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Abstract

Machine Learning is an important tool for developing complex systems. In par-
ticular, Reinforcement Learning has been successfull in learning robot behavior.
However, it can be difficult to define appropriate reward functions. Especially in
robotics, one has to deal with high dimensionality in the state/action space. Imita-
tion of experts is a fundamental part of learning in nature. Imitation, in Machine
Learning, should be suited to reduce the state/action space that needs to be ex-
plored and thus speed up learning. However, while imitation is a concept that is
easy to grasp, the specific implementations differ from case to case as each learn-
ing problem comes with a different set of problems. This seminar thesis will dis-
cuss some difficulties and solutions to these problems as well as two case studies
as an example of what imitation learning can achieve.

1 Motivation

In certain domains, like robotics, there are problems where the solutions are difficult to handcraft.
These problems can include complex motoric behavior. The difficulty can both mean the inability
to express the solution because doing so by hand would take too much time/effort, as well as the
inability because the solution is unknown. In such cases, machine learning techniques are applied.
They overcome the need of “hard-coding” complex behaviors, thus potentially allowing for faster
learning of more behavior than would be possible if each behavior was hard-coded. One such
machine learning technique is reinforcement learning. It is used for sequential decision problems to
learn a control policy that assigns every state a corresponding optimal action with regards to rewards
associated with the states that are traversed.

1.1 Markov Decision Problem

Assuming the markov property holds that states only depend on the previous state and action taken
in that state, a sequential decision problem can be formulated as Markov Decision Problem. We use
the definition of [Russell and Norvig, 2004]. A Markov Decision Problem is defined through

• a set S of states

• a set A of actions

• a transition model T (s, a, s′) = p(s′|s, a) which is the probability of being in state s′ ∈ S
after using action a ∈ A in state s ∈ S

• a reward function R : S → R , which assigns a reward to each state (can be zero or even
negative)

Given a decay value γ ∈ (0, 1) which is a trade-off between rewards in the near and far future, the
expected cumulative reward (or use/value) of a state is given by the Bellman-equation:

U(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)U(s′) (1)
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which is the reward of the state itself plus the weighted maximal expected value of successor states
s′, maximized with respect to the possible actions a that the agent can choose in the current state s.
This corresponds to maximizing the expected cumulative reward if γ = 1, otherwise it maximizes
the expected cumulative reward weighted by the number of steps necessary to reach the reward
(which may be different from maximizing the total cumulative reward!).

The solution of a Markov Decision Problem is an optimal policy π : S → A that, in every state,
chooses the action with the highest expected value or use U . That is, such an optimal policy π∗ has
to fulfill

π∗(s) = argmax
a

∑
s′

T (s, a, s′)U(s′) (2)

The problem is that some of the functions U in general are unknown, and equation 1 forms a non-
linear equality system that cannot be easily solved directly. Therefore learning is employed to ap-
proximate U .

1.2 Reinforcement learning

In reinforcement learning, U is approximated iteratively. This iteration step is also known as the
Bellman-Update ([Russell and Norvig, 2004]):

Ui+1(s)← R(s) + γmax
a

∑
s′

T (s, a, s′)Ui(s
′) (3)

The resulting algorithm is called Value-Iteration. In the limit i → ∞, U converges to it’s true
value as defined in equation 1 ([Russell and Norvig, 2004]). Other formulations yield more efficient
algorithms, but those still use the same idea and share the same properties.

If the state space is large, however, it becomes very costly to approximate U(s) for every s equally
well. In most cases, there are only few states that are “interesting” in the sense that the agent will
actually visit them in practice. Other states give negative rewards, and it is enough to know that they
are “bad”, it is not necessary to know “how bad”. Therefore, in general one iteration corresponds
to one exploratory walk through the state-space updating only states along the path. Obviously, this
approximation can lead to suboptimal policies if the agent acts too greedy and does not explore
enough of the state space. For example, if the agent never visits states with negative reward, it might
not realize that this state in fact leads to regions of higher reward than possible with the current
policy.

1.3 A problem with reinforcement learning

In many problems, including robotics, the states, as well as the actions, are described by several
different variables, e.g. joint positions and angles. Thus, the state and action spaces can quickly
become high-dimensional and thus intractable. Often, the states and actions are not discrete but
continuous. Reinforcement learning potentially needs to explore large spaces before any proper
policy is learned. Hand-crafted reward functions tend to be sparse, therefore an agent often has
to explore significant portions of the space without getting feedback until it finds states granting a
reward (positive or negative). Last but not least, as exploration is very costly, one might easily end
up with a suboptimal policy because of insufficient exploration.

