
Noname manuscript No.

(will be inserted by the editor)

Policy Search for Motor Primitives in Robotics

Jens Kober · Jan Peters

Received: 2 December 2009 / Revised: 27 September 2010 / Accepted: 17 October 2010

Abstract Many motor skills in humanoid robotics can be learned using parametrized

motor primitives. While successful applications to date have been achieved with imi-

tation learning, most of the interesting motor learning problems are high-dimensional

reinforcement learning problems. These problems are often beyond the reach of cur-

rent reinforcement learning methods. In this paper, we study parametrized policy

search methods and apply these to benchmark problems of motor primitive learn-

ing in robotics. We show that many well-known parametrized policy search methods

can be derived from a general, common framework. This framework yields both policy

gradient methods and expectation-maximization (EM) inspired algorithms. We intro-

duce a novel EM-inspired algorithm for policy learning that is particularly well-suited

for dynamical system motor primitives. We compare this algorithm, both in simulation

and on a real robot, to several well-known parametrized policy search methods such

as episodic REINFORCE, `Vanilla' Policy Gradients with optimal baselines, episodic

Natural Actor Critic, and episodic Reward-Weighted Regression. We show that the

proposed method out-performs them on an empirical benchmark of learning dynami-

cal system motor primitives both in simulation and on a real robot. We apply it in the

context of motor learning and show that it can learn a complex Ball-in-a-Cup task on

a real Barrett WAM� robot arm.

Keywords: motor primitives, episodic reinforcement learning, motor control, pol-

icy learning

J. Kober · J. Peters

Dept. Empirical Inference, Max Planck Institute for Biological Cybernetics, Spemannstr. 38,
72076 Tübingen, Germany

E-mail: {jens.kober,jan.peters}@tuebingen.mpg.de

2

1 Introduction

To date, most robots are still taught by a skilled human operator either via direct

programming or a teach-in. Learning approaches for automatic task acquisition and

re�nement would be a key step for making robots progress towards autonomous be-

havior. Although imitation learning can make this task more straightforward, it will

always be limited by the observed demonstrations. For many motor learning tasks, skill

transfer by imitation learning is prohibitively hard given that the human teacher is not

capable of conveying su�cient task knowledge in the demonstration. In such cases,

reinforcement learning is often an alternative to a teacher's presentation, or a means of

improving upon it. In the high-dimensional domain of anthropomorphic robotics with

its continuous states and actions, reinforcement learning su�ers particularly from the

curse of dimensionality. However, by using a task-appropriate policy representation and

encoding prior knowledge into the system by imitation learning, local reinforcement

learning approaches are capable of dealing with the problems of this domain. Policy

search (also known as policy learning) is particularly well-suited in this context, as it

allows the usage of domain-appropriate pre-structured policies (Toussaint and Goerick,

2007), the straightforward integration of a teacher's presentation (Guenter et al, 2007;

Peters and Schaal, 2006) as well as fast online learning (Bagnell et al, 2004; Ng and

Jordan, 2000; Ho�man et al, 2007). Recently, policy search has become an accepted

alternative of value-function-based reinforcement learning (Bagnell et al, 2004; Strens

and Moore, 2001; Kwee et al, 2001; Peshkin, 2001; El-Fakdi et al, 2006; Taylor et al,

2007) due to many of these advantages.

In this paper, we will introduce a policy search framework for episodic reinforcement

learning and show how it relates to policy gradient methods (Williams, 1992; Sutton

et al, 2000; Lawrence et al, 2003; Tedrake et al, 2004; Peters and Schaal, 2006) as

well as expectation-maximization (EM) inspired algorithms (Dayan and Hinton, 1997;

Peters and Schaal, 2007). This framework allows us to re-derive or to generalize well-

known approaches such as episodic REINFORCE (Williams, 1992), the policy gradient

theorem (Sutton et al, 2000; Peters and Schaal, 2006), the episodic Natural Actor

Critic (Peters et al, 2003, 2005), and an episodic generalization of the Reward-Weighted

Regression (Peters and Schaal, 2007). We derive a new algorithm called Policy Learning

by Weighting Exploration with the Returns (PoWER), which is particularly well-suited

for the learning of trial-based tasks in motor control.

We evaluate the algorithms derived from this framework to determine how they

can be used for re�ning parametrized policies in robot skill learning. To address this

problem, we follow a methodology suitable for robotics where the policy is �rst ini-

tialized by imitation learning and, subsequently, the policy search algorithm is used

for self-improvement. As a result, we need a suitable representation in order to apply

this approach in anthropomorphic robot systems. In imitation learning, a particular

kind of motor control policy has been very successful, which is known as dynamical

system motor primitives (Ijspeert et al, 2002, 2003; Schaal et al, 2003, 2007). In this

approach, dynamical systems are used to encode a control policy suitable for motor

tasks. The representation is linear in the parameters; hence, it can be learned straight-

forwardly from demonstrations. Such dynamical system motor primitives can represent

both point-to-point and rhythmic behaviors. We focus on the point-to-point variant

which is suitable for representing single-stroke, episodic behaviors. As a result, they

are particularly well-suited for episodic policy search.

3

We show that all presented algorithms work su�ciently well when employed in

the context of learning dynamical system motor primitives in di�erent benchmark and

application settings. We compare these methods on the two benchmark problems from

(Peters and Schaal, 2006) for dynamical system motor primitives learning, the Underac-

tuated Swing-Up (Atkeson, 1994) robotic benchmark problem, and the Casting task.

Using entirely di�erent parametrizations, we evaluate policy search methods on the

mountain-car benchmark (Sutton and Barto, 1998) and the Tetherball Target Hitting

task. On the mountain-car benchmark, we additionally compare to a value function

based approach. The method with the best performance, PoWER, is evaluated on the

complex task of Ball-in-a-Cup (Sumners, 1997). Both the Underactuated Swing-Up as

well as Ball-in-a-Cup are achieved on a real Barrett WAM� robot arm. Please also refer

to the videos at http://www.robot-learning.de/Research/ReinforcementLearning.

For all real robot experiments, the presented movement is learned by imitation from a

kinesthetic demonstration, and the Barrett WAM� robot arm subsequently improves

its behavior by reinforcement learning.

A preliminary version of some of the work in this paper was shown in (Kober et al,

2008; Kober and Peters, 2009b,a). It did not yet include the real robot comparisons of

the algorithms on the Underactuated Swing-Up benchmark, nor the Tetherball Target

Hitting and the Casting benchmarks. We also discuss our experience with transfer from

simulation to real robot systems.

2 Policy Search for Parametrized Motor Primitives

Our goal is to �nd reinforcement learning techniques that can be applied in robotics

in the context of learning high-dimensional motor control tasks. We �rst introduce

the required notation for the derivation of the reinforcement learning framework in

Section 2.1. We discuss the problem in the general setting of reinforcement learning

using a generalization of the approach in (Dayan and Hinton, 1997; Attias, 2003; Peters

and Schaal, 2007). We extend the existing approach to episodic reinforcement learning

for continuous states, in a manner suitable for robotics.

We derive a new expectation-maximization (EM) inspired algorithm (Dempster

et al, 1977) called Policy Learning byWeighting Exploration with the Returns (PoWER)

in Section 2.3 and show how the general framework is related to policy gradient meth-

ods and the Reward-Weighted Regression method in Section 2.2.

2.1 Problem Statement & Notation

In this paper, we treat motor primitive learning problems in the framework of reinforce-

ment learning (Sutton and Barto, 1998) with a strong focus on the episodic case. At

time t, there is an actor in a state st that chooses an action at according to a stochas-

tic policy π(at|st, t). Such a policy is a probability distribution over actions given the

current state and time. The stochastic formulation allows a natural incorporation of

exploration, and the optimal time-invariant policy has been shown to be stochastic

in the case of hidden state variables (Sutton et al, 2000; Jaakkola et al, 1994). Upon

the completion of the action, the actor transfers to a state st+1 and receives a reward

rt. As we are interested in learning complex motor tasks consisting of a single stroke

(Schaal et al, 2007), we focus on �nite horizons of length T with episodic restarts

4

and learn the optimal parametrized, stochastic policy for such episodic reinforcement

learning problems (Sutton and Barto, 1998). We assume an explorative parametrized

policy π with parameters θ ∈ Rn. In Section 3.1, we discuss how the dynamical system

motor primitives (Ijspeert et al, 2002, 2003; Schaal et al, 2003, 2007) can be employed

in this setting. In this section, we will keep most derivations su�ciently general such

that they are transferable to various other parametrized policies that are linear in the

parameters.

The general goal in reinforcement learning is to optimize the expected return of the

policy π with parameters θ de�ned by

J(θ) =
´

Tpθ(τ)R(τ)dτ ,

where T is the set of all possible paths. A rollout τ = [s1:T+1,a1:T], also called path,

episode or trial, denotes a series of states s1:T+1 = [s1, s2, . . . , sT+1] and actions

a1:T = [a1,a2, . . . ,aT]. The probability of rollout τ is denoted by pθ(τ), while R(τ)

refers to its aggregated return. Using the standard Markov assumption and additive

accumulated rewards, we can write

pθ(τ) = p(s1)
QT
t=1p(st+1|st,at)π(at|st, t), (1)

R(τ) = T−1PT
t=1r(st,at, st+1, t),

where p(s1) denotes the initial state distribution, p(st+1|st,at) the next state dis-

tribution conditioned on the last state and action, and r(st,at, st+1, t) denotes the

immediate reward.

While episodic Reinforcement Learning (RL) problems with �nite horizons are

common in both human Wulf (2007) and robot motor control problems, few methods

exist in the RL literature. Examples are episodic REINFORCE (Williams, 1992), the

episodic Natural Actor Critic eNAC (Peters et al, 2003, 2005) and model-based methods

using di�erential dynamic programming (Atkeson, 1994).

2.2 Episodic Policy Learning

In this section, we discuss episodic reinforcement learning in policy space, which we

will refer to as Episodic Policy Learning. We �rst discuss the lower bound on the

expected return as suggested in (Dayan and Hinton, 1997) for guaranteeing that policy

update steps are improvements. In (Dayan and Hinton, 1997; Peters and Schaal, 2007)

only the immediate reward case is discussed; we extend this framework to episodic

reinforcement learning. Subsequently, we derive a general update rule, which yields the

policy gradient theorem (Sutton et al, 2000), a generalization of the reward-weighted

regression (Peters and Schaal, 2007), as well as the novel Policy learning by Weighting

Exploration with the Returns (PoWER) algorithm.

2.2.1 Bounds on Policy Improvements

Unlike in reinforcement learning, other branches of machine learning have focused on

maximizing lower bounds on the cost functions, which often results in expectation-

maximization (EM) algorithms (McLachan and Krishnan, 1997). The reasons for this

preference also apply in policy learning: if the lower bound also becomes an equality

5

for the sampling policy, we can guarantee that the policy will be improved by maxi-

mizing the lower bound. Results from supervised learning can be transferred with ease.

