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Purpose of this Lecture

• Learn an alternative approach to imitation learning

• What is the best way to imitate a teacher?

• Learn its policy?          Behavorial cloning

• Needs a lot of demonstrations to generalize the behavior

• Learn its intention / goals? Inverse Reinforcement Learning

•  Inverse Optimal Control, Inverse Optimal Planning

• Determine the cost function of the teacher in order to obtain optimal  behavior. 

• More concise description of behavior
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Bigger Picture
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Outline of the Lecture

1. Introduction

I.  Comparison to Behavioral Cloning

2. Categories of IRL

I.  Maximum Margin

II.  Feature Matching by Max. Entropy

III.  Policy parametrized by rewards

3. Applications

4. Conclusion
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Behavioral Cloning

X
States

U
Actions
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What may be wrong here? Remember ALVINN?

Disadvantages of Direct Imitation Learning
•  Needs a lot of demonstrations to generalize
•  High variability in the demonstrations
•  Demonstrate how to recover from mistakes
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Apprenticeship learning/Imitation learning through inverse RL
Presupposition: reward function provides the most succinct and 
transferable definition of the task

Has enabled advancing the state of the art in various robotic domains

Modeling of other agents, both adversarial and cooperative

Scientific questions
Model animal and human behavior

E.g., bee foraging, songbird vocalization.  [See intro of Ng and Russell, 
2000 for a brief overview.]

Motivation for inverse RL
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Crusher

RSS 2008: Dave Silver and Drew Bagnell8

Meet Crusher...
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More Crusher pictures...
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More Crusher pictures...
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Inverse Reinforcement Learning
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Recovering Cost!
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Recovering Cost!
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Recovering Cost!
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Collect paths by teleoperation
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Training: Stay on the road



18

Test: Stay on the road



19

Training: Avoid the Road
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Test: Avoid the Road 



2121
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High-level picture

Dynamics  

Reward Function  
       

Reinforcement
Learning / Optimal 

Control

Controller/ 
Policy 

Prescribes action to 
take for each state

Probability distribution 
over next states given 

current state and 
actionDescribes desirability 

of being in a state.  

Inverse RL: 
•  Given Policy and Model, can we recover R?
•   More generally, given execution traces, can we          !

 recover r?



23
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Input: 
Teacher’s demonstrations: 

Trace of the teacher’s policy
 And its “long-term behavior”  

Formulated as standard machine learning problem

Fix a policy class (neural network, decision tree, deep belief net, dynamical systems, … 
Estimate a policy               from the training examples  

Problem:
There will always be an error in the estimation of the policy

Small error in the policy        possibly large error in long-term 
behavior

Problem setup: Behavioral Cloning
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Input: 
Teacher’s demonstrations: 

 Trace of the teacher’s policy

 And its “long-term behavior”  

State and Action Space

Transition model:

No reward function 

Inverse RL: 
Can we recover           that explains the policy       (and its 

long-term behavior           ?)
Apprenticeship Learning

Can we use   to obtain a policy       ? 






Problem setup: Inverse RL
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Behavioral Cloning:

Simple to implement

No assumptions on the 
model/MDP

We might not reproduce 
the long term behavior

Representation: Policy

Hard to generalize

Needs many samples

Inverse RL vs. Behavioral Cloning

Inverse RL:

Requires Planning / 
Solving an MDP

Hard for many interesting 
MDPs (e.g. high-DoF 
robots)

Representation: Reward

Compact description

Easy to transfer to new 
tasks
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Find a reward function            which explains the expert behavior

Assume expert is optimal w.r.t. to 

I.e., find            such that

In fact a convex feasibility problem, but many challenges:

1.  Ill-posed:                is a solution, reward function ambiguity

2.  Limited Data: We typically only observe expert traces rather than the 
entire expert optimal policy --- how to compute left-hand side?

3.  Optimality Assumption: Assumes the expert is indeed optimal --- 
otherwise infeasible

4.  Computation: assumes we can enumerate all policies

Basic principle
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Lets assume the reward function is linear in some features, 





 where          is the expected discounted feature vector of policy 

Subbing into:

gives us:  

Feature based reward function
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Feature based reward function

Feature expectations can be readily estimated from sample trajectories

Solves limited data challenge

The number of expert demonstrations required scales with the number of 
features in the reward function.