1.4 Imitation as part of natural learning processes

How does learning work in nature? When humans learn, they often have a teacher that demonstrates
the desired behavior. Explanations are helpful for learning, but the learning is essentially faster when
there are demonstrations that can be imitated. [Schaal, 1999] defines true imitation as opposed to
other phenomena leading to a certain bias in behavior towards earlier demonstrated behavior through
three criteria, that must all be met:

1. The imitated behavior is new to the imitator

2. The same task as that of the demonstrator is performed
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3. The same task goal is accomplished

These criteria are all met in machine learning problems. It has been shown([Schaal, 1999]) that
certain animals are unable to imitate perceived behavior, and that imitation is thus a sign of higher
intelligence. Can machine learning be enhanced through imitation in a similar way that the human
learning is enhanced through imitation? Also, imitation is a “language” that non-experts can under-
stand and “speak”, thus opening up the area of machine/robot learning to non-expert. This would
rapidly speed up the development of every-day robots that fold clothes as well as special robots
trained for special tasks in, e.g. human rescue.

2 Imitation learning

When talking about imitation, it is often referred to movement imitation. Robot control suffers from
dimensionality, as there are often multiple joints and motors involved in a movement or motion.
These problems suggest imitation as learning method. However, learning by imitation is not limited
to movement imitation.

Imitation learning as machine learning principle is exactly that: a principle, more than a specific
algorithm. The algorithms based on imitation learning differ greatly from problem to problem.
Some common points are however the belief that there is an optimal behavior that can be learned, as
well as an expert who can demonstrate the behavior. These demonstrations do not need to be perfect,
as we will see later. Common to all approaches is the reduction of complexity of the learning task -
instead of having to explore an intractable state/action space, significant information can be inferred
from the demonstrations, and only a significantly smaller part of the state/action-space still needs to
be explored.

[Argall et al., 2008] distinguish between imitation learning implementations - among other criteria
- according to what is learned(See figure 1):

1. a mapping function f : Z → A from observed state to action

2. a system dynamics model T (s′|s, a) and possibly a reward function r(s, a)

3. a set of pre- and post-conditions pre(a), post(a) that can be used in planning algorithms

Note how this corresponds to the three criteria for imitation in section 1.4. A mapping function
directly encodes behavior, while the goal-oriented approach of learning pre- and postconditions of
actions, as well as the reward function from the system model approach, emphasize the goal side of
imitation. The distinction shows the variety of techniques using imitation learning. It also shows that
often, imitation learning is only the starting point for actually learning the desired behavior. Further
learning steps derive the final policies from the learned information. Note that deriving a mapping
function does not mean the mapping function cannot be further enhanced in subsequent learning
steps. In section 4, we discuss an example where an initially learned policy is further enhanced
through reinforcement learning. In this survey, we will focus on methods that more or less directly
derive a mapping function from the demonstrations.

2.1 Basic concepts of imitation learning

Assuming state transitions are deterministic, imitating a certain movement can be seen as the task
of learning a certain trajectory - of positional variables as well as motor control variables. This is a
trivial task if the teacher can demonstrate a perfect trajectory that can be fully observed and repeated.
This is most often not the case.

In the case described above, and even when state transitions are non-deterministic (meaning there
is noise in the actuators, or there are variables that can not directly be influenced by the agent), the
policy can be described as a set of differential equations

ẋ = f(x, y)

where x are the control variables (maybe including positional variables) and y are external variables,
which may include time, positions of other objects, etc. Expressing this in the terms of state and
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Figure 1: [Argall et al., 2008] Policy derivation using the generalization approach of determining
(a) an approximation to the state-action mapping function, (b) a dynamics model of the system and
(c) a plan of sequenced actions.

action, (x, y) is the state and ẋ is the action performed by the agent. The differential equation is thus
just another instantiation of a state-action mapping function.

Now, if the behavior is more complex and consists of several goal-oriented steps - like walking
to a certain place, performing situational actions to achieve a certain goal, the problem suddenly
becomes a lot more difficult due to the larger state space (which is just one-dimensional and finite
if one only wants to learn a (time-dependent) trajectory). Thus, even with imitation learning, the
problem of high dimensionality of the state/action-space still persists. A goal-oriented approach
is thus still intractable if the movement is not split into (goal-oriented) primitives of higher-level
abstraction (like “moving forward”, “grasping” etc. or even more complex things)([Schaal, 1999]).
Then, the learning task is again reduced to primitives that can either be trajectories or combinations
of other primitives. However, there must be a model that tells how the primitives help achieving
a goal. Once enough primitives are learned, common planning algorithms can be used to combine
them to achieve the goals.

2.2 Difficult aspects of imitation learning

When applying imitation to learning robotic behavior, one has to find a mapping from the teacher’s
coordinate frame to the learner’s coordinate frame. This means we need a model of how the teacher’s
behavior can be imitated. Another problem related to this is the problem that the teacher’s variables
might only be partially observable. For example, if trying to imitate a human with a robot, of course
we can only measure and relate the movement itself, but are ignorant as to how the robot motors
need to be controlled to achieve the same movement. Then a model is needed for inferring the
missing variables. They can, for example, be learned in an additional learning step with common
techniques like the EM algorithm or just be computed through inverse kinematics algorithms.

