models if the learning problem is well-defined.

An Indirect Modeling learning approach is feedback error learning, where a feedfor-
ward controller is being learned from a feedback controllers error signals. If the learned
forward model is perfect, the feedback controller will not influence the control system any
more, otherwise the error signal is used to update the model. Thus this learning architecture
always tries to minimize the error. Although it can deal with ill-posed problems such as
inverse kinematics learning. One drawback of this architecture is that it has to be applied
on-line in order to get the actual feedback controller’s error signals. Indirect Modeling can
be used to learn inverse models and mixed models.

In the Distal Teacher Approach a unique forward model acts as a teacher to obtain
an learned inverse models error and therefore help to update the inverse model. The goal
is to minimize the error. The idea is that the inverse model results in a correct solution
for a desired trajectory when the error between the output of the forward model and the
input of the inverse model is minimized. The Distal Teacher Approach can only be applied
for learning mixed models.

3 Locally Weighted Learning

Locally Weighted Learning (LWL) is one approach to learn models from training data. As
described before the aim is to find the function fy(x) in the model equation 5. The idea
of LWL methods is to approximate this non-linear function by means of piecewise linear
models. The main challenge is to find the region where the local model is valid (receptive
field). Here, for each linear model the following receptive field is used:

wy = exp(f%(x —ci) Dy (x — cx)) (10)

The advantage of LWL methods is that we do not need a feature vector ¢, which is usually
hand-crafted.
The remainder of this section describes four different LWL methods.

3.1 Locally Weighted Regression

Locally Weighted Regression (LWR) extends the standard regression method as shown in
equation 8 by a weight matrix which determines how much influence the data next to the
query point has to the local linear model. This only requires the learning system to have
sufficient training data in memory. Thus the model can easily be updated by adding new
training data. An algorithm for a prediction §4 for a query point x4 is shown below (Algo-
rithm 1). This algorithm seems quiet complex on a first view, but since the weigh-matrix
W ensures that data-points which are not close to the query-point will be equal zero, the
matrix multiplication and pseudo inverse simplifies a lot. Nevertheless the complexity rises
with the dimensionality of the system.

The not yet defined variable in the above algorithm is the parameter D which is the distance
matrix of the receptive field. Thus this parameter describes how big the region of validity
around a query-point is. D can be optimized using Leave-One-Out Cross Validation (Al-
gorithm 2), when sufficient training data is recorded. In purpose to reduce the number of
parameters, D is assumed to be a global diagonal matrix multiplied by a scaling factor h.
This scaling factor is now the only parameter to be optimized. Leave-One-Out Cross Vali-
dation predicts a value for a query-point which is left out of the training data and compares



Algorithm 1 Locally Weighted Regression

Given: xq (Query Point), p (Training Points {x;, y;})
Compute weight-matrix W:

wis = exp(—1 (x; — xq) TD(x; — xq))

Build matrix X and vector y such that:

X = (X1,X2...,%Xp)T where X; = [(x; — xq)T1]T
y=1yz2-.yp)"

Compute locally linear model:

B =(XTWX) 1 XTWy
Compute prediction xg:
S’q = BnJrl

the prediction afterwards to the actual sample value, resulting in an error. This is repeated
for all training points. The factor h is chosen to achieve a minimal error.

Algorithm 2 Leave-One-Out Cross Validation

Given: a set H of reasonable values h,
for all h, € H do

sse, =0
fori=1:pdo
Xq = Xj

Temporarily exclude {z;,y;} from training data
Compute LWR prediction y4 with reduced data
sse, = sse, + (Yi — Gq)*
end for
end for
Choose optimal b} such that hl = min{sse,}

3.2 Locally Weighted Partial Least Squares

Since the complexity of the LWR, Algorithm (Algorithm 1) rises with the input dimension-
ality LWR can be slow for higher dimensions. Furthermore the matrix inversion step can
become numerically unstable if there are redundant input dimensions. Locally Weighted
Partial Least Squares (LWPLS) takes care of these problems. In this approach Partial
Least Squares (PLS) is used to reduce the complexity of the problem. PLS is based on a
linear transition from the high dimensionality of the input to a new variable space based on
lower dimensional orthogonal factors. This means, that those orthogonal factors are inde-
pendent linear combinations of the original input. These projections are used to calculate
a prediction for a query-point (see Algorithm 3).

The only undefined parameter is the number of projections r. Since the squared error for

each new projection should be reduced, adding new projections can be stopped if the rate

2
of error reduction 53— < ¢ is not high enough any more. In [4] ¢ = 0.5 was used for all
i—1

learning tasks.