First, we generalize the scenario suggested by Dayan and Hinton (1997) to the episodic

case. Here, we generate rollouts τ using the current policy with parameters θ, which

we then weight with the returns R (τ), and subsequently match it with a new policy

parametrized by θ′. This matching of the success-weighted path distribution is equiva-

lent to minimizing the Kullback-Leibler divergence D(pθ(τ)R(τ)‖pθ′(τ)) between the

new path distribution pθ′ (τ) and the reward-weighted previous one pθ (τ)R (τ). The

Kullback-Leibler divergence is considered a natural distance measure between prob-

ability distributions (Bagnell and Schneider, 2003; Van Der Maaten et al, 2007). As

shown in (Dayan and Hinton, 1997; Peters and Schaal, 2007), such a derivation results

in a lower bound on the expected return using Jensen's inequality and the concavity

of the logarithm. Thus, we obtain

log J(θ′) = log

ˆ
T
pθ′ (τ)R (τ) dτ = log

ˆ
T

pθ (τ)

pθ (τ)
pθ′ (τ)R (τ) dτ ,

≥
ˆ

T
pθ (τ)R (τ) log

pθ′ (τ)

pθ (τ)
dτ + const,

which is proportional to

−D (pθ (τ)R (τ) ‖pθ′ (τ)) = Lθ(θ′),

where

D (p (τ) ‖q (τ)) =

ˆ
p (τ) log

p (τ)

q (τ)
dτ

denotes the Kullback-Leibler divergence, and the constant is needed for tightness of the

bound. Note that pθ (τ)R (τ) is an improper probability distribution as pointed out

by Dayan and Hinton (1997). The policy improvement step is equivalent to maximizing

the lower bound on the expected return Lθ(θ′), and we will now show how it relates

to previous policy learning methods.

2.2.2 Resulting Policy Updates

In this section, we will discuss three di�erent policy updates, which are directly

derived from the results of Section 2.2.1. First, we show that policy gradients (Williams,

1992; Sutton et al, 2000; Lawrence et al, 2003; Tedrake et al, 2004; Peters and Schaal,

2006) can be derived from the lower bound Lθ(θ′), which is straightforward from

a supervised learning perspective (Binder et al, 1997). Subsequently, we show that

natural policy gradients (Bagnell and Schneider, 2003; Peters and Schaal, 2006) can

be seen as an additional constraint regularizing the change in the path distribution

resulting from a policy update when improving the policy incrementally. Finally, we

will show how expectation-maximization (EM) algorithms for policy learning can be

generated.

Policy Gradients. When di�erentiating the function Lθ(θ′) that de�nes the lower

bound on the expected return, we directly obtain

∂θ′Lθ(θ′) =
´

Tpθ(τ)R(τ)∂θ′ log pθ′(τ)dτ = E
n“PT

t=1∂θ′ log π(at|st, t)
”
R(τ)

o
, (2)

6

where

∂θ′ log pθ′ (τ) =
PT
t=1∂θ′ log π (at|st, t)

denotes the log-derivative of the path distribution. As this log-derivative depends only

on the policy we can estimate a gradient from rollouts, without having a model, by

simply replacing the expectation by a sum. When θ′ is close to θ, we have the policy
gradient estimator, which is widely known as episodic REINFORCE (Williams, 1992)

limθ′→θ ∂θ′Lθ(θ′) = ∂θJ(θ).

See Algorithm 1 for an example implementation of this algorithm and Appendix A.1

for the detailed steps of the derivation. A MATLAB� implementation of this algorithm

is available at http://www.robot-learning.de/Member/JensKober.

A reward, which precedes an action in a rollout, can neither be caused by the

action nor cause an action in the same rollout. Thus, when inserting Equation (1) into

Equation (2), all cross-products between rt and ∂θ′ log π(at+δt|st+δt, t+ δt) for δt > 0

become zero in expectation (Peters and Schaal, 2006). Therefore, we can omit these

terms and rewrite the estimator as

∂θ′Lθ
`
θ′
´

= E
nPT

t=1∂θ′ log π (at|st, t)Qπ(s,a, t)
o
, (3)

where

Qπ (s,a, t) = E
nPT

t̃=tr
`
st̃,at̃, st̃+1, t̃

´
|st = s,at = a

o

Algorithm 1 `Vanilla' Policy Gradients (VPG)

Input: initial policy parameters θ0

repeat

Sample: Perform h = {1, . . . , H} rollouts using a = θTφ(s, t) + εt with [εnt] ∼
N (0, (σh,n)2) as stochastic policy and collect all (t, sht ,a

h
t , s

h
t+1, ε

h
t , r

h
t+1) for t =

{1, 2, . . . , T + 1}.

Compute: Return Rh =
PT+1
t=1 rht , eligibility

ψh,n =
∂ log p

`
τh
´

∂θn
=

TX
t=1

∂ log π
`
aht |sht , t

´
∂θn

=

TX
t=1

εh,nt`
σnh
´2 φn “sh,nt , t

”
and baseline

bn =

PH
h=1

`
ψh,n

´2
RhPH

h=1

`
ψh,n

´2
for each parameter n = {1, . . . , N} from rollouts.

Compute Gradient :

gnVP = E


∂ log p(τh)

∂θn

“
R(τh)− bn

”ff
= 1

H

HX
h=1

ψh,n(Rh − bn).

Update policy using

θk+1 = θk + αgVP.

until Convergence θk+1 ≈ θk.

7

is called the state-action value function (Sutton and Barto, 1998). Equation (3) is

equivalent to the policy gradient theorem (Sutton et al, 2000) for θ′ → θ in the in�nite

horizon case, where the dependence on time t can be dropped.

The derivation results in the episodic Natural Actor Critic as discussed in (Peters

et al, 2003, 2005) when adding an additional cost in Equation (2) to penalize large steps

away from the observed path distribution. Such a regularization can be achieved by

restricting the amount of change in the path distribution and subsequently, determining

the steepest descent for a �xed step away from the observed trajectories. Change in

probability distributions is naturally measured using the Kullback-Leibler divergence,

thus after adding the additional constraint of

D (pθ (τ) ‖pθ′ (τ)) ≈ 0.5
`
θ′ − θ

´T
F (θ)

`
θ′ − θ

´
= δ

using a second-order expansion as an approximation where F(θ) denotes the Fisher

information matrix (Bagnell and Schneider, 2003; Peters et al, 2003, 2005). See Al-

gorithm 2 for an example implementation of the episodic Natural Actor Critic. A

MATLAB� implementation of this algorithm is available at

http://www.robot-learning.de/Member/JensKober.

Policy Search via Expectation Maximization. One major drawback of gradient-based

approaches is the learning rate, which is an open parameter that can be hard to tune

in control problems but is essential for good performance. Expectation-Maximization

algorithms are well-known to avoid this problem in supervised learning while even

yielding faster convergence (McLachan and Krishnan, 1997). Previously, similar ideas

have been explored in immediate reinforcement learning (Dayan and Hinton, 1997; Pe-

ters and Schaal, 2007). In general, an EM-algorithm chooses the next policy parameters

θn+1 such that

θn+1 = argmaxθ′ Lθ
`
θ′
´
.

In the case where π(at|st, t) belongs to the exponential family, the next policy can be

determined analytically by setting Equation (2) or Equation (3) to zero

E
nPT

t=1∂θ′ log π (at|st, t)Q (s,a, t)
o

= 0, (4)

Algorithm 2 episodic Natural Actor Critic (eNAC)

Input: initial policy parameters θ0

repeat

Sample: Perform h = {1, . . . , H} rollouts using a = θTφ(s, t) + εt with [εnt] ∼
N (0, (σh,n)2) as stochastic policy and collect all (t, sht ,a

h
t , s

h
t+1, ε

h
t , r

h
t+1) for t =

{1, 2, . . . , T + 1}.

Compute: Return Rh =
PT+1
t=1 rht and eligibility ψh,n =

PT
t=1(σnh)−2εh,nt φn(sh,nt , t) for

each parameter n = {1, . . . , N} from rollouts.

Compute Gradient : h
gT
eNAC, Rref

iT
=
“
ΨTΨ

”−1
ΨTR

with R =
ˆ
R1, . . . , RH

˜T
and Ψ =

»
ψ1, . . . ,ψH

1, . . . , 1

–T
where ψh =

ˆ
ψh,1, . . . , ψh,N

˜T
.

Update policy using
θk+1 = θk + αgeNAC.

until Convergence θk+1 ≈ θk.

8

and solving for θ′. Depending on the choice of stochastic policy, we will obtain di�er-

ent solutions and di�erent learning algorithms. It allows the extension of the reward-

weighted regression to longer horizons as well as the introduction of the Policy learning

by Weighting Exploration with the Returns (PoWER) algorithm.

2.3 Policy learning by Weighting Exploration with the Returns (PoWER)

In most learning control problems, we attempt to have a deterministic mean policy

ā = θTφ(s, t) with parameters θ and basis functions φ. In Section 3.1, we will introduce

a particular type of basis function well-suited for robotics. These basis functions derive

from the motor primitive formulation. Given such a deterministic mean policy ā =

θTφ(s, t), we generate a stochastic policy using additive exploration ε(s, t) in order to

make model-free reinforcement learning possible. We have a policy π(at|st, t) that can
be brought into the form

a = θTφ (s, t) + ε (φ (s, t)) .

Previous work in this setting (Williams, 1992; Guenter et al, 2007; Peters and Schaal,

2006, 2007), with the notable exception of (Rückstieÿ et al, 2008), has focused on

state-independent, white Gaussian exploration, namely ε(φ(s, t)) ∼ N (ε|0,Σ). It is

straightforward to obtain the Reward-Weighted Regression for episodic RL by solv-

ing Equation (4) for θ′, which naturally yields a weighted regression method with the

state-action values Qπ(s,a, t) as weights. See Algorithm 3 for an exemplary implemen-

tation and Appendix A.2 for the derivation. An optimized MATLAB� implementation

of this algorithm is available at http://www.robot-learning.de/Member/JensKober.

Algorithm 3 episodic Reward Weighted Regression (eRWR)

Input: initial policy parameters θ0

repeat

Sample: Perform h = {1, . . . , H} rollouts using a = θTφ(s, t) + εt with [εnt] ∼
N (0, (σh,n)2) as stochastic policy and collect all (t, sht ,a

h
t , s

h
t+1, ε

h
t , r

h
t+1) for t =

{1, 2, . . . , T + 1}.

Compute: State-action value function Qπ,ht =
PT
t̃=t

rh
t̃
from rollouts.

Update policy using

θnk+1 =
“
(Φn)T QπΦn

”−1
(Φn)T QπAn

with basis functions

Φn =
h
φ1,n

1 , . . . ,φ1,n
T ,φ2,n

1 , . . . ,φH,n1 , . . . ,φH,nT

iT
,

where φh,nt is the value of the basis function of rollout h and parameter n at time t,
actions

An =
h
a1,n
1 , . . . , a1,n

T , a2,n
1 , . . . , aH,n1 , . . . , aH,nT

iT
,

and returns
Qπ = diag

“
Qπ,11 , . . . , Qπ,1T , Qπ,21 , . . . , Qπ,H1 , . . . , Qπ,HT

”
until Convergence θk+1 ≈ θk.

9

This form of exploration has resulted in various applications in robotics such as T-Ball

batting (Peters and Schaal, 2006), Peg-In-Hole (Gullapalli et al, 1994), constrained

reaching movements (Guenter et al, 2007) and operational space control (Peters and

Schaal, 2007).

However, such unstructured exploration at every step has several disadvantages:

(i) it causes a large variance in parameter updates that grows with the number of

time-steps (Rückstieÿ et al, 2008; Peters and Schaal, 2006), (ii) it perturbs actions

too frequently as the system acts as a low pass �lter, and the perturbations average

out, thus their e�ect is washed out, and (iii) it can damage the system executing the

trajectory. As the action is perturbed in every time-step the outcome of a trial can

change drastically. This e�ect accumulates with the number of trials and the explo-

ration is not equal over the progress of the trial. This behavior leads to a large variance

in parameter updates. Random exploration in every time-step leads to jumps in the

actions. A physical robot can not execute instantaneous changes in actions as either

the controller needs time to react or the motor and the links of the robot have inertia

that forces the robot to continue the motion induced by the previous actions. Globally

speaking, the system acts as a low pass �lter. If the robot tries to follow the desired

high frequency action changes, a lot of strain is placed on the mechanics of the robot

and can lead to oscillations. Furthermore, the accumulating e�ect of the exploration

can lead the robot far from previously seen states, which is potentially dangerous.