The number of expert demonstration required does not depend on

Complexity of the expert’s optimal policy

Size of the state space
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Find a reward function            which explains the expert behavior

Assume expert is optimal w.r.t. to 

I.e., find            such that

In fact a convex feasibility problem, but many challenges:

1.  Ill-posed:                is a solution, reward function ambiguity

2.  Limited Data: We typically only observe expert traces rather than the 
entire expert optimal policy --- how to compute left-hand side?

3.  Optimality Assumption: Assumes the expert is indeed optimal --- 
otherwise infeasible

4.  Computation: assumes we can enumerate all policies

Basic principle
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Every policy has a corresponding feature expectation vector, which for 
visualization purposes we assume to be 2D

Constraint generation
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Linear parametrization: We need to find a separating hyper-plane given 
by









Scalar product            gives us the (positive or negative) distance to the 
separating hyper-plane 

Constraint generation
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Standard max margin:

Smallest weight vector with predefined reward margin of 1









Ill-posed Problem
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Max. margin solution

Similar interpretation as a support vector machine
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Structured max margin:

Smallest weight vector

Margin depends on difference of policies




Justification: margin should be larger for policies that are very 
different from     .

Example for                 :
 Sum of minimum distances from generated path the    
example path 

Ill-posed Problem
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Find a reward function            which explains the expert behavior

Assume expert is optimal w.r.t. to 

I.e., find            such that

In fact a convex feasibility problem, but many challenges:

1.  Ill-posed:                is a solution, reward function ambiguity

2.  Limited Data: We typically only observe expert traces rather than the 
entire expert optimal policy --- how to compute left-hand side?

3.  Optimality Assumption: Assumes the expert is indeed optimal --- 
otherwise infeasible

4.  Computation: assumes we can enumerate all policies

Basic principle
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Structured max margin solution
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Structured prediction max margin with slack variables:
Every constraint can be violated a bit
Minimize the amount of violation



Easy to extend to multiple MDPs  
 

Resolved: access to     , ambiguity, expert suboptimality

One challenge remains: very large number of constraints

Ratliff et. al. use subgradient methods.

In this lecture: constraint generation



Expert suboptimality
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Initialize               and then iterate k = 1…

Solve

Find the most violated constraint

Compute optimal policy for the current estimate of the reward function (+ loss 
augmentation m), e.g., dynamic programming

Add         to set of policies  

If no constraint violations were found, we are done.

Constraint generation
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Algorithm example run

w(1) 

w(2) 

w(3) 



42

Suboptimal expert case

Can match expert by stochastically mixing between 3 policies

In practice: for any w* one of                    outperforms      à pick 
one of them.

Generally: for k-dimensional feature space the user picks between 
k+1 policies
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Classical Approach to Statistical Modeling: !
"The Principle of Maximum Entropy”

Premise: Statistical modeling should 
be performed with the least 
commitment possible.

• Predict using the probability 
distribution minimally committed/ 
maximally uncertain/highest 
Shannon entropy....

•  ...subject to it agrees with known 
constraints

•  “almost all” distributions are close 
to the MaxEnt one

• Uncertainty allows proper treatment 
of suboptimal demonstrations!
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Maximum-entropy approach to inference
What is the maximum entropy distribution with given 1st and 2nd 
order and moments?

Solution:

 
That’s a Gaussian! … which is of course well known that a 
Gaussian has maximum entropy of all distributions with given mean 
and variance
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Maximum-entropy approach to IRL [Ziebart 2008]
Maximize entropy over paths with a given feature expectation

 
Solution:

w is now a lagrangian multiplier

We obtain a soft-max distribution over trajectories

Return of the trajectories:

Problem: Does not take system dynamics into account

Trajectory could have huge return, but is very unlikely due to 
system dynamics
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Maximum-Causal-entropy IRL [Ziebart 2010]
Maximize entropy of the policy with a given feature expectation

 

State distribution at time step t has to be consistent with:

•  state distribution and policy at time step t-1

•  system dynamics 

 

Max. Caus. Ent


Match Features


State distribution 
consistency
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Maximum-Causal-entropy IRL [Ziebart 2010]
Solution: 

      is again a Lagrangian multiplier

If we say              is the reward, this is a soft-max over the Q-function

This is still a convex problem:

Solution can be obtained by optimizing dual function

Can be done (relatively) efficiently 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Alternatively, we can assume the policy is soft-max in a Q-function



 
where        is the optimal Q-function for reward function      , i.e., 



 
Then we can evaluate the likelihood of seeing a set of state-action pairs 
as follows:



Is equivalent to “a smarter” Behavior Cloning!