Algorithm 3 Locally Weighted Partial Least Squares
Given: xq (Query Point), p (Training Points {x;, y;})
Compute weight-matrix W:
wii = exp(—3(x — Xq) "Dt - xq))

Build matrix X and vector y such that:
X =3 P wiiXi/ Dy Wi
D
Bo = Dy wiiyi/ Doi_y wis
X = (X1,Xa2,... ,ip)T where X; = (x; — X)
y =01, 92, -, 8p)" where g; = (y; — fo)
Compute locally linear model:
Initialize: Zg = X,resg =y
fori=1:rdo
uj = Z,iT_IWI'eSi_l
si = Z}—ﬂli
;Wi i—
sTWZ;_,
bi = sTWs;
res; = resj_1 — si5;
Zi = Zi_1 — sipi
end for
Compute prediction xg:
Initialize: zp = xq — X, yq = Bo
fori=1:rdo
— 7T .
i S
Uq < Yq + Sibi
Z; = Z;_1—SiD;
end for

3.3 Receptive Field Weighted Regression

When training data is received constantly by the learning system like in on-line learning
scenarios, the data set becomes very large. In this case LWR and LWPLS fall short because
of high computational cost. Instead of computing a local model when a prediction has to
be made, Receptive Field Weighted Regression (RFWR) iteratively builds new local models
when training data is added. Thus the prediction for a query-point can be computed as the
weighted average over the predictions of all local models:

K .

Dkt WkYgk

Yq = K (11)
Zk:1 Wi

Algorithm 4 shows how the local models are updated. Like in LWL and LWPLS the only

Algorithm 4 Receptive Field Weighted Regression
Given: a training point (x,y)
Update K local models:
wy, = exp(—3(x — cx)TDk(x — cx))
ntl = B 4w PR Recy k

nz=Tpn
where % = [(x — cx)T1] and PPt = 1(Pk — % +XTPEx) and eqp i = (y —BQch)
Wk

Compute prediction xg:
Uk = Be X1

open parameter is the distance matrix D. Since REFWR uses several local models, we can
use a different distance matrix D for each of these models. In [3] the following cost-function



for a gradient descent update of D was used:

1 Wi||yi _ yin ,
— W 3T > Di» 12
Zi_l ij—1 (1 — WiX; Pxi)Z v 2 : j ( )

ij=1

Note that RWFR is kind of an incremental version of LWR, thus it also can not deal with
very high dimensional problems.

3.4 Locally Weighted Projection Regression

For higher dimensional problems LWPLS was used to reduce the dimensionality and there-
fore the complexity of the problem. Using LWPLS on-line with huge data-sets relates to
the problem of LWR which was solved there using incremental model updates leading to
RWFR. The idea of Locally Weighted Projection Regression is to formulate an incremental
version of LWPLS which can deal with high dimensionality and huge data-sets. Algorithm
5 shows how one local model is updated.

Algorithm 5 Locally Weighted Projection Regression

Given: a training point (x,y)
Update the means of inputs and outputs:
n+1 _ AW"xg+wx
Xo T T wmrr
vt = 20 iA e
where Wnt = \W™ 4+ w
Update the local model:
Initialize zo = x — xh 1 resg =y — ot
fort=1:rdo
ui"Jr1 = Aul + wz;_jresi_1
8; = z;r_luin+1
S8 = \SSP + ws?
SR = ASR? + ws?res;_y
SZ!M = \SZP + wzi_1s;

n+1 __ SR:'_H
BT = Ssm
n+1l __ SZ?+1
Pi = ge

_ n+1
Zi = Zi+1—SiP;

res; = res;_1 — siﬁfﬂ
SSEM = ASSEP + wres?
end for

Like in RFWR the distance matrix D is updated using gradient descent for each local model
(see [4]).



4 Model Learning Applications

In this section some very different model learning applications are shown. For every ap-
plication information about the task that has to be learned, the type of model learning
method used as well as the results are presented. The first three example applications use
different LWL methods, while the last example uses Gaussian process regression (GPR) .
This example intents to show that other model learning methods can be applied to specific
problems but will not give an detailed look into GPR.

4.1 Learning Devil Sticking

Figure 2: Devil Sticking Task a) and Robot Layout b) (see [4])

Task Description: Juggling a center stick between two control sticks. The center stick is
lifted alternately by the two control sticks to joggle it. The task is to learn a continuous
left-right-left pattern. This task is modeled as a discrete function that maps impact states
from one hand to the other. A state is described as a vector x = (p, 0, &,,6)” with impact
position, angle, velocities of the center of the center stick and its angular velocity. The task
command u = (xp, yp, 0, va, vy)T with a catch position, and angular trigger velocity and the
two dimensional throw direction.

Type of Model Learning: The robot learns a forward model given the current state and
action and predicting the next state. This problem has a 10 dimensional input and a five
dimensional output and therefore is ideally suited for LWR methods. Furthermore training
data is only generated with 1-2Hz, every time the center stick hits one of the control sticks.
Results: More than 1000 consecutive hits where counted as a successful trial, which was
achieved in about 40-80 trials (see Figure 3). This is a remarkable result since even for
humans devil sticking is a difficult task and a lot of trials are needed for an untrained
human.