As a result, all methods relying on this state-independent exploration have proven

too fragile for learning tasks such as the Ball-in-a-Cup (see Section 3.7) on a real robot

system. Alternatively, as introduced in (Rückstieÿ et al, 2008), one could generate a

form of structured, state-dependent exploration. We use

ε (φ (s, t)) = εTt φ (s, t)

with εt ∼ N (0, Σ̂), where Σ̂ is a meta-parameter of the exploration that can be

optimized in a similar manner (see Appendix A.3). This argument results in the policy

a ∼ π (at|st, t) = N
“
a|θTφ (s, t) ,φ(s, t)TΣ̂φ(s, t)

”
.

Inserting the resulting policy into Equation (4), we obtain the optimality condition

update and can derive the update rule

θ′ = θ + E
nPT

t=1W (s, t)Qπ (s,a, t)
o−1

E
nPT

t=1W (s, t) εtQ
π (s,a, t)

o
with W(s, t) = φ(s, t)φ(s, t)T(φ(s, t)TΣ̂φ(s, t))−1.

In order to reduce the number of rollouts in this on-policy scenario, we reuse the

rollouts through importance sampling as described, in the context of reinforcement

learning, in (Andrieu et al, 2003; Sutton and Barto, 1998). The expectations E{·}
are replaced by the importance sampler denoted by 〈·〉w(τ). To avoid the fragility

sometimes resulting from importance sampling in reinforcement learning, samples with

very small importance weights are discarded. This step is necessary as a lot of rollouts

with a low return accumulate mass and can bias the update. A simple heuristic that

works well in practice is to discard all but the j best rollouts, where j is chosen in the

same order of magnitude as the number of parameters N . The derivation is shown in

Appendix A.3 and the resulting algorithm in Algorithm 4. Note that for our motor

primitives, some simpli�cations of W are possible. These and other simpli�cations

are shown in Appendix A.3. A MATLAB� implementation of this algorithm in several

10

variants is available at http://www.robot-learning.de/Member/JensKober. As we will

see in Section 3, this PoWER method signi�cantly outperforms all other described

methods.

PoWER is very robust with respect to reward functions. The key constraint is that

it has to be an improper probability distribution which means that the rewards have

to be positive. It can be bene�cial for learning speed if the reward function sums up

to one as a proper probability distribution.

Like most learning algorithms, PoWER achieves convergence faster for lower num-

bers of parameters. However, as it is an EM-inspired approach, it su�ers signi�cantly

less from this problem than gradient based approaches. Including more prior knowl-

edge, either in the parametrization or the initial policy, leads to faster convergence. As

discussed above, changing exploration at every time-step has a number of disadvan-

tages. Fixing the exploration for the whole episode (if each basis function is only active

for a short time) or using a slowly varying exploration (for example based on random

walks) can increase the performance. All algorithms introduced in this paper optimize

locally and can get stuck in local optima. An initial policy should be chosen to avoid

local optima on the progress towards the desired �nal solution.

3 Benchmark Evaluation and Application in Robotics

In this section, we demonstrate the e�ectiveness of the algorithms presented in Sec-

tion 2.3 in the context of motor primitive learning for robotics. We will �rst give a quick

overview of how the motor primitives (Ijspeert et al, 2002, 2003; Schaal et al, 2003,

2007) work and how learning algorithms can be used to adapt them. Subsequently,

we will discuss how we can turn the parametrized motor primitives (Ijspeert et al,

2002, 2003; Schaal et al, 2003, 2007) into explorative, stochastic policies (Rückstieÿ

et al, 2008). We show that the novel PoWER algorithm outperforms many previous

Algorithm 4 EM Policy learning by Weighting Exploration with the Returns

(PoWER)

Input: initial policy parameters θ0

repeat

Sample: Perform rollout(s) using a = (θ + εt)Tφ(s, t) with εTt φ (s, t) ∼
N (0,φ(s, t)TΣ̂φ(s, t)) as stochastic policy and collect all (t, st,at, st+1, εt, rt+1) for
t = {1, 2, . . . , T + 1}.

Estimate: Use unbiased estimate

Q̂π (s,a, t) =
PT
t̃=t

r
`
st̃,at̃, st̃+1, t̃

´
.

Reweight : Compute importance weights and reweight rollouts, discard low-importance
rollouts.

Update policy using

θk+1 = θk +
DPT

t=1W (s, t)Qπ (s,a, t)
E−1

w(τ)

DPT
t=1W (s, t) εtQ

π (s,a, t)
E
w(τ)

with W(s, t) = φ(s, t)φ(s, t)T(φ(s, t)TΣ̂φ(s, t))−1.

until Convergence θk+1 ≈ θk.

11

Open Parameters DoF Rollouts Policy Platform Algorithms

3.2 10 (shape) 1 4400 MP simulation FDG, VPG, eNAC,
eRWR, PoWER

3.3 2 (switching) 1 80 bang-
bang

simulation FDG, PoWER,
kNN-TD(λ)

3.4 6 (positions) 1 200 rhythmic simulation FDG, PoWER
3.5 10 (goal & shape) 1 200/100 MP simu/robot FDG, VPG, eNAC,

eRWR, PoWER
3.6 10 (shape) 2 200 MP simulation eNAC, PoWER
3.7 217 (shape) 7 100 MP robot PoWER

Table 1: Overview of the Experiments: 3.2 Basic Motor Learning, 3.3 Mountain-Car, 3.4 Teth-
erball Target Hitting, 3.5 Underactuated Swing-Up, 3.6 Casting, and 3.7 Ball-in-a-Cup

well-known methods, particularly `Vanilla' Policy Gradients (Williams, 1992; Sutton

et al, 2000; Lawrence et al, 2003; Peters and Schaal, 2006), Finite Di�erence Gradi-

ents (Sehnke et al, 2010; Peters and Schaal, 2006), the episodic Natural Actor Critic

(Peters et al, 2003, 2005), and the generalized Reward-Weighted Regression (Peters

and Schaal, 2007) on the two simulated benchmark problems suggested by Peters and

Schaal (2006) and the Underactuated Swing-Up (Atkeson, 1994). We compare policy

search based algorithms to a value function based one on the mountain-car benchmark.

Additionally, we evaluate policy search methods on the multidimensional robotic tasks

Tetherball Target Hitting and Casting. As a signi�cantly more complex motor learn-

ing task, we will show how the robot can learn a high-speed Ball-in-a-Cup movement

(Sumners, 1997) with motor primitives for all seven degrees of freedom of our Barrett

WAM� robot arm. An overview of the experiments is presented in Table 1.

3.1 Dynamical Systems Motor Primitives

In the analytically tractable cases, episodic Reinforcement Learning (RL) problems

have been studied deeply in the optimal control community. In this �eld it is well-

known that for a �nite horizon problem, the optimal solution is non-stationary (Kirk,

1970) and, in general, cannot be represented by a time-independent policy. The motor

primitives based on dynamical systems (Ijspeert et al, 2002, 2003; Schaal et al, 2003,

2007) represent a particular type of time-variant policy that has an internal phase,

which corresponds to a clock with additional �exibility (for example, for incorporating

coupling e�ects, perceptual in�uences, etc.). Thus, they can represent optimal solutions

for �nite horizons. We embed this internal clock or movement phase into our state and

from an optimal control perspective have ensured that the optimal solution can be

represented.

The original formulation of the dynamical system motor primitives in (Ijspeert

et al, 2003) was a major breakthrough as the choice of dynamical systems allows the

determination of the stability of the movement, choosing between a rhythmic and a

discrete movement, and the behavior is invariant under rescaling in both time and

movement amplitude. In this paper, we focus on single stroke movements as they fre-

quently appear in human motor control (Wulf, 2007; Schaal et al, 2007). Therefore, we

will always choose the point attractor version of the dynamical system motor prim-

itives. We use the most recent formulation of the discrete dynamical systems motor

primitives (Schaal et al, 2007) where the phase z of the movement is represented by a

12

single �rst order system

ż = −ταzz. (5)

This canonical system has the time constant τ = 1/T where T is the duration of

the motor primitive and a parameter αz , which is chosen such that z ≈ 0 at T .

Subsequently, the internal state x of a second system is chosen such that positions q

of all degrees of freedom are given by q = x1, the velocities by q̇ = τx2 = ẋ1, and the

accelerations by q̈ = τ ẋ2. The learned dynamics of Ijspeert motor primitives can be

expressed in the following form

ẋ2 = ταx (βx (g − x1)− x2) + τAf (z) , (6)

ẋ1 = τx2.

This set of di�erential equations has the same time constant τ as the canonical system,

parameters αx, βx are set such that the system is critically damped, a goal parameter g,

a transformation function f , and an amplitude matrix A = diag (a1, a2, . . . , aI), with

the amplitude modi�er a = [a1, a2, . . . , aI]. Schaal et al (2007) use a = g−x0
1, with the

initial position x0
1, which ensures linear scaling. Other choices are possibly better suited

for speci�c tasks, as shown in (Park et al, 2008). The transformation function f (z)

alters the output of the system in Equation (5) so that the system in Equation (6) can

represent complex nonlinear patterns. It is given by

f (z) =
PN
n=1ϕn (z)θnz. (7)

Here θn contains the nth adjustable parameter of all degrees of freedom (DoF), N is

the number of parameters per degree of freedom, and ϕn(z) are the corresponding

weighting functions (Schaal et al, 2007). Normalized Gaussian kernels are used as

weighting functions, given by

ϕn =
exp

“
−hn (z − cn)2

”
PN
m=1 exp

“
−hm (z − cm)2

” . (8)

These weighting functions localize the interaction in phase space using the centers cn
and widths hn. As z ≈ 0 at T , the in�uence of the transformation function f (z) in

Equation (7) vanishes and the system stays at the goal position g. Note that the DoF

are usually all modeled independently in the system in Equation (6). The movement

of all DoFs is synchronized as the dynamical systems for all DoFs start at the same

time and have the same duration. The shape of the movement is generated using the

transformation f (z) in Equation (7), which is learned as a function of the shared

canonical system in Equation (5). Additional feedback terms can be added as shown

in (Ijspeert et al, 2003; Schaal et al, 2007; Kober et al, 2008; Park et al, 2008).

One of the biggest advantages of this motor primitive framework (Ijspeert et al,

2002, 2003; Schaal et al, 2003, 2007) is that the second system, in Equation (6), is linear

in the policy parameters θ and is therefore well-suited for both imitation learning as

well as for the presented reinforcement learning algorithms. For example, if we would

have to learn only a motor primitive for a single degree of freedom qi, then we could

use a motor primitive in the form ¨̄qi = φ(s)Tθ where s = [qi, q̇i, z] is the state and

where time is implicitly embedded in z. We use the output of ¨̄qi = φ(s)Tθ = ā as the

policy mean. The perturbed accelerations q̈i = a = ā+ ε are given to the system.

13

0 0.5 1
0

0.5

1

time t

po
si

tio
n

q

(a) minimum motor command

0 0.5 1
0

0.5

1

time t

po
si

tio
n

q

(b) passing through a point

initialization learned solution intermediate point

Fig. 1: (Color online) This �gure shows the initial and the �nal trajectories for the two motor
control tasks. Both start at 0 and have to go to 1 with minimal accelerations. From T/2 = 0.75
on the trajectory has to be as close to 1 as possible. For the passing through task the trajectory
additionally has to pass through pM = 0.5 at time M = 7/40T indicated by the circle.

