
Lifecycle of a Jeopardy Question Answered by
Watson DeepQA

Leonard Swiezinski
firstname at lastname dot de

Abstract

In early 2011 IBM’s question answering system Watson won in a Jeopardy contest
against some of the most capable champions of the TV show. This is considered
a milestone in language technology and artificial intelligence. In this work a brief
overview of the DeepQA system and a hypothetical walk through the process of
Watson answering a question are given.

1 Introduction

“We are asking questions and trying to find an answer,
but the answer is in the question itself.”

(Jiddu Krishnamurti 1980) 1

In order to explain what Watson DeepQA is and how it works, some terms and some key concepts
need to be explained in advance. This introduction defines some of them and gives a basic summary
of the topic.

1.1 Question Answering vs. Information Retrieval

1.1.1 Information Retrieval

The famous free book on information retrieval by Manning and Schütze proposes following defini-
tion of information retrieval [6]:

Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually stored on computers).

In other words: For a question, IR is about finding needles in a haystack, where the needles are
informational fragments that are relevant to the question, while the haystack is a larger set of infor-
mational fragments that don’t have to be relevant to the question. The question or information need
is usually given in the form of a search query. Relevance might loosely be defined as the amount of
informational context that query and result share.

IR is prevalent in many fields of daily life, such as web search, public transportation schedules,
libraries and many more. Like we know it from web search engines, IR systems can come up with
a list of relevant documents for a particular search query. Such result lists are often ordered by
relevance that is calculated by a weighting scheme with respect to the terms in the search query. A
common example for such a weighting measure for a result is Tf-idf :

wt,d = tft,d × log
N

dft

1jiddu-krishnamurti.net (2013)
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where tft,d is the term frequency (count) of a term t in the document d, N is the total number of
documents and dft is the frequency of documents that contain t. This measure ensures, that if a term
occurs often in a document, the documents gets a higher score, while if a term occurs often in many
documents, it gets a lower score. This way, very frequent words, or stop words (like in English “is”,
“to”, ...), lead to a lower weight than more specific words.

1.1.2 Question Answering

In contrast to IR, the term question answering (QA) refers to a slightly different concept, where the
result is not a list of documents, but the actual answer to the question.2 It seems fair to say, that QA
is an extension of IR in a way, that it performs additional tasks and adds semantics:

• Determine the question focus. (e.g. “When” in “When was Mozart born?”)
• Determine the lexical answer type (LAT) for a question. (e.g. date of birth)
• Retrieve the single correct information fragment that answers the question (answer). (e.g.

27 January 1756)
– Retrieve nothing else.

• Optionally present the answer in natural language. (e.g. “Wolfgang Amadeus Mozart was
born on 27 January 1756.”)

Just like in IR, QA systems can either be bound to a specific domain, or otherwise follow a general
purpose approach. Usually the latter is less efficient with respect to result quality. In order to judge
the performance of a QA system, meaningful evaluation is needed. While precision, the percentage
of correctly answered questions, is a common measure, in some cases answer can be ambiguous. In
this case the answers need to be normalized by automatic methods or by human labor.

Some of the publicly available general purpose QA systems are Wolfram Alpha 3, START 4 and
Answer Bus 5. Some of the other available systems combine IR and QA approaches, for example
by highlighting an answer in a list of IR search results. Another player that recently arose in this
domain is Apple’s Siri 6.

1.2 The DeepQA Approach

As described in their research report [3], the Watson team decided early in the process of creating
its QA system, to employ some key concept that together form the idea of DeepQA.

1.2.1 Massive Parallelism

Watson works parallel in many ways. For a question, Watson creates multiple interpretations, and for
each of them multiple answer candidates (hypotheses) from multiple sources. Later in the process
the answer candidates get ranked and the answer with the highest correctness probability is chosen
as final answer.

1.2.2 Many Experts

To judge the quality of an answer, many different scorers are employed by the system. According to
their research report on the system, Watson includes more than fifty of such scoring methods. [3]

1.2.3 Extensible architecture

The previously mentioned parallel approach with many experts makes it desirable, to have a an
architecture that lets methods easily be plugged in and out, to evaluate different combinations of
methods. Also the handling of parallel computation needs to be designed adequately, so an appro-
priately engineered software architecture is needed.