[Argall et al., 2008] divide the imitation problems among other criteria according to

1. The mapping between the teacher’s actions / observations and the recorded training data
(record mapping)

2. The mapping between the stored training data and the learner’s actions / observations (em-
bodiment mapping)

The distinction between record and embodiment mapping is irrelevant when training only one spe-
cific robot, but becomes interesting when the problem makes it necessary to train physically different
robots from the same training data. An example of a mapping (record or embodiment depends on
the specific problem) is that when measuring the joint angles of the teacher throughout the demon-
stration, we might have to map it to motor torques.
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Figure 2: Flight trajectories: (a),(b), Solid black: [Coates et al., 2008], dashed
red:[Abbeel et al., 2007]. (c) Dotted black: autonomous tic-toc. Solid colored: expert demonstra-
tions

Another problem arises if state transitions are not deterministic and/or there are variables that can
not be controlled or only indirectly controlled. Then it is intractable to show enough demonstrations
to cover the possible behavior of the so-called external variables ([Kober et al., 2010]). Instead, imi-
tation can be used to learn the basic behavior, and a model for the external variables and their relation
to the internal variables of the agent then needs to be learned through other methods, for example
reinforcement learning. Later, we will discuss the work of [Kober et al., 2010] as an example of this
problem.

3 Case study I: Helicopter

In the following, we will discuss the work of [Coates et al., 2008], a case study using imitation learn-
ing - namely an autonomous helicopter learning aerobatic figures from a set of imperfect demon-
strations.

For an autonomous helicopter, one is in the advantageous situation that the desired movements can
be demonstrated using a remote-controlled model, maybe even the same model as the autonomous
helicopter itself. This means it is possible to capture and measure all relevant variables, including
the control variables. This makes learning easier as we do not need to infer the control variables
from the positional variables.

However, helicopter aerobatics is a field where it is difficult, if not impossible, to obtain perfect
demonstrations of a desired trajectory. Therefore, an approach is chosen to infer the optimal trajec-
tory from a set of suboptimal demonstrations.

Multiple demonstrations are combined to obtain a better trajectory. Note however that because
the demonstrations may not be aligned on the time axis, it is necessary to treat the time indices
of the points on the trajectory as unobserved random variables, that have a certain probability to
differ a little from the ones of the demonstrations. The observed variables are treated as noisy
observations of the one “true” trajectory (the noise is assumed to be gaussian). Then the EM-
algorithm is applied to learn the missing parameters, namely the time-shifts and the parameters of
the trajectory distributions, which in fact means that the “true” trajectory is learned. For computing
the time-shifts, dynamic time warping is applied alternatingly with the EM algorithm steps.

[Coates et al., 2008] successfully trained an autonomous helicopter to perform in-place rolls and
flips, as well as “tic tocs” and a complete airshow. They showed that their approach significantly
improved the helicopter’s performance over previous works. In Figure 2(a) and (b), a comparison
is shown between the earlier work of [Abbeel et al., 2007] and [Coates et al., 2008]. The figures
compare the X-Z position of the helicopter in the top image, as well as the control inputs in the
bottom image. Figure 2(a) shows the results for in-place rolls, while (b) shows the results for the in-
place flips. It can be seen that the latter work significantly improves the performance of the learned
trajectory, in the sense that (i) the overall positioning is more stable, and (ii) the control inputs are
generally lower (which roughly corresponds to energy consumption during the maneuver).
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Figure 3: [Coates et al., 2008] Colored Lines: demonstrations. Black dotted line: inferred trajectory

One of the main questions was whether, given multiple suboptimal trajectories, a trajectory can be
inferred with a better performance than the original demonstrations. Figures 3 (a) through (d) com-
pare the original demonstration trajectories with the inferred final trajectory of the helicopter for two
loops, figure 2 (c) shows the same for an autonomous tic-toc. The colored lines show the demon-
strations, while the black dotted line shows the inferred ideal trajectory produced by the algorithm.
Figure 3 (a) shows that the inferred trajectories are more rounded than the demonstrations. Figure 3
(b) shows a top-down view on the (three-dimensional) trajectory. The inferred loops lie in a plane
like expected, while the demonstrations deviate from lying in a plane. Figure 2m (c) shows that
the inferred tic-toc is also more stable than the demonstrations. Therefore one can say that using
multiple demonstrations of a suboptimal teacher can raise the performance of the learner above that
of the teacher.