In Sections 3.5 and 3.7, we use imitation learning from a single example to generate

a sensible initial policy. This step can be performed e�ciently in the context of dynam-

ical systems motor primitives as the transformation function Equation (7) is linear in

its parameters. As a result, we can choose the weighted squared error (WSE)

WSEn =
PT
t=1ϕ

n
t

“
f reft − ztθn

”2
(9)

as cost function and minimize it for all parameter vectors θn with n ∈ {1, 2, . . . , N}.
Here, the corresponding weighting functions are denoted by ψnt and the basis function

by zt. The reference or target signal f
ref
t is the desired transformation function and t

indicates the time-step of the sample. The error in Equation (9) can be rewritten in

matrix form as

WSEn =
“
f ref − Zθn

”T
Φ
“
f ref − Zθn

”
with f ref containing the values of f reft for all time-steps t, Φ = diag (ϕn1 , . . . , ϕ

n
t , . . . , ϕ

n
T),

and [Z]t = zt. As a result, we have a standard locally-weighted linear regression prob-

lem that is straightforward to solve and yields the unbiased parameter estimator

θn =
“
ZTΨZ

”−1
ZTΦf ref.

This approach was originally suggested for imitation learning by Ijspeert et al (2003).

Estimating the parameters of the dynamical system is slightly more di�cult; the du-

ration of the movement is extracted using motion detection and the time-constant is

set accordingly.

3.2 Benchmark Comparison I: Basic Motor Learning Examples

As a benchmark comparison, we follow a previously studied scenario in order to eval-

uate, which method is best-suited for our problem class. We perform our evaluations

on exactly the same benchmark problems as in (Peters and Schaal, 2006) and use

two tasks commonly studied in motor control literature for which the analytic solu-

tions are known. The �rst task is a reaching task, wherein a goal has to be reached

at a certain time, while the used motor commands have to be minimized. The second

task is a reaching task of the same style with an additional via-point. The task is il-

lustrated in Figure 1. This comparison mainly shows the suitability of our algorithm

14

10
2

10
3

−1000

−500

−250

number of rollouts

av
er

ag
e

re
tu

rn

(a) minimum motor command

10
2

10
3

−10
2

−10
1

number of rollouts

av
er

ag
e

re
tu

rn

(b) passing through a point

FDG VPG eNAC eRWR PoWER

Fig. 2: (Color online) This �gure shows the mean performance of all compared methods in
two benchmark tasks averaged over twenty learning runs with the error bars indicating the
standard deviation. Policy learning by Weighting Exploration with the Returns (PoWER)
clearly outperforms Finite Di�erence Gradients (FDG), `Vanilla' Policy Gradients (VPG), the
episodic Natural Actor Critic (eNAC), and the adapted Reward-Weighted Regression (eRWR)
for both tasks. Note that this plot has logarithmic scales on both axes, thus a unit di�erence
corresponds to an order of magnitude. The omission of the �rst twenty rollouts was necessary
to cope with the log-log presentation.

(Algorithm 4) and that it outperforms previous methods such as Finite Di�erence Gra-

dient (FDG) methods (Sehnke et al, 2010; Peters and Schaal, 2006), see Algorithm 5,

`Vanilla' Policy Gradients (VPG) with optimal baselines (Williams, 1992; Sutton et al,

2000; Lawrence et al, 2003; Peters and Schaal, 2006), see Algorithm 1, the episodic

Natural Actor Critic (eNAC) (Peters et al, 2003, 2005), see Algorithm 2, and the new

episodic version of the Reward-Weighted Regression (eRWR) algorithm (Peters and

Schaal, 2007), see Algorithm 3. MATLAB� implementations of all algorithms are avail-

able at http://www.robot-learning.de/Member/JensKober. For all algorithms except

PoWER, we used batches to update the policy. A sliding-window based approach is

also possible. For VPG, eNAC, and eRWR a batch size of H = 2N and for FDG a

batch size of H = N+1 are typical. For PoWER, we employed an importance sampling

based approach, although a batch based update is also possible.

We consider two standard tasks taken from (Peters and Schaal, 2006), but we use

the newer form of the motor primitives from (Schaal et al, 2007). The �rst task is to

achieve a goal with a minimum-squared movement acceleration and a given movement

duration, that gives a return of

R (τ) = −
T/2X
t=0

c1q̈
2
t −

TX
t=T/2+1

c2

“
(qt − g)2 + q̇2t

”

for optimization, where T = 1.5, c1 = 1/100 is the weight of the transient rewards for

the movement duration T/2, while c2 = 1000 is the importance of the �nal reward,

extended over the time interval [T/2 + 1, T] which insures that the goal state g = 1.0

is reached and maintained properly. The initial state of the motor primitive is always

zero in this evaluation.

The second task involves passing through an intermediate point during the trajec-

tory, while minimizing the squared accelerations, that is, we have a similar return with

an additional punishment term for missing the intermediate point pM at timeM given

15

by

R (τ) = −
T/2X
t=0

ec1q̈2t − TX
t=T/2+1

ec2 “(qt − g)2 + q̇2t

”
− ec3 (qM − pM)2

where ec1 = 1/10000, ec2 = 200, ec3 = 20000. The goal is given by g = 1.0, the intermedi-

ate point a value of pM = 0.5 at time M = 7/40T , and the initial state was zero. This

return yields a smooth movement, which passes through the intermediate point before

reaching the goal, even though the optimal solution is not identical to the analytic

solution with hard constraints.

All open parameters were manually optimized for each algorithm in order to max-

imize the performance while not destabilizing the convergence of the learning process.

When applied in the episodic scenario, Policy learning by Weighting Exploration with

the Returns (PoWER) clearly outperformed the episodic Natural Actor Critic (eNAC),

`Vanilla' Policy Gradient (VPG), Finite Di�erence Gradient (FDG), and the episodic

Reward-Weighted Regression (eRWR) for both tasks. The episodic Reward-Weighted

Regression (eRWR) is outperformed by all other algorithms suggesting that this algo-

rithm does not generalize well from the immediate reward case. While FDG gets stuck

on a plateau, both eNAC and VPG converge to the same good �nal solution. PoWER

�nds the a slightly better solution while converging noticeably faster. The results are

presented in Figure 2.

3.3 Benchmark Comparison II: Mountain-Car

As a typical reinforcement learning benchmark we chose the mountain-car task (Sutton

and Barto, 1998) as it can be treated with episodic reinforcement learning. In this

problem we have a car placed in a valley, and it is supposed to go on the top of the

mountain in front of it, but does not have the necessary capabilities of acceleration to

do so directly. Thus, the car has to �rst drive up the mountain on the opposite side

of the valley to gain su�cient energy. The dynamics are given in (Sutton and Barto,

Algorithm 5 Finite Di�erence Gradients (FDG)

Input: initial policy parameters θ0

repeat

Generate policy variations: ∆θh ∼ U[−∆θmin,∆θmax] for h = {1, . . . , H} rollouts.

Sample: Perform h = {1, . . . , H} rollouts using a = (θ + ∆θh)Tφ(s, t) as policy and
collect all (t, sht ,a

h
t , s

h
t+1, ε

h
t , r

h
t+1) for t = {1, 2, . . . , T + 1}.

Compute: Return Rh(θ + ∆θh) =
PT+1
t=1 rht from rollouts.

Compute Gradient : h
gT
FD, Rref

iT
=
“
∆ΘT∆Θ

”−1
∆ΘTR

with ∆Θ =

»
∆θ1, . . . ,∆θH

1, . . . , 1

–T
and R =

ˆ
R1, . . . , RH

˜T
.

Update policy using
θk+1 = θk + αgFD.

until Convergence θk+1 ≈ θk.

16

(a) The tasks consists of driv-
ing the underpowered car to
the target on the mountain in-
dicated by the yellow star.

0 20 40 60

−10000

−8000

−6000

−4000

−2000

0

number of rollouts

ac
cu

m
ul

at
ed

 r
et

ur
n

Optimal

PoWER

kNN−TD FDG

(b) This �gure shows the mean accumulated returns of
the methods compared on the mountain car benchmark.
The results are averaged over �fty learning runs with er-
ror bars inidicating the standard deviation. Policy learn-
ing by Weighting Exploration with the Returns (PoWER)
and Finite Di�erence Gradients (FDG) clearly outperform
kNN-TD(λ). All methods converge to the optimal solution.

Fig. 3: (Color online) This �gure shows an illustration of the mountain-car task and the mean
accumulated returns of the compared methods.

1998) as

ẋt+1 = ẋt + 0.001at − 0.0025 cos (3xt) ,

xt+1 = xt + ẋt+1,

with position −1.2 ≤ xt+1 ≤ 0.5 and velocity −0.07 ≤ ẋt+1 ≤ 0.07. If the goal

xt+1 ≥ 0.5 is reached the episode is terminated. If the left bound is reached the ve-

locity is reset to zero. The initial condition of the car is x0 = −0.5 and ẋ0 = 0. The

reward is rt = −1 for all time-steps until the car reaches the goal. We employed an

undiscounted return. The set of actions at is slightly di�erent to the setup proposed by

Sutton and Barto (1998). We only have two actions, the full throttle forward (at = +1)

and the full throttle reverse (at = −1). From a classical optimal control point of view,

it is straightforward to see that a bang-bang controller can solve this problem. As an

initial policy we chose a policy that accelerates forward until the car cannot climb the

mountain further, accelerates reverse until the car cannot climb the opposite slope fur-

ther, and �nally accelerates forward until the car reaches the goal. This policy reaches

the goal but is not optimal as the car can still accumulate enough energy if it reverses

the direction slightly earlier. As a parametrization for the policy search approaches we

chose to encode the switching points of the acceleration. The two parameters of the

policy indicate at which timestep t the acceleration is reversed. For this kind of policy

only algorithms that perturb the parameters are applicable and we compare a Finite

Di�erence Gradient approach to PoWER. This parametrized policy is entirely di�erent

to motor primitives. Additionally we included a comparison to a value function based

method. The Q-function was initialized with our initial policy. As the kNN-TD(λ)

algorithm (Martín H. et al, 2009) won the Reinforcement Learning Competitions in

2008 and 2009, we selected it for this comparison. This comparison is contrived as our

17

(a) The tasks consists of strik-
ing the yellow ball hanging on
an elastic string such that it
hits the green target.

0 50 100 150 200

0.6

0.7

0.8

0.9

1

number of rollouts

av
er

ag
e

re
tu

rn

FDG
PoWER

(b) The returns are averaged over 20 learning runs with
error bars indicating the standard deviation. Policy learn-
ing by Weighting Exploration with the Returns (PoWER)
clearly outperforms Finite Di�erence Gradients (FDG).

Fig. 4: (Color online) This �gure shows an illustration of the Tetherball Target Hitting task
and the mean returns of the compared methods.

switching policy always starts in a similar initial state while the value function based

policy can start in a wider range of states. Furthermore, the policy search approaches

may be sped up by the initialization, while kNN-TD(λ) will learn the optimal policy

without prior knowledge and does not bene�t much from the initialization. However,

the use of a global approach, such as kNN-TD(λ) requires a global search of the state

space. Such a global search limits the scalability of these approaches. The more local

approaches of policy search are less a�ected by these scalability problems. Figure 3b

shows the performance of these algorithms. As kNN-TD(λ) initially explores the un-

seen parts of the Q-function, the policy search approaches converge faster. All methods

�nd the optimal solution.

3.4 Benchmark Comparison III: Tetherball Target Hitting

In this task, a table tennis ball is hanging on an elastic string from the ceiling. The

task consists of hitting the ball with a table tennis racket so that it hits a �xed target.

The task is illustrated in Figure 4a. The return is based on the minimum distance

between the ball and the target during one episode transformed by an exponential.