2DeepQA FAQ (2013)
3Wolfram Alpha
4START QA
5Answer Bus QA
6Apple Siri
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1.2.4 Pervasive Confidence

Instead of relying on single elaborate methods for judging the quality of a hypotheses, DeepQA lets
the work be done by multiple methods. This way it never has to trust a single component. Instead,
the system relies on ensembles of methods, where each method contributes to the final decision.
However, the impact a single method has on the final decision may be weighted, based on LAT
or the method itself. The set of generated evidence scores serves as input parameter for the final
calculation of confidence for an answer.

1.2.5 Integration of Deep and Shallow Knowledge

As previously mentioned, Watson tries to not rely on single sources. For backing an answer with
evidence, Watson tries to balance strict semantics and shallow semantics. Strict semantics might be
contextual, geospatial, or temporal relations, while shallow semantics can include phonetic relations
or corpus-probability.

1.3 Why Jeopardy?

Jeopardy, “America’s Favorite Quiz Show”, according to its website 7, is on screen since 1984. The
Watson team chose the show as a challenge for the DeepQA system, because it has a number of hard
requirements for the candidates:

• Jeopardy is not multiple choice, so the candidates have to find the answer by themselves.

• Players need to be confident about their answers, because Jeopardy penalizes wrong an-
swers.

• Questions can have ambiguous wording.

These requirements make it necessary, that Watson excels at various fields of QA technology, such
as parsing of natural language sentences, question type classification, relation detection and logical
reasoning. [3]

A property that distinguishes Jeopardy from other quiz shows is, that questions are given in the form
of a clue, while the answer has to be given in the form of a question. However, in this work the term
“question” also refers to the clue that is presented by the host of the show and “answer” refers to
the question the candidate replies with. Also no other kinds of Jeopardy-specific game tactics are
covered in this work.

1.4 Technology And Knowledge Resources

1.4.1 Watson’s Technology Stack

As reported by the Watson team [3], the system is based on following partial list of software appli-
cations:

• Apache UIMA (Unstructured Information Management Architectur) 8

– Used as architecture for linguistic analysis pipelines

• Apache Hadoop 9

– Used for distributed parallel computing
– UIMA-AS (UIMA Asynchronous Scaleout) is based on UIMA and Hadoop to perform

linguistic computing in a scalable, distributed and asynchronous way.

• Lucene 10, INDRI 11

7jeopardy.com (2013)
8Apache UIMA
9Apache Hadoop

10Apache Lucene
11INDRI
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– As search engines for retrieval of candidate answers and for evidence retrieval

• Triplestores and SPARQL 12

– Another source for candidates and evidence

1.4.2 Knowledge

Besides learning custom knowledge, such as answer patterns, various knowledge sources are in-
cluded. [3] Some of them are listed as follows:

• Wikipedia 13

• Freebase 14

• Geo- and weather-data
• Dictionaries and thesauri
• Wordnet 15

• DBPedia 16

1.4.3 Hardware

Doing massively parallel computing comes at the price of appropriately powerful hardware. While
early versions of the software, running on a single processor, needed about two hours to answer
questions, the version that powered Watson during the Jeopardy shows had more impressive num-
bers:

• Run-time latency between 3 and 5 seconds [3]
• 2500 computing cores [3]
• 16 Terabyte RAM 17

12SPARQL
13Wikipedia
14Freebase
15Wordnet
16DBpedia
17csee.umbc.edu (2013)
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2 Lifecycle of a Jeopardy-Question answered by Watson

2.1 Example Clue

In the first show of the series of Jeopardy shows with Watson that was broadcasted in february 2011,
Watson received following clue as a text-file 18:

A piece of a tree, or to puncture with something pointed.

Brad Rutter, one of Watson’s human opponents, previously chose the question for $600 from the
category “Alternate Meanings”.

Approximately five seconds later Watson buzzered and replied with the correct answer “What is
stick?”. Since the top three of Watson’s answers for each question were displayed during the show,
we can see, that Watson gave this answer a score of 96% while the following answers “lumber” and
“bark” received only 20% and 10%.

Figure 1: Watson’s answer ranking for the example clue

While this question will be used, to illustrate a hypothetical walkthrough for the question answering
process, another question will be used to explain points where the previous question doesn’t fit:

This famous composer was born on January 27 1756 in Salzburg.

We already learned, that a correct answer in Jeopardy would be “Who is Wolfgang Amadeus
Mozart?”.

2.2 Intuition

What did Watson in these five seconds before his answer? While the intuitive way, a human would
answer a question, could be described as a sequence of reading, understanding, memorizing (or
solving a puzzle), judging correctness and finally answering, Watson needs to take a computational
approach that is less intuitive.