Reward function parameterizing the policy class
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Ziebart’s approach can also be shown to be equivalent!

Can be extended to Bayesian setup:

Put prior on parameters of reward function



•  Ramachandran and Amir, AAAI2007: MCMC method to sample from this distribution

•  Neu and Szepesvari, UAI2007: gradient method to optimize the likelihood [MAP]

Reward function parameterizing the policy class
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•  Open directions: 

•  Active inverse RL, 

•  Inverse RL with minmax control

•  Inverse RL with partial observability 

•  Inverse RL with learning stages (rather than observing optimal policy)

•  Many more … 

•  Are you interested? We may have an excellent thesis for you!

Open Directions
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Outline of the Lecture

1. Introduction

2. Contrast to behavioral cloning, historical 
sketchMathematical formulations for 
inverse RLExample applications

3. Case studies



54 •  Ziebart, Maas, Bagnell and Dey AAAI 2008

Urban navigation

n Reward function for urban navigation?

à destination prediction
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•  Simulated highway driving
•  Abbeel and Ng, ICML 2004,

•  Syed and Schapire, NIPS 2007

•  Aerial imagery based navigation 

•  Ratliff, Bagnell and Zinkevich, ICML 2006

•  Parking lot navigation
•  Abbeel, Dolgov, Ng and Thrun, IROS 2008

•  Urban navigation
•  Ziebart, Maas, Bagnell and Dey, AAAI 2008

Examples
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•  Human path planning
•  Mombaur, Truong and Laumond, AURO 2009

•  Human goal inference

•  Baker, Saxe and Tenenbaum, Cognition 2009

•  Quadruped locomotion

•  Ratliff, Bradley, Bagnell and Chestnutt, NIPS 2007

•  Kolter, Abbeel and Ng, NIPS 2008

Examples (ctd)
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• Case studies: 

•  (1) Highway driving, 

•  (2) Crusher, 

•  (3) Parking lot navigation, 

•  (4) Route inference, 

•  (5) Human path planning, 

•  (6) Human inverse planning, 

•  (7) Quadruped locomotion

•  (8) Helicopter Acrobatics

Lecture outline
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Simulated highway driving

Abbeel and Ng, ICML 2004; Syed and Schapire, NIPS 2007
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Highway driving
Teacher in Training World Learned Policy in Testing World 

•  Input: 
•  Dynamics model / Simulator   Pxu(xt+1 | xt, ut)
•  Teacher’s demonstration: 1 minute in “training world”
•  Note: R* is unknown.
•  Reward features: 5 features corresponding to lanes/shoulders; 10 features 

corresponding to presence of other car in current lane at different distances

[Abbeel and Ng 2004]
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Max margin
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Max-margin
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Parking lot navigation

[Abbeel et al., IROS 08]

n  Reward function trades off: 
n  Staying “on-road,”
n  Forward vs. reverse driving,
n  Amount of switching between forward and reverse, 
n  Lane keeping,
n  On-road vs. off-road,
n  Curvature of paths.
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n  Demonstrate parking lot navigation on “train parking lots.”

n  Run our apprenticeship learning algorithm to find the reward 
function.

n  Receive “test parking lot” map + starting point and 
destination. 

n  Find the trajectory that maximizes the learned reward function 
for navigating the test parking lot.

Experimental setup
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Nice driving style
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QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

Sloppy driving-style
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QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

“Don’t mind reverse” driving-style
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Only 35% of routes are 
“fastest” (Letchner, Krumm, & Horvitz 

2006)68
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Time
Fuel
Safety
Stress
Skill
Mood
	  	  	  	  	  	  	  	  	  	  

	  
Distance
Speed
Type
Lanes
Turns

Context
	  	  	  	  	  	  	  	  	  	  

Ziebart+al, 
2007/8/9
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Data Collection

Length
Speed

Road Type
Lanes

Accidents
Construction
Congestion
Time of day

25	  Taxi	  Drivers	  

Over	  100,000	  miles	   Ziebart+al, 2007/8/9
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QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

Destination Prediction

72
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QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

Equivalent: Pedestrian Prediction
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n  Reward features:
n  Time to destination
n  (Forward acceleration)2
n  (Sideways acceleration)2