The policy is parametrized as the position of the six lower degrees of freedom of the

Barrett WAM�. Only the �rst degree of freedom (shoulder rotation) is moved during

an episode. The movement is represented by a rhythmic policy with a �xed amplitude

and period. Due to the parametrization of the task only PoWER and Finite Di�erence

Gradients are applicable. We observed reliable performance if the initial policy did

not miss the target by more than approximately 50cm. In this experiment it took

signi�cantly less iterations to �nd a good initial policy than to tune the learning rate

of Finite Di�erence Gradients, a problem from which PoWER did not su�er as it is

an EM-like algorithm. Figure 4b illustrates the results. PoWER converges signi�cantly

faster.

18

Fig. 5: This �gure shows the time series of the Underactuated Swing-Up where only a sin-
gle joint of the robot is moved with a torque limit ensured by limiting the maximal motor
current of that joint. The resulting motion requires the robot to (ii) �rst move away from
the target to limit the maximal required torque during the swing-up in (iii-v) and subsequent
stabilization (vi).

3.5 Benchmark Comparison IV: Underactuated Swing-Up

As an additional simulated benchmark and for the real-robot evaluations, we employed

the Underactuated Swing-Up (Atkeson, 1994). Here, only a single degree of freedom is

represented by the motor primitive as described in Section 3.1. The goal is to move a

hanging heavy pendulum to an upright position and to stabilize it there. The objective

is threefold: the pendulum has to be swung up in a minimal amount of time, has to be

stabilized in the upright position, and achieve these goals with minimal motor torques.

By limiting the motor current for this degree of freedom, we can ensure that the torque

limits described in (Atkeson, 1994) are maintained and directly moving the joint to the

right position is not possible. Under these torque limits, the robot needs to �rst move

away from the target to reduce the maximal required torque during the swing-up,

see Figure 5. This problem is similar to the mountain-car problem (Section 3.3). The

standard mountain-car problem is designed to get the car to the top of the mountain

in minimum time. It does not matter if it stops at this point or drives at a high

speed as usage of the accelerator and brake is not punished. Adding the requirement of

stabilizing the car at the top of the mountain makes the problem signi�cantly harder.

These additional constraints exist in the Underactuated Swing-Up task where it is

50 100 150 200
0.6

0.7

0.8

0.9

1

number of rollouts

av
er

ag
e

re
tu

rn

eRWR

PoWER

FDG

VPG

eNAC

Fig. 6: (Color online) This �gure shows the performance of all compared methods for the
swing-up in simulation and the mean performance averaged over 20 learning runs with the
error bars indicating the standard deviation. PoWER outperforms the other algorithms from
50 rollouts on and �nds a signi�cantly better policy.

19

Fig. 7: This �gure shows the improvement of the policy over rollouts. The snapshots from
the video show the �nal positions. (0) Initial policy after imitation learning (without torque
limit). (1) Initial policy after imitation learning (with active torque limit). (20) Policy after
20 rollouts, going further up. (30) Policy after 30 rollouts, going too far. (40) Policy after 40
rollouts, going only a bit too far. (65) Final policy after 65 rollouts.

required that the pendulum (the equivalent of the car) stops at the top to ful�ll the

task. The applied torque limits were the same as in (Atkeson, 1994) and so was the

reward function, except that the complete return of the trajectory was transformed by

an exp(·) to ensure positivity. The reward function is given by

r (t) = −c1q (t)2 + c2 log cos

„
c3
u (t)

umax

«
,

where the constants are c1 = 5/π2 ≈ 0.507, c2 = (2/π)2 ≈ 0.405, and c3 = π/2 ≈
1.571. Please note that π refers to the mathematics constant here, and not to the policy.

The �rst term of the sum is punishing the distance to the desired upright position q = 0,

and the second term is punishing the usage of motor torques u. A di�erent trade-o�

can be achieved by changing the parameters or the structure of the reward function, as

long as it remains an improper probability function. Again all open parameters of all

algorithms were manually optimized. The motor primitive with nine shape parameters

and one goal parameter was initialized by imitation learning from a kinesthetic teach-

in. Kinesthetic teach-in means �taking the robot by the hand�, performing the task by

moving the robot while it is in gravity-compensation mode, and recording the joint

angles, velocities, and accelerations. This initial demonstration needs to include all the

20 40 60 80 100
0.6

0.7

0.8

0.9

1

number of rollouts

av
er

ag
e

re
tu

rn

eRWR

PoWER

FDG

VPG

eNAC

Fig. 8: (Color online) This �gure shows the performance of all compared methods for the
swing-up on the real robot and the mean performance averaged over 3 learning runs with the
error bars indicating the standard deviation. PoWER outperforms the other algorithms and
�nds a signi�cantly better policy.

20

(a) The tasks consists of plac-
ing the blue ball in the brown
cup.

0 50 100 150 200

0.5

0.6

0.7

0.8

0.9

1

number of rollouts

av
er

ag
e

re
tu

rn

eNAC
PoWER

(b) The returns are averaged over 20 learning runs
with error bars indicating the standard deviation. Pol-
icy learning by Weighting Exploration with the Returns
(PoWER) clearly outperforms episodic Natural Actor
Critic (eNAC).

Fig. 9: (Color online) This �gure illustrates the Casting task and shows the mean returns of
the compared methods.

relevant features of the movement, e.g., it should �rst move away from the target and

then towards the upright position. The performance of the algorithms is very robust, as

long as the initial policy with active torque limits moves the pendulum approximately

above the horizontal orientation.

As the batch size, and, thus the learning speed, of the gradient based approaches

depend on the number of parameters (see Section 3.2), we tried to minimize the number

of parameters. Using more parameters would allow us to control more details of the

policy which could result in a better �nal policy, but would have signi�cantly slowed

down convergence. At least nine shape parameters were needed to ensure that the imi-

tation can capture the movement away from the target, which is essential to accomplish

the task. We compared all algorithms considered in Section 3.2 and could show that

PoWER would again outperform the others. The convergence is a lot faster than in

the basic motor learning examples (see Section 3.2), as we do not start from scratch

but rather from an initial solution that allows signi�cant improvements in each step

for each algorithm. The results are presented in Figure 6. See Figure 7 and Figure 8

for the resulting real-robot performance.

3.6 Benchmark Comparison V: Casting

In this task a ball is attached to the ende�ector of the Barrett WAM� by a string. The

task is to place the ball into a small cup in front of the robot. The task is illustrated in

Figure 9a. The return is based on the sum of the minimum distance between the ball

and the top, the center, and the bottom of the cup respectively during one episode.

Using only a single distance, the return could be successfully optimized, but the �nal

behavior often corresponded to a local maximum (for example hitting the cup from the

side). The movement is in a plane and only one shoulder DoF and the elbow are moved.

21

Fig. 10: This �gure illustrates how the reward is calculated. The plane represents the level
of the upper rim of the cup. For a successful rollout the ball has to be moved above the cup
�rst and is then �ying in a downward direction into the opening of the cup. The reward is
calculated as the distance d of the center of the cup and the center of the ball on the plane at
the moment the ball is passing the plane in a downward direction. If the ball is �ying directly
into the center of the cup, the distance is 0 and through the transformation exp(−d2) yields
the highest possible reward of 1. The further the ball passes the plane from the cup, the larger
the distance and thus the smaller the resulting reward.

The policy is parametrized using motor primitives with �ve shape parameters per active

degree of freedom. The policy is initialized with a movement that results in hitting the

cup from the side in the upper quarter of the cup. If the ball hits the cup below the

middle, approximately 300 rollouts were required for PoWER and we did not achieve

reliable performance for the episodic Natural Actor Critic. We compare the two best

performing algorithms from the basic motor learning examples (see Section 3.2) and

the Underactuated Swing-Up (see Section 3.5), namely eNAC and PoWER. Figure 9b

illustrates the results. PoWER again converges signi�cantly faster.

3.7 Ball-in-a-Cup on a Barrett WAM�

The children's motor skill game Ball-in-a-Cup (Sumners, 1997), also known as Balero,

Bilboquet, and Kendama, is challenging even for adults. The toy has a small cup which

is held in one hand (or, in our case, is attached to the end-e�ector of the robot) and

the cup has a small ball hanging down on a string (the string has a length of 40cm in

our setup). Initially, the ball is hanging down vertically in a rest position. The player

needs to move fast in order to induce a motion in the ball through the string, toss it

up, and catch it with the cup. A possible movement is illustrated in Figure 11 in the

top row.

Note that learning of Ball-in-a-Cup and Kendama has previously been studied

in robotics. We are going to contrast a few of the approaches here. While we learn

directly in the joint space of the robot, Takenaka (1984) recorded planar human cup

movements and determined the required joint movements for a planar, three degree

of freedom (DoF) robot, so that it could follow the trajectories while visual feedback

was used for error compensation. Both Sato et al (1993) and Shone et al (2000) used

motion planning approaches which relied on very accurate models of the ball and the

string while employing only one DoF in (Shone et al, 2000) or two DoF in (Sato et al,

1993) so that the complete state-space could be searched exhaustively. Interestingly,

exploratory robot moves were used in (Sato et al, 1993) to estimate the parameters of

the employed model. Probably the most advanced preceding work on learning Kendama

was carried out by Miyamoto et al (1996) who used a seven DoF anthropomorphic

arm and recorded human motions to train a neural network to reconstruct via-points.

Employing full kinematic knowledge, the authors optimize a desired trajectory.

22

(a) Schematic Drawings of the Ball-in-a-Cup Motion

(b) Kinesthetic Teach-In

(c) Final learned Robot Motion

Fig. 11: This �gure shows schematic drawings of the Ball-in-a-Cup motion (a), the �nal learned
robot motion (c), as well as a kinesthetic teach-in (b). The arrows show the directions of the
current movements in that frame. The human cup motion was taught to the robot by imitation
learning with 31 parameters per joint for an approximately 3 seconds long trajectory. The robot
manages to reproduce the imitated motion quite accurately, but the ball misses the cup by
several centimeters. After approximately 75 iterations of our Policy learning by Weighting
Exploration with the Returns (PoWER) algorithm the robot has improved its motion so that
the ball goes in the cup. Also see Figure 12. (Color online)

The state of the system can be described by joint angles and joint velocities of the

robot as well as the the Cartesian coordinates and velocities of the ball. The actions

are the joint space accelerations where each of the seven joints is driven by a separate

motor primitive, but with one common canonical system. The movement uses all seven

degrees of freedom and is not in a plane. All motor primitives are perturbed separately

but employ the same joint �nal reward given by

r (t) =

8<:exp
“
−α (xc − xb)2 − α (yc − yb)2

”
if t = tc,

0 otherwise,

where we denote the moment when the ball passes the rim of the cup with a downward

direction by tc, the cup position by [xc, yc, zc] ∈ R3, the ball position by [xb, yb, zb] ∈
R3, and a scaling parameter by α = 100 (see also Figure 10). The algorithm is robust to

changes of this parameter as long as the reward clearly discriminates good and subop-

timal trials. The directional information is necessary as the algorithm could otherwise

learn to hit the bottom of the cup with the ball. This solution would correspond to a

local maximum whose reward is very close to the optimal one, but the policy very far

from the optimal one. The reward needs to include a term avoiding this local maximum.

PoWER is based on the idea of considering the reward as an improper probability dis-

tribution. Transforming the reward using the exponential enforces this constraint. The

23

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of rollouts

av
er

ag
e

re
tu

rn

Fig. 12: This �gure shows the expected return of the learned policy in the Ball-in-a-Cup
evaluation averaged over 20 runs.

reward is not only a�ected by the movements of the cup but foremost by the move-

ments of the ball, which are sensitive to small changes in the cup's movement. A small

perturbation of the initial condition or during the trajectory can change the movement

of the ball and hence the outcome of the complete movement. The position of the ball

is estimated using a stereo vision system and is needed to determine the reward.