Read clue Understand 
clue

Find best 
answer

Buzzer and 
answer

Confident 
enough?

Don't buzzer

Yes

No

Figure 2: Jeopardy question answering intuition

18Youtube (2013): IBM Watson Jeopardy Full Episode (Day 1)
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3 Steps to Solve a Jeopardy Clue Computationally

3.1 Step 1 - Linguistic preprocessing

3.1.1 Tokenization

Tokenization is the basic step that most applications in natural language processing (NLP) start
with: an input text is segmented into smaller units, such as words, numbers and punctuation. Even if
most people have an intuitive understanding of this concept, there is no general rule for building to-
kenizers, because there are different needs for different applications and different natural languages.
Also, due to structural ambiguity, it is not always clear, what tokenization is valid for a given text.
Depending on the tokenizer, the string ’A. Einstein’ could be recognized as:

• [’A’, ’.’, ’Einstein’] (sentence ends with ’A’, next sentence starts with ’Einstein’)
• [’A.’, ’Einstein’] (tokenizer has rules for detecting abbreviations)

Tokenized text can be represented in various forms. A common representation that is easy to read, is
tokens delimited by space characters. In many cases this is just inserting spaces before punctuation
characters.

For our example this would be:

A piece of a tree , or to puncture with something pointed .

Given such a representation, it is possible, to enumerate tokens for later reference:

1. A
2. piece
3. of
4. ...

3.1.2 Part of speech tagging

Detecting the part of speech (POS) of a word in its context is called POS-tagging. Therefor a set
of POS-tags (tagset) has to be defined (Simple example: “N” for nouns, “V” for verbs, “J” for
adjectives, ...). The tagset is usually language specific. Common methods for POS-tagging are
based on supervised machine learning with large sets of manually labeled data.

A/DT p i e c e /NN of / IN a /DT t r e e /NN , / , o r /CC t o /TO
p u n c t u r e /VB wi th / IN some th ing /NN p o i n t e d /VBD . / .

Figure 3: POS-tagging for first example clue.

3.1.3 Lemmatization

Most natural languages have rules for inflection. For example the english verb “to go” can be
inflected as:

• goes
• gone
• went
• ...

All this word forms share the same basic concept (something is transitioning to somewhere), but
are represented by different word types. The lemma or base form of these words is the verb ’go’.
It has been shown that transforming words into their stem or lemma can drastically improve recall
in information retrieval [4]. While the term lemmatization refers to a method that aims to find the
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linguistically correct lemma of a word, stemming refers to a more simple approach that transforms
words into pseudo-stems that are sufficient for most applications in IR, but don’t have to be linguis-
tically correct.

Methods to retrieve the base forms of words are usually language specific. Methods for lemmati-
zation or stemming can be rule-based (mostly early approaches), list-based (not feasible for most
languages), or based on supervised or unsupervised machine learning. Combinations of these ap-
proaches are also possible. [7, 2]

The Watson team chose to represent linguistic annotations as Prolog facts.[1] for our previous enu-
meration of tokens, lemmatization would look like:

• lemma(1, ’a’)
• lemma(2, ’piece’)
• lemma(3, ’of’)
• ...

3.1.4 Question decomposition

Given the previously gathered tokenization , Watson should be able to decompose a clue into sub-
clues if needed. This decomposition can be achieved by applying a set of Prolog rules. In our
example the grammatical conjunction “or” indicates a boundary between subclues.

Algorithm 1 Prolog rule for subclue decomposition by detecting conjunctions

s u b C l ue s ( subc lue1 , s u b c l u e 2 ) :−
s u b c l u e ( s u b c l u e 1 )
c o n j u n c t i o n ( )
s u b c l u e ( s u b c l u e 2 )

3.1.5 Parsing

In comparison to programming languages, it is usually not feasible, to parse any given natural lan-
guage text unambiguously, due to the ambiguous nature of natural languages. However, Watson
might generate separate parse trees for a clue and its subclues.

For this work Stanford Parser 19 has been used for illustration.

Algorithm 2 Partial parse-tree of clue

(ROOT
(NP

(NP (DT A) (NN p i e c e ) )
( PP ( IN of )

(NP (DT a ) (NN t r e e ) ) ) ) )
. . .

19Stanford Parser (2013)
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3.1.6 Named Entity Recognition

Named entities are parts of texts that represent locations, persons, organizations, times, amounts and
other categories of entities. Named entity recognition (NER) is the process of automatic annotation of
such occurrences, which can carry important semantic information about the clue. Such annotations
can be useful for later use in the pipeline. A famous system for NER, that can be tested online, is
Stanford NER. 20.