Figure 3: Devil Sticking Results (see [4])
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4.2 Learning Pole Balancing

Figure 4: Pole Balancing a) and Results b) (see [4])
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Task Description: In this application balancing a pole up-right on a robots finger is
the learning task (see Figure 4a). The robot arm has 7 degree-of-freedom. Given the
inverse dynamics model of the robot the goal of the learning problem was to learn task level
commands like Cartesian accelerations of the robot’s finger.

Type of Model Learning: On-line learning using REWR was used with input data from
a stereo camera system observing the pole. Thus input data is 12 dimensional: 3 positions
of the lower pole end, 2 angular positions, the 5 corresponding velocities and two horizontal
accelerations of the robot’s finger. The output that predicts the next state of the pole
therefore is 10 dimensional. So RFWR was used to learn a forward model of the pole to
predict the next state.

Results: While learning the model from scratch took the system about 10-20 trials to keep
the pole up-right for longer then a minute, observing a human teacher who demonstrated
pole balancing for 30 seconds helped to extract the forward model so that the system fulfilled
the task on a single trial (see Figure 4b). This could also be shown using different poles and
demonstrations from different people.



4.3 Inverse Dynamics Learning

Task Description: Computing a inverse dynamics model 4 by hand from rigid-body dy-
namics does not lead to a satisfying solution since a lot of the systems properties can not
be modeled accurately. Learning the inverse dynamics model of a 7-degree-of-freedom robot
arm was accomplished in this example application (=21 input dimensions). In a second
example the authors learned the inverse dynamics of a humanoid robots shoulder motor
with 30 degrees-of-freedom (=90 input dimensions).

Type of Model Learning: In both inverse dynamics learning problems LWPR was ap-
plied. This fits the need of handling high dimensionality input and coping with big data
sets.

Results: For the 7-degree-of-freedom robot arm Figure 5 shows the results compared to a
parametric inverse dynamics model. The normalized Mean-Squared-Error (=nMSE) con-
verges after about 500.000 training points to nMSE = 0.042. During learning LWPR
created about 300 local models.

Figure 5: Inverse dynamics learning results with 7DOF Robot (see [4])
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The results of the second example are shown in Figure 6. Here a lot more training points
where needed, but LWPR outperformed the parametric model quickly. On this high dimen-
sional learning problem LWPR created more than 2000 local models.

Figure 6: Inverse dynamics learning results with 30DOF Robot (see [4])
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4.4 Bio-Inspired Motion Control Based on a Learned Inverse Dynamics
Model

Task Description: The previous example shows that learning an inverse dynamics model
leads to better results in comparison to manually computed models. This was shown on a
rigid body robot with stiff joints. The problem of accurately modeling all system properties
gets even worse when elastic (bio-inspired) joints are used. In this example a different model
learning approach was used to learn an inverse dynamics model of the bio-inspired robot
BioBipedl (see Figure 7).

Type of Model Learning: The authors decided to use Gaussian process regression (GPR)
to learn the inverse model off-line using recorded training data. As shown in [2] GPR is
suited well for off-line model learning.

Figure 7: Bio-Inspired robot BioBipedl (see [5])

Results: Using the inverse dynamics model a model-based feed-forward controller was
implemented and compared to a standard PD-controller. Furthermore a combination of the
feed-forward controller and the feed-back controller was implemented. All three approaches
were evaluated in an experiment, where the robot is standing on the ground with both feet
and performs a periodic up and down swinging motion using both legs. Figure 8 shows the
joint error of all three approaches.

Figure 8: Bio-Inspired Motion Control Results (see [5])

30

I Feedback
Ml Feed-Forward

% I Bio-Inspired

20
15 - -
1
1

101

Joint Position Error [deg]

11



5 Conclusion

Model learning can help to find properties of a system which is in this case related to a robot.
In 1 the model learning problem was discussed, describing different types of models and a
regression solution was shown by minimizing a cost function. Different types of models
where categorized in 2 in more detail together with learning architectures which can be
utilized to learn a specific model. Based on the regression solution to the model learning
problem locally weighted learning (LWL) methods where discussed in section 3. Beginning
with a very straightforward approach (see 1), which than was modified in 3 to reduce the
systems dimensionality and in 4 and 5 to deal with big data-sets.

The first three examples show that applying LWL methods to different learning scenarios
is successful for learning forward models, as well as inverse dynamics models. The last
application example (see 4.4) shows that also other learning methods (here GPR) can be
applied successful to a learning problem.

However, the challenge in model learning remains to deal with high dimensionality, complex
algorithms and big data sets. On-line learning is preferred for self-improved while performing
a certain task but needs very efficient algorithms (e.g. GPR can not applied on-line).
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