Due to the complexity of the task, Ball-in-a-Cup is a hard motor learning task

for children, who usually only succeed at it by observing another person playing com-

bined with a lot of improvement by trial-and-error. Mimicking how children learn to

play Ball-in-a-Cup, we �rst initialize the motor primitives by imitation learning and,

subsequently, improve them by reinforcement learning. We recorded the motions of

a human player by kinesthetic teach-in to obtain an example for imitation as shown

in Figure 11b. A single demonstration was used for imitation learning. Learning from

multiple demonstrations did not improve the performance as the task is sensitive to

small di�erences. As expected, the robot fails to reproduce the presented behavior

even if we use all the recorded details for the imitation. Thus, reinforcement learning

is needed for self-improvement. The more parameters used for the learning, the slower

the convergence is. Due to the imitation, the ball must go above the rim of the cup

such that the algorithm gets at least a small positive reward for all rollouts. This way

exhaustive exploration is avoided as the algorithm can compare the performance of

the di�erent rollouts. We determined that 31 shape-parameters per motor primitive

are needed. With less parameters the ball does not go above the rim of the cup in

the initial trial and the algorithm does not receive any meaningful information about

the trial using the aforementioned reward function. More shape-parameters will lead

to a more accurate reproduction of the demonstrated movement and, thus, to a bet-

ter initial policy. However, there is a trade-o� between this better initial policy and a

potentially lower learning speed. Using three times as many parameters the algorithm

converged at roughly the same time. The meta-parameters σij are initially set in the

same order of magnitude as the median of the parameters for each motor primitive

and are then optimized alongside the shape-parameters by PoWER. The performance

of the algorithm is fairly robust for values chosen in this range. Figure 12 shows the

expected return over the number of rollouts where convergence to a maximum is clearly

recognizable. The robot regularly succeeds at bringing the ball into the cup after ap-

proximately 75 iterations. Figure 13 shows the improvement of the policy over the

rollouts. From our experience, nine year old children get the ball in the cup for the �rst

time after about 35 trials while the robot gets the ball in for the �rst time after 42-45

24

Fig. 13: This �gure shows the improvement of the policy over rollouts. The snapshots from the
video show the position of the ball closest to the cup during a rollout. (1) Initial policy after
imitation learning. (15) Policy after 15 rollouts, already closer. (25) Policy after 25 rollouts,
going too far. (45) Policy after 45 rollouts, hitting the near rim. (60) Policy after 60 rollouts,
hitting the far rim. (100) Final policy after 100 rollouts.

rollouts. However, after 100 trials, the robot exhibits perfect runs in every single trial

while children do not have a comparable success rate. Of course, such a comparison

with children is contrived as a robot can precisely reproduce movements unlike any

human being, and children can most likely adapt faster to changes in the setup.

4 Discussion & Conclusion

In Section 4.1, we will discuss robotics as a benchmark for reinforcement learning, in

Section 4.2 we discuss di�erent simulation to robot transfer scenarios, and we will draw

our conclusions in Section 4.3.

4.1 Discussion: Robotics as Benchmark for Reinforcement Learning?

Most reinforcement learning algorithms are evaluated on synthetic benchmarks, often

involving discrete states and actions. Agents in many simple grid worlds take millions

of actions and episodes before convergence. As a result, many methods have focused

too strongly on such problem domains. In contrast, many real world problems such

as robotics are best represented with high-dimensional, continuous states and actions.

Every single trial run is costly and as a result such applications force us to focus on

problems that will often be overlooked accidentally in synthetic examples. Simulations

are a helpful testbed for debugging algorithms. Continuous states and actions as well as

noise can be simulated, however simulations pose the temptation of using unrealistically

many iterations and also allow us to exploit the perfect models.

Our typical approach consists of testing the algorithm in a simulation of the robot

and the environment. Once the performance is satisfactory we replace either the robot

or the environment with its real counterpart depending on the potential hazards. Re-

placing the robot is always possible as we can still simulate the environment taking

into account the state of the real robot. Learning with a simulated robot in the real

environment is not always a possibility especially if the robot in�uences the observed

environment, such as in the Ball-in-a-Cup task. The �nal evaluations are done on the

real robot in the real environment.

Our experience in robotics show that the plant and the environment can often not

be represented accurately enough by a physical model and that the learned policies are

thus not entirely transferable. If su�ciently accurate models were available, we could

resort to the large body of work on optimal control (Kirk, 1970), which o�ers alterna-

tives to data driven reinforcement learning. However, when a model with large errors is

25

used, the solution su�ers severely from an optimization bias as already experienced by

Atkeson (1994). Here, the reinforcement learning algorithm exploits the imperfections

of the simulator rather than yielding an optimal policy.

None of our learned policies could be transferred from a simulator to the real

system without changes despite that the immediate errors of the simulator have been

smaller than the measurement noise. Methods which jointly learn the models and the

policy as well as perform some of the evaluations and updates in simulation (such as

Dyna-like architectures as in (Sutton, 1990)) may alleviate this problem. In theory, a

simulation could also be used to eliminate obviously bad solutions quickly. However, the

di�erences between the simulation and the real robot do accumulate over time and this

approach is only feasible if the horizon is short or the simulation very accurate. Priming

the learning process by imitation learning and optimizing in its vicinity achieves the

desired e�ect better and has thus been employed in this paper.

Parametrized policies greatly reduce the need of samples and evaluations. Choosing

an appropriate representation like motor primitives renders the learning process even

more e�cient.

One major problem with robotics benchmarks is the repeatability of the experi-

ments. The results are tied to the speci�c hardware and setup used. Even a comparison

with simulated robots is often not possible as many groups rely on proprietary sim-

ulators that are not freely available. Most of the benchmarks presented in this paper

rely on initial demonstrations to speed up the learning process. These demonstrations

play an important part in the learning process. However, these initial demonstrations

are also tied to the hardware or the simulator and are, thus, not straightforward to

share. Comparing new algorithms to results from di�erent authors usually requires the

reimplementation of their algorithms to have a fair comparison.

Reproducibility is a key requirement for benchmarking but also a major challenge

for robot reinforcement learning. To overcome this problem there are two orthogonal

approaches: (i) a central organizer provides an identical setup for all participants and

(ii) all participants share the same setup in a benchmarking lab. The �rst approach has

been majorly pushed by funding agencies in the USA and Europe. In the USA, there

have been special programs on robot learning such as DARPA Learning Locomotion

(L2), Learning Applied to Ground Robotics (LAGR) and the DARPA Autonomous

Robot Manipulation (ARM) (DARPA, 2010c,b,a). However, the hurdles involved in

getting these robots to work have limited the participation to strong robotics groups

instead of opening the robot reinforcement learning domain to more machine learning

researchers. Alternative ways of providing identical setups are low cost standardized

hardware or a system composed purely of commercially available components. The �rst

su�ers from reproducibility and reliability issues while the latter results in signi�cant

system integration problems. Hence, it may be more suitable for a robot reinforcement

learning challenge to be hosted by a robot learning group with signi�cant experience

in both domains. The host lab speci�es tasks that they have been able to accomplish

on a real robot system. The hosts also need to devise a virtual robot laboratory for

allowing the challenge participants to program, test and debug their algorithms. To

limit the workload and the risk of the organizers, a �rst benchmarking round would be

conducted using this simulated setup to determine the promising approaches. Successful

participants will be invited by the host lab in order to test these algorithms in learning

on the real system where the host lab needs to provide signi�cant guidance. To our

knowledge, no benchmark based on this approach has been proposed yet. The authors

26

of this paper are currently evaluating possibilities to organize a challenge using such a

shared setup in the context of the PASCAL2 Challenge Program (PASCAL2, 2010).

To successfully apply reinforcement learning to robotics, a fair level of knowledge on

the limitations and maintenance of the robot hardware is necessary. These limitations

include feasible actions, feasible run-time, as well as measurement delay and noise.

Cooperation with a strong robotics group is still extremely important in order to apply

novel reinforcement learning methods in robotics.

4.2 Discussion on Simulation to Robot Transfer Scenarios

In this paper, we have discussed reinforcement learning for real robots with highly

dynamic tasks. The opposite extreme in robotics would be, for example, a maze navi-

gation problem where a mobile robot that has macro-actions such as �go left� and the

lower level control moves the robot exactly by a well-de�ned distance to the left. In

this scenario, it would probably be easier to transfer simulation results to real systems.

For highly dynamic tasks or environments, accurate simulations are generically di�-

cult. Besides fast moving objects and many interacting objects as well as deformable

objects (often called soft bodies), like cloth, string, �uids, hydraulic tubes and other

elastic materials are hard to simulate reliably and, thus, have an enormous impact on

transferability. Additionally, the level and quality of measurement noise has a direct

implication on the di�culty and the transferability of the learning task.

Better simulations often alleviate some of these problems. However, there is always

a trade-o� as more detailed simulations also require more precise model identi�cation,

higher temporal resolution, and, frequently even �nite elements based simulations. Such

detailed simulations may even be much slower than real-time, thus defeating one of the

major advantages of simulations.

Aside from these clear di�culties in creating simulations that allow the transfer

to real systems, we have observed three critically di�erent scenarios for reinforcement

learning in robotics. These scenarios are characterized by the energy �ow between the

policy and the system. In the energy-absorbing scenario, the task has passive dynamics

and, hence, it is safer and easier to learn on a real robot. We are going to discuss the

examples of Ball-Paddling, foothold selection in legged locomotion, and grasping (see

Section 4.2.1). The second scenario has a border-line behavior: the system conserves

most of the energy but the policy also only needs to inject energy into the system for a

limited time. We will discuss Ball-in-a-Cup, Tetherball Target Hitting, and Mountain-

Car as examples for this scenario (see Section 4.2.2). In the energy-emitting scenario

energy is inserted due to the system dynamics even if the policy does not transfer

energy into the system. The classical examples are Cart-Pole and inverted helicopters,

and we also have the Underactuated Swing-Up which has to stabilize at the top (see

Section 4.2.3). These di�erent scenarios have implications on the relative utility of

simulations and real robots.

As we are discussing our experience in performing such experiments, it may at

times appear anecdotal. We hope the reader bene�ts from our insights nevertheless.

However, the resulting classi�cation bears similarities with insights on control law

derivation (Fantoni and Lozano, 2001).

27

(a) Reinforcement learning required unre-
alistically many trials in simulation.

(b) Imitation learning only was su�cient
on the real robot.

Fig. 14: This �gure illustrates the Ball-Paddling task in simulation and on the real robot. The
di�erence between simulation and robotics can be particularly emphasized in this problem
where unrealistically many trials were needed on the simulation for reinforcement learning
while the real world behavior could be learned by imitation learning. It illustrates the energy-
consuming scenario and the di�culties of realistic learning in the presence of contact forces.

4.2.1 Energy-Absorbing Scenario

In this scenario, the system absorbs energy from the actions. As shown in Figure 14,

we learned a Ball-Paddling task where a ping-pong ball is attached to a paddle by

an elastic string and the ball has to be kept in the air by repeatedly hitting it from

below. In this setup, the elastic string pulls the ball back towards the center of the

paddle and the contact forces between the ball and the paddle are very complex. We

modeled the system in as much detail as possible, including friction models, restitution

models, dampening models, models for the elastic string, and air drag. However, in

simulation the paddling behavior was still highly unpredictable and we needed a few

thousand iterations to learn an optimal frequency, amplitude, and movement shape.

The number of simulated trials exceeded the feasible amount on a real system. In

contrast, when learning on the real system, we obtained a stable paddling behavior by

imitation learning using the initial demonstration only and no further reinforcement

learning was needed.