Figure 4: Named entity recognition example output of Stanford NER

3.1.7 Subject and Object Detection

In order to allocate a clue a semantically, it is helpful to differentiate between subject and object
in a verb phrase. For the first subclue of our first example, Stanford Parser provided following
dependencies:

Algorithm 3 Type dependencies represented as Prolog facts

d e t ( p i e c e −2, A−1)
r o o t (ROOT−0, p i e c e −2)
p rep ( p i e c e −2, of−3)
d e t ( t r e e −5, a−4)
pob j ( of −3, t r e e −5)

3.1.8 Focus detection

In most cases, the focus of a clue in Jeopardy can be replaced with the answer without altering the
semantics of the clue. The focus of our second example question is “This famous composer”. For our
main example both subclues are question foci. Generally the focus is a fragment of a question that
indicates what is actually asked for. Watson detects such foci by applying various Prolog detection
rules. [1]

The focus of our second example is “This famous composer”, as it could replaced by “Wolfgang
Amadeus Mozart”, without altering the meaning of the sentence.

3.1.9 Detection of Lexical Answer Type

The LAT of a question is not always helpful for semantically interpreting questions. For some
questions it is, but for other questions it even can be misleading. [3] However, LAT-detection can
contribute to some correct answers. The Watson team trained a supervised classifier with a set of
question-answer-pairs and by employing the previously discussed linguistic information to build a
LAT-detector. However, for some of the questions no meaningful LAT can be detected. In such
cases a general purpose answer type applies. [3][5]

Algorithm 4 LAT-detection rule for second example clue

<FOCUS PERSON> was born on <DATE>∗ i n <LOCATION>.
=> PERSON BY BIRTHDATE AND BIRTHPLACE

20Stanford NER
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3.2 Step 2 - Finding Possible Answers: Hypothesis Generation

Combinations of named entities, LAT,
paraphrasings, subclues, ...

Multiple parallel knowledge resources

Candidate answers

Figure 5: Answer candidate generation

At this point, maybe one second after Watson received the question, the system ideally “understands”
the clue and “knows” what type of answer is expected. The next step in the previously sketched
intuition is finding the best answer. This implies, that any possible answers have been found at all,
and Watson’s next task is exactly that: finding answer candidates.

3.2.1 Primary Search

In the previous steps, depending on the clue, Watson gathered various informational fragments, such
as subclues, lemmata, named entities, LAT and dependent words to the focus. Based on this features,
Watson can apply rules to generate queries for its knowledge resources, such as index based search
engines, triplestores21, arithmetic expression evaluators, dictionaries and more.

For our second example clue, a SPARQL query can retrieve the correct answer.

Algorithm 5 SPARQL query that finds answer for the second example clue

SELECT ?name ? b i r t h ? p e r s o n WHERE {
? r e s o u r c e d b p e d i a 2 : composer ? p e r s o n .
? p e r s o n dbo : b i r t h P l a c e : S a l z b u r g .
? p e r s o n dbo : b i r t h D a t e ? b i r t h .
? p e r s o n f o a f : name ?name .
FILTER ( ? b i r t h < ” 1 7 5 7 ” ˆ ˆ xsd : d a t e ) .
FILTER ( ? b i r t h >”1756”ˆˆ xsd : d a t e ) .

}

22

However, Watson would not rely on a single search operation, but also searches for different combi-
nations of informational fragments, or in other resources. For example a lookup for a search query
that consists of “composer”, “born”, “Salzburg” and “January 27 1756”, is likely to retrieve docu-
ments that contain the correct answer as well. This can be illustrated with a search engine lookup.
23

21Triplestores are databases for triples, consisting of subject, predicate and object. Example triple: (Mozart,
bornIn, Salzburg)

22SPARQL lookup for second example clue (2013)
23Search engine lookup for example clue 2 (2013)
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The correct answer to the other example question can be found by search engine lookups as well.
To emulate a search in an inverted index of wordnet pages, a search query that is restricted to pages
of the online version of wordnet does a fairly good job.24

Since the category of the first clue is “Alternate Meanings”, dictionary and thesaurus lookups can be
successful too. 25

In order to increase recall of search operations, queries can be paraphrased. A naive approach to
paraphrasing would be substituting words by synonyms that are retrieved from a thesaurus.