4 Case study II: Ball-in-a-cup

The work of [Kober et al., 2010] is a second example of imitation learning, which shows different
aspects of that method. [Kober et al., 2010] train a robot to play the Ball-in-a-cup game. This game
consists of holding a cup, to which a ball is attached via a string, and then flinging the ball into the
cup. This is already a complex task when the initial conditions (that is, ball position and velocity)
are always the same. When the initial conditions vary largely, even skilled human players would be
challenged.

[Kober et al., 2010] use an approach that they feel is similar to a child learning the game - the basic
movement is learned, and then refined through trial-and-error (which means reinforcement learning
in the realm of machine learning). The problem is that (i) actions can be noisy, and (ii) there are
external variables that cannot be controlled directly (the ball position and velocity), but still affect the
outcome of the action. These external variables relate to the inner variables (joint positions etc.), but
the relation, also called perceptual coupling, needs to be learned. This could be done by imitation,
but it would need intractably many demonstrations to capture a significant amount of possible initial
conditions.

Figure 4: [Kober et al., 2010] Illustration of the reward calculation for the reinforcement learning
part of the learning. When the ball passes the plane of the upper rim of the cup from above, the
distance of the ball center and the rim center is penalized.

For this reason [Kober et al., 2010] split the learning into two parts: They first learn a model for un-
perturbed initial conditions and actions by imitation. Then this model is refined through reinforce-
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Figure 5: [Kober et al., 2010]: This figure shows the expected return for one specific perturbation of
the learned policy in the Ball-in-a-Cup scenario (averaged over 3 runs with different random seeds
and the standard deviation indicated by the error bars). Convergence is not uniform as the algorithm
is optimizing the returns for a whole range of perturbations and not for this test case. Thus, the
variance in the return as the improved policy might get worse for the test case but improve over all
cases. The algorithm rapidly improves, regularly beating a hand-tuned solution after less than fifty
trials and converging after approximately 600 trials. Note that this plot is a double logarithmic plot
and, thus, single unit changes are significant as they correspond to orders of magnitude.

ment learning. Their reinforcement learning algorithm was specifically tailored to their problem and
is based on the EM-algorithm. Their reward function was tied to the distance of the ball to the cup
in the moment where the ball passed the cup plane from above (see Figure 4). For exploration, the
actions where perturbed with gaussian noise based on the state of the system. In general, random
perturbations of the actions can be dangerous for a physical robot. By taking into account the state
of the system for the perturbation, regions of the state space that were dangerous for the robot could
be avoided. In their experiments, the learned model regularly outperformed the hand-tuned solution
after less than fifty trials, and converged after 600 trials.

It is interesting to note that the learning was performed in the cartesian space (meaning the position
and velocity of the cup and ball), the motor controls were inferred through inverse kinematics. They
also tried to learn directly in the joint-space of the robot (which had seven degrees of freedom), but
were unable to achieve the same performance. This can be explained through the higher complexity
of the learning task, as essentially the inverse kinematics needs to be implicitly learned. Also through
perturbation of the initial conditions, the robot easily gets into regions where his kinematics model is
inaccurate. By this, we see that the choice of state and action representation has a significant impact
on learning performance, and should be treated with care. It is also interesting to see that a more
complex embodiment mapping (here in the form of inverse kinematics) does not necessarily hinder
the learning, but may even help it.

5 Comparison

As we have seen, imitation learning implementations differ as much as the problems differ. The
two case studies use completely different methods: There is no time-warping for the Ball-in-a-cup
problem, simply because there is only one demonstration. There is no reinforcement learning for
the autonomous helicopter, because there is no additional knowledge that could be learned through
trial and error, and everything is more or less deterministic and directly controllable.

What is common to both approaches is that the performance of the learner may rise above the
performance of the teacher. In the helicopter case this is done by combining information from
multiple demonstrations. In the ball-in-the-cup case, the initial learning experience is enhanced
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through additional experience gained from own execution of the learned behavior. In both cases,
more information is learned than would have been available from a single demonstration itself.

6 Conclusion

Imitation learning is a tool for improving existing learning methods. We discussed how reinforce-
ment learning suffers from the high dimensionality of state/action spaces in robotics. In such cases,
reinforcement learning can become intractable because extensive exploration needs to be done be-
fore anything useful is learned. Imitation learning can help focus exploration (and thus learning) on
parts of the state/action space that are actually relevant. We have seen that there has been signif-
icant success in applying this idea, and we showed two concrete example, namely an autonomous
helicopter learning aerobatic maneuvers and a robotic arm learning the game ball-in-a-cup. In the
autonomous helicopter case, we have seen that it is possible for a learner to show a higher perfor-
mance than the teacher if the teacher provides multiple suboptimal demonstrations. In the robotic
arm case, it has been shown that a learned policy can quickly and significantly outperform a hand-
crafted policy. Thus imitation learning not only is able to capture behavior demonstrated by an
expert, but also to surpass the performance of the expert.
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