In general, scenarios with complex contact forces often work better in a real-world

experiment. This problem was particularly drastic in locomotion experiments on rough

terrain where the real world was an easier learning environment due to favorable fric-

tion properties during foot contact (Peters, 2007). In this experiment, learning was

signi�cantly harder in simulation and the learned policy could not be transferred. The

same e�ect occurs in grasping when objects often cannot be grasped in simulation due

to slip but the real world friction still allows them to be picked up. Hence, in this sce-

nario, policies from simulations are frequently not helpful and learning in simulation is

harder than on the real system. The results only transfer in a few cases. A simulation

is therefore only recommended as a feasibility study and for software debugging. As

most contacts di�er signi�cantly due to the current properties (which vary with time

and temperature) of the two interacting objects, only a learned simulator is likely to

grasp all relevant details.

28

4.2.2 Border-Line Scenario

In this scenario, adding too much energy to a system does not necessarily lead to a

negative outcome. For example, in the Mountain-Car problem (see Section 3.3), insert-

ing more energy and driving through the goal at a higher velocity does not a�ect task

achievement. In contrast not inserting enough energy will result in a failure as the car

cannot reach the top of the mountain. The Tetherball Target Hitting application pre-

sented in Section 3.4 exhibits a very similar behavior. The Ball-in-a-Cup experiment

(see Section 3.7) highlights the resulting similarities between learning in good simula-

tions and the real world for this scenario. Success is possible if more energy is inserted

and the ball �ies higher. However, when using too little energy the ball will stay below

the opening of the cup. In this favorable scenario the �classical� strategy can be applied:

learn how to learn in simulation. The policy learned in simulation does not necessarily

transfer to the real world and the real-world scenario can be highly di�erent but the

learning speed and behavior are similar. Hence, meta parameters such as learning and

exploration rates can be tuned in simulation. The learning algorithm may take longer

due to increased errors, modeling problems and uncertainty. Still, good practice is to

create a su�ciently accurate simulator and to adapt the learning strategy subsequently

to the real system.

4.2.3 Energy-Emitting Scenario

Energy emission causes very di�erent problems. Uncertainty in states will cause over-

reactions, hence, drastic failures are likely to occur when the system becomes unstable

in a control theory sense. This system excitability often makes the task signi�cantly

harder to learn on a real robot in comparison to a simulated setup. Here, pre-studies

in simulations are a necessary but not su�cient condition. Due to unmodeled nonlin-

earities, the exploration will a�ect various algorithms di�erently. Classical examples

are helicopters in inverted �ight (Ng et al, 2004) and the pendulum in a Cart-Pole

task in an upright position (Sutton and Barto, 1998) as these have to be constantly

stabilized. Additionally the pendulum in the Swing-Up has to be stabilized in the �nal

position or it will fall over and cause a failure. In this paper, we take the example

of the Swing-Up to illustrate how some methods unexpectedly do better in the real

world as exhibited by Figures 6 and 8. The learning progress of all algorithms is noisier

and the eRWR performs better on the real robot. The form of exploration employed

by PoWER seems to give it an additional advantage in the �rst 20 rollouts as direct

exploration on the actions is partially obscured by measurement noise. In order to cope

with di�erences to the real-world, simulations need to be more stochastic than the real

system (as suggested by Ng et al (2004)) and should be learned to make transferring

the results easier (as for example in (Schaal et al, 2002)).

4.3 Conclusion

In this paper, we have presented a framework for deriving several policy learning meth-

ods that are applicable in robotics and an application to a highly complex motor learn-

ing task on a real Barrett WAM� robot arm. We have shown that policy gradient

methods are a special case of this framework. During initial experiments, we realized

that the form of exploration highly in�uences the speed of the policy learning method.

29

This empirical insight resulted in a novel policy learning algorithm, Policy learning

by Weighting Exploration with the Returns (PoWER), an EM-inspired algorithm that

outperforms several other policy search methods both on standard benchmarks as well

as on a simulated Underactuated Swing-Up.

We have successfully applied this novel PoWER algorithm in the context of learning

two tasks on a physical robot, namely the Underacted Swing-Up and Ball-in-a-Cup.

Due to the curse of dimensionality, we cannot start with an arbitrary solution. Instead,

we mimic the way children learn Ball-in-a-Cup and �rst present an example movement

for imitation learning, which is recorded using kinesthetic teach-in. Subsequently, our

reinforcement learning algorithm learns how to move the ball into the cup reliably.

After only realistically few episodes, the task can be regularly ful�lled and the robot

shows very good average performance. After 100 rollouts, the meta parameters, such

as the exploration rate, have converged to negligible size and do not in�uence the

outcome of the behavior any further. The experiments in this paper use the original

variant of the motor primitives which cannot deal with large perturbations. However,

the extended variable-feedback variant presented in (Kober et al, 2008) can deal with a

variety of changes directly (for example, in the length of the string or the size or weight

of the ball) while the approach presented in this paper will recover quickly by learning

an adjusted policy in a few roll-outs. In (Kober et al, 2008), we have also shown that

learning a strategy of pulling the ball up and moving the cup under the ball (as in

Kendama) is possible in approximately the same number of trials. We have discovered

a variety of di�erent human strategies for Ball-in-a-Cup in movement recordings, see

(Chiappa et al, 2009).

A preliminary version of some of the work in this paper was shown in (Kober

et al, 2008; Kober and Peters, 2009b,a). It did not yet include the real robot com-

parisons of the algorithms on the Underactuated Swing-Up benchmark as well as the

Tetherball Target Hitting and the Casting benchmarks. We also discuss our experience

with transfer from simulation to real robot systems. Our approach has already given

rise to follow-up work in other contexts, for example, (Vlassis et al, 2009; Kormushev

et al, 2010). Theodorou et al (2010) have shown that an algorithm very similar to

PoWER can also be derived from a completely di�erent perspective, that is, the path

integral approach.

Acknowledgements We thank the anonymous reviewers for their valuable suggestions that
helped us to signi�cantly extend and improve the discussions in Section 4.

A Derivations

In this appendix, we provide the derivations of various algorithms in more details than in the
main text. We �rst present, how the episodic REINFORCE (Williams, 1992) can be obtained
(Section A.1). Subsequently, we show how the episodic Reward Weighted Regression (eRWR)
(Peters and Schaal, 2007) can be generalized for the episodic case (Section A.2), and �nally
we derive EM Policy learning by Weighting Exploration with the Returns (PoWER) and show
a number of simpli�cations (Section A.3).

30

A.1 REINFORCE

If we choose a stochastic policy in the form a = θTφ (s, t) + εt with εt ∼ N
`
0, σ2

´
, we have

π (at|st, t) =
1

σ
√

2π
exp

„
−

1

2σ2

“
a− θTφ

”2
«
,

and, thus,

∂θ log π = σ−2
“
a− θTφ

”
φT.

Therefore, the gradient, in Equation (2), becomes

∂θ′Lθ(θ
′) = E

nPT
t=1σ

−2
“
a− θ′Tφ

”
φTR

o
= E

nPT
t=1σ

−2εtφ
TR
o
, (10)

which corresponds to the episodic REINFORCE algorithm (Williams, 1992).

A.2 Episodic Reward Weighted Regression (eRWR)

Setting Equation (10) to zero

∂θ′Lθ(θ
′) = E

nPT
t=1σ

−2
“
a− θ′Tφ

”
φTR

o
= 0,

we obtain
E
nPT

t=1σ
−2aRφT

o
= E

nPT
t=1σ

−2
“
θ′Tφ

”
RφT

o
.

Since σ is constant, we have E{
PT
t=1 aRφ

T} = θ′TE{
PT
t=1 φRφ

T}. The θ′ minimizing the
least squares error can be found by locally weighted linear regression (R as weights and φ as
basis functions) considering each time-step and rollout separately

θ′ =
“
ΦTRΦ

”−1
ΦTRA,

with Φ = [φ1
1, . . . ,φ

1
T ,φ

2
1, . . . ,φ

H
1 , . . . ,φ

H
T]T , R = diag(R1, . . . , R1, R2, . . . , RH , . . . , RH),

and A = [a1
1, . . . , a

1
T , a

2
1, . . . , a

H
1 , . . . , a

H
T]T for H rollouts.

The same derivation holds if we use Equation (3) instead of Equation (2). Then R in

the regression is replaced by Qπ = diag(Qπ,11 , . . . , Qπ,1T , Qπ,21 , . . . , Qπ,H1 , . . . , Qπ,HT). Using the
state-action value function Qπ yields slightly faster convergence than using the return R.

A.3 EM Policy learning by Weighting Exploration with the Returns (PoWER)

If we choose a stochastic policy in the form a = (θ + εt)
T φ (s, t) with εt ∼ N (0, Σ̂), we have

π (at|st, t) = N
“
a|θTφ (s, t) ,φ(s, t)TΣ̂φ(s, t)

”
=
“
2πφTΣ̂φ

”−1/2
exp

−
`
a− θTφ

´2
2φTΣ̂φ

!
,

and, thus, ∂θ log π =
`
a− θTφ

´
φT/

`
σTφ

´2
. Therefore Equation (3) becomes

∂θ′Lθ(θ
′) = E

(
TX
t=1

`
a− θ′Tφ

´
φT

φTΣ̂φ
Qπ

)
.

Setting this equation to zero is equivalent to

E

(
TX
t=1

aφT

φTΣ̂φ
Qπ

)
≡ E

8<:
TX
t=1

“
(θ + εt)

T φ
”
φT

φTΣ̂φ
Qπ

9=; = E

(
TX
t=1

`
θ′Tφ

´
φT

φTΣ̂φ
Qπ

)
.

31

This equation yields

θ′T = E

8<:
TX
t=1

“
(θ + εt)

T φ
”
φT

φTΣ̂φ
Qπ

9=;E

(
TX
t=1

φφT

φTΣ̂φ
Qπ

)−1

= θT + E

(
TX
t=1

εTt φφ
T

φTΣ̂φ
Qπ

)
E

(
TX
t=1

φφT

φTΣ̂φ
Qπ

)−1

and �nally with W = φφT(φTΣ̂φ)−1 we get

θ′ = θ + E
nPT

t=1WQπ
o−1

E
nPT

t=1WεtQ
π
o
. (11)

If Σ̂ is diagonal, that is, the exploration of the parameters is pairwise independent, all param-
eters employ the same exploration, and the exploration is constant over rollouts, W simpli�es
to W = φφT(φTφ)−1. Normalized basis functions φ further simplify W to W (s, t) = φφT.

If only one parameter is active at each time step, W (s, t) is diagonal and Equation (11)
simpli�es to

θ′i = θi +
E
nPT

t=1 φ
2
i /
“
φTΣ̂φ

”
εi,tQ

π
o

E
nPT

t=1 φ
2
i /
“
φTΣ̂φ

”
Qπ
o (12)

= θi +
E
nPT

t=1 σ
−1
i εi,tQ

π
o

E
nPT

t=1 σ
−1
i Qπ

o , (13)

where θ′i is one individual parameter, φi and εi,t are the corresponding elements of φ and εt,

and σi is the respective entry of the diagonal of Σ̂. If the σi are constant over the rollouts we get
θ′i = θi + E{

PT
t=1 εi,tQ

π}/E{
PT
t=1Q

π}. The independence simpli�cation in Equations (12,
13) works well in practice, even if there is some overlap between the activations, such as in
the case of dynamical system motor primitives (Ijspeert et al, 2002, 2003; Schaal et al, 2003,
2007). Weighting the exploration with the basis functions, as in Equation (12), yields slightly
better results than completely ignoring the interactions, as in Equation (13).

The policy can be equivalently expressed as

π (at|st, t) = p (at|st, t, εt) p (εt|st, t) = p (at|st, t, εt)N
“
εt|0, Σ̂

”
.