3.2.2 Candidate Answer Generation

From the results of the previous step, it is only a small step to a list of candidate answers. Depending
on the type of knowledge resource, a number of answer sized snippets is extracted from every result
set. According to the Watson team, in about 85% of all cases, the correct answer is included in the
top 250 candidates. If the correct answer is not included in the list of candidates, there is no chance,
that Watson ever answers the question correctly. [3]

3.3 Step 3 - Finding the best Answers: Filtering, Merging, Confidence Estimation and
Ranking

Content Space
Primary Search
Soft Filter 
Evidence 
Merging 
Ranking 

Best Answer

Figure 6: Watson filtering everything but the final answer from its knowledge

At this point, maybe two or three seconds after Watson retrieved the question, it ideally has a few
dozen or even hundreds of candidate answers. Now the system needs to figure out the candidates
that are most likely to be the correct answer, rank them by confidence and finally decide, if it is
confident enough about the top ranking answer.

3.3.1 Soft Filtering

A first step that tries to minimize the amount of candidates is soft filtering. A set of fast computing
methods, which filter out candidates by simple measures, such as the likelihood of a candidate being
an instance of the previously detected answer type. [3]

For our second example clue, a candidate from a search engine result could be “Innsbruck”. Since
Watson already detected, that the expected answer is a person, it can easily filter out this candidate.

24Search engine lookup for example clue 1 (2013)
25Thesaurus lookup for example clue 1 (2013)
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3.3.2 Evidence Retrieval and Scoring

For every candidate: 
Evidence scorers 1 ... n, such as
taxonomy, sounds like, source reliability,
semantic, geospatial, temporal relations, ...

Figure 7: Evidence Scoring

Every candidate that passed soft filtering, still has a chance to become the final answer. In order
to rank candidates, Watson employs an ensemble of independent scorers. Each scorer measures a
specific aspect, such as different types of relationships.

For our first example it might detect a short path in a graph based thesaurus, or it might calculate a
high amount of coreferences that the terms “puncture pointed” and the candidate “stick” share.

For our second example clue, it might detect that “Wolfgang Amadeus Mozart” can be classified as
composer, based on taxonomy lookups.

Watson has many different of such evidence scorers, to cover a large range of different domains. For
example it contains a method that calculates the scrabble score of an answer candidate, or general
purpose methods like calculating the TF-IDF of an answer in combination with the question. [3]

3.3.3 Answer Merging

By merging semantically equivalent answers, Watson has a better chance to rank the best answer
on top of the list, because equivalent answers would compete against each other during ranking.
[3] Depending on the answer type this can be done by synonymy, arithmetic equality, geospatial
distance or other measures, such as semantic relatedness. Ideally Watson would merge the answers
“Mozart” and “Wolfgang Amadeus Mozart” and combine their results from evidence scoring. To
achieve merging of semantically equivalent answers, DeepQA can employ methods like normaliza-
tion, matching algorithms or calculation of semantic relatedness. [3] A measure that would indicate
the semantic relatedness of two answer terms would be Pointwise Mutual Information (PMI), a
measure of statistical dependence of two terms [8]:

PMI(A, B) = log
P (A | B)

P (A)P (B)

Where P (A) and P (B) are be the probabilities of the terms A and B in a given text corpus and
P (A | B) is the probability of cooccurrence of both terms in documents or smaller units of the
corpus. The higher the value, the stronger is the considered semantic connection between both
phrases.

3.3.4 Ranking and Confidence Estimation

Taking the output vector of the evidence scoring as an input parameter, Watson can now calculate an
overall ranking for the candidates. Again, Watson does not have to trust a single ranking algorithm.
Instead it can employ an ensemble of algorithms and calculate the arithmetic mean of the ranking
scores for each candidate. For the first example clue, the answer “stick” gets a much higher rank than
the answers “lumber” and “bark”, since the latter two answers only correlate with the first subclue,
while evidence scoring is likely to return no matches for the second subclue. The more evidence
for an answer was found by evidence scorers, the higher is the confidence of that answer. Watsons
confidence level for the answer “stick” was above a certain threshold and so Watson decided to
buzzer.
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4 Conclusion and Outlook Possible Applications

There is no question, that the Watson research team did a remarkable job at improving the current
state of QA technology and their current plans to apply their DeepQA method to other domains such
as healthcare and business decision processes seem reasonable.

This work tried to follow the path of Watson finding an answer to a question by example and illus-
trated the example by employing publicly available online tools wherever possible. Hopefully this
encourages the readers to reproduce the results.
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