Applying Equation (3) to the variance Σ̂ we get

∂
Σ̂

′LΣ̂

“
Σ̂
′”

= E
nPT

t=1∂Σ̂′ logN
“
εt|0, Σ̂

′”
Qπ
o
,

as p (at|st, t, εt) is independent from the variance. Setting this equation to zero and solving

for Σ̂
′
yields

Σ̂
′
=
E
nPT

t=1 εtε
T
t Q

π
o

E
nPT

t=1Q
π
o ,

which is the same solution as we get in standard maximum likelihood problems.
The same derivation holds if we use Equation (2) instead of Equation (3). Then, the

state-action value function Qπ is replaced everywhere by the return R.

References

Andrieu C, de Freitas N, Doucet A, Jordan MI (2003) An introduction to MCMC for machine
learning. Machine Learning 50(1):5�43

32

Atkeson CG (1994) Using local trajectory optimizers to speed up global optimization in dy-
namic programming. In: Advances in Neural Information Processing Systems 6 (NIPS),
Denver, CO, USA, pp 503�521

Attias H (2003) Planning by probabilistic inference. In: Proceedings of the Ninth International
Workshop on Arti�cial Intelligence and Statistics (AISTATS), Key West, FL, USA

Bagnell J, Schneider J (2003) Covariant policy search. In: Proceedings of the International
Joint Conference on Arti�cial Intelligence (IJCAI), Acapulco, Mexico, pp 1019�1024

Bagnell J, Kadade S, Ng A, Schneider J (2004) Policy search by dynamic programming. In:
Advances in Neural Information Processing Systems 16 (NIPS), Vancouver, BC, CA

Binder J, Koller D, Russell S, Kanazawa K (1997) Adaptive probabilistic networks with hidden
variables. Machine Learning 29(2�3):213�244

Chiappa S, Kober J, Peters J (2009) Using bayesian dynamical systems for motion template
libraries. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in Neural Infor-
mation Processing Systems 21 (NIPS), pp 297�304

DARPA (2010a) Autonomous robot manipulation (arm). URL
http://www.darpa.mil/ipto/programs/arm/arm.asp

DARPA (2010b) Learning applied to ground robotics (lagr). URL
http://www.darpa.mil/ipto/programs/lagr/lagr.asp

DARPA (2010c) Learning locomotion (l2). URL http://www.darpa.mil/ipto/programs/ll/ll.asp
Dayan P, Hinton GE (1997) Using expectation-maximization for reinforcement learning. Neural
Computation 9(2):271�278

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39:1�38

El-Fakdi A, Carreras M, Ridao P (2006) Towards direct policy search reinforcement learning for
robot control. In: Proceedings of the IEEE/RSJ 2006 International Conference on Intelligent
RObots and Systems (IROS), Beijing, China

Fantoni I, Lozano R (2001) Non-Linear Control for Underactuated Mechanical Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA

Guenter F, Hersch M, Calinon S, Billard A (2007) Reinforcement learning for imitating
constrained reaching movements. Advanced Robotics, Special Issue on Imitative Robots
21(13):1521�1544

Gullapalli V, Franklin J, Benbrahim H (1994) Aquiring robot skills via reinforcement learn-
ing. IEEE Control Systems Journal, Special Issue on Robotics: Capturing Natural Motion
4(1):13�24

Ho�man M, Doucet A, de Freitas N, Jasra A (2007) Bayesian policy learning with trans-
dimensional MCMC. In: Advances in Neural Information Processing Systems 20 (NIPS),
Vancouver, BC, CA

Ijspeert AJ, Nakanishi J, Schaal S (2002) Movement imitation with nonlinear dynamical sys-
tems in humanoid robots. In: Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), Washington, DC, pp 1398�1403

Ijspeert AJ, Nakanishi J, Schaal S (2003) Learning attractor landscapes for learning motor
primitives. In: Advances in Neural Information Processing Systems 15 (NIPS), Vancouver,
BC, CA, pp 1547�1554

Jaakkola T, Jordan MI, Singh SP (1994) Convergence of stochastic iterative dynamic pro-
gramming algorithms. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in Neural
Information Processing Systems, Morgan Kaufmann Publishers, Inc., vol 6, pp 703�710

Kirk DE (1970) Optimal control theory. Prentice-Hall, Englewood Cli�s, New Jersey
Kober J, Peters J (2009a) Learning motor primitives for robotics. In: Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), pp 2112�2118

Kober J, Peters J (2009b) Policy search for motor primitives in robotics. In: Koller D, Schu-
urmans D, Bengio Y, Bottou L (eds) Advances in Neural Information Processing Systems
21 (NIPS), pp 849�856

Kober J, Mohler B, Peters J (2008) Learning perceptual coupling for motor primitives. In:
Proceedings of the IEEE/RSJ 2008 International Conference on Intelligent RObots and
Systems (IROS), Nice, France, pp 834�839

Kormushev P, Calinon S, Caldwell DG (2010) Robot motor skill coordination with em-based
reinforcement learning. In: Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems
(IROS)

Kwee I, Hutter M, Schmidhuber J (2001) Gradient-based reinforcement planning in policy-
search methods. In: Wiering MA (ed) Proceedings of the 5th European Workshop on Rein-

33

forcement Learning (EWRL), Onderwijsinsituut CKI - Utrecht University, Manno(Lugano),
CH, no. 27 in Cognitieve Kunstmatige Intelligentie, pp 27�29

Lawrence G, Cowan N, Russell S (2003) E�cient gradient estimation for motor control learning.
In: Proceedings of the International Conference on Uncertainty in Arti�cial Intelligence
(UAI), Acapulco, Mexico, pp 354�361

Martín H JA, de Lope J, Maravall D (2009) The knn-td reinforcement learning algorithm. In:
Proceedings of the 3rd International Work-Conference on The Interplay Between Natural
and Arti�cial Computation (IWINAC), Springer-Verlag, Berlin, Heidelberg, pp 305�314

McLachan GJ, Krishnan T (1997) The EM Algorithm and Extensions. Wiley Series in Prob-
ability and Statistics, John Wiley & Sons

Miyamoto H, Schaal S, Gandolfo F, Gomi H, Koike Y, Osu R, Nakano E, Wada Y, Kawato M
(1996) A kendama learning robot based on bi-directional theory. Neural Networks 9(8):1281�
1302

Ng AY, Jordan M (2000) Pegasus: A policy search method for large mdps and pomdps. In:
Proceedings of the International Conference on Uncertainty in Arti�cial Intelligence (UAI),
Palo Alto, CA, pp 406�415

Ng AY, Kim HJ, Jordan MI, Sastry S (2004) Inverted autonomous helicopter �ight via re-
inforcement learning. In: Proceedings of the International Symposium on Experimental
Robotics (ISER), MIT Press

Park DH, Ho�mann H, Pastor P, Schaal S (2008) Movement reproduction and obstacle avoid-
ance with dynamic movement primitives and potential �elds. In: IEEE International Con-
ference on Humanoid Robots (HUMANOIDS), pp 91�98

PASCAL2 (2010) Challenges. URL http://pascallin2.ecs.soton.ac.uk/Challenges/
Peshkin L (2001) Reinforcement learning by policy search. PhD thesis, Brown University,
Providence, RI

Peters J (2007) Machine learning of motor skills for robotics. PhD thesis, University of Southern
California, Los Angeles, CA, 90089, USA

Peters J, Schaal S (2006) Policy gradient methods for robotics. In: Proceedings of the
IEEE/RSJ 2006 International Conference on Intelligent RObots and Systems (IROS), Bei-
jing, China, pp 2219 � 2225

Peters J, Schaal S (2007) Reinforcement learning by reward-weighted regression for operational
space control. In: Proceedings of the International Conference on Machine Learning (ICML),
Corvallis, OR, USA

Peters J, Vijayakumar S, Schaal S (2003) Reinforcement learning for humanoid robotics.
In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots (HU-
MANOIDS), Karlsruhe, Germany, pp 103�123

Peters J, Vijayakumar S, Schaal S (2005) Natural actor-critic. In: Proceedings of the European
Conference on Machine Learning (ECML), Porto, Portugal, pp 280�291

Rückstieÿ T, Felder M, Schmidhuber J (2008) State-dependent exploration for policy gradi-
ent methods. In: Proceedings of the European Conference on Machine Learning (ECML),
Antwerp, Belgium, pp 234�249

Sato S, Sakaguchi T, Masutani Y, Miyazaki F (1993) Mastering of a task with interaction
between a robot and its environment : �kendama� task. Transactions of the Japan Society
of Mechanical Engineers C 59(558):487�493

Schaal S, Atkeson CG, Vijayakumar S (2002) Scalable techniques from nonparameteric statis-
tics for real-time robot learning. Applied Intelligence 17(1):49�60

Schaal S, Peters J, Nakanishi J, Ijspeert AJ (2003) Control, planning, learning, and imitation
with dynamic movement primitives. In: Proceedings of the Workshop on Bilateral Paradigms
on Humans and Humanoids, IEEE 2003 International Conference on Intelligent RObots and
Systems (IROS), Las Vegas, NV, Oct. 27-31

Schaal S, Mohajerian P, Ijspeert AJ (2007) Dynamics systems vs. optimal control � a unifying
view. Progress in Brain Research 165(1):425�445

Sehnke F, Osendorfer C, Rückstieÿ T, Graves A, Peters J, Schmidhuber J (2010) Parameter-
exploring policy gradients. Neural Networks 21(4):551�559

Shone T, Krudysz G, Brown K (2000) Dynamic manipulation of kendama. Tech. rep., Rens-
selaer Polytechnic Institute

Strens M, Moore A (2001) Direct policy search using paired statistical tests. In: Proceedings
of the 18th International Conference on Machine Learning (ICML)

Sumners C (1997) Toys in Space: Exploring Science with the Astronauts. McGraw-Hill
Sutton R, Barto A (1998) Reinforcement Learning. MIT Press

34

Sutton RS (1990) Integrated architectures for learning, planning, and reacting based on ap-
proximating dynamic programming. In: Proceedings of the International Machine Learning
Conference, pp 9�44

Sutton RS, McAllester D, Singh S, Mansour Y (2000) Policy gradient methods for reinforce-
ment learning with function approximation. In: Advances in Neural Information Processing
Systems 13 (NIPS), Denver, CO, USA, pp 1057�1063

Takenaka K (1984) Dynamical control of manipulator with vision : �cup and ball� game demon-
strated by robot. Transactions of the Japan Society of Mechanical Engineers C 50(458):2046�
2053

Taylor ME, Whiteson S, Stone P (2007) Transfer via inter-task mappings in policy search
reinforcement learning. In: Proceedings of the Sixth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS)

Tedrake R, Zhang TW, Seung HS (2004) Stochastic policy gradient reinforcement learning on
a simple 3d biped. In: Proceedings of the IEEE 2004 International Conference on Intelligent
RObots and Systems (IROS), pp 2849�2854

Theodorou EA, Buchli J, Schaal S (2010) reinforcement learning of motor skills in high di-
mensions: a path integral approach. In: In Proceedings of IEEE international conference on
robotics and automation (ICRA), pp 2397�2403

Toussaint M, Goerick C (2007) Probabilistic inference for structured planning in robotics.
In: Proceedings of the IEEE/RSJ 2007 International Conference on Intelligent RObots and
Systems (IROS), San Diego, CA, USA

Van Der Maaten L, Postma E, Van Den Herik H (2007) Dimensionality reduction: A compar-
ative review. Preprint

Vlassis N, Toussaint M, Kontes G, Piperidis S (2009) Learning model-free robot control by a
monte carlo em algorithm. Autonomous Robots 27(2):123�130

Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning 8:229�256

Wulf G (2007) Attention and motor skill learning. Human Kinetics, Champaign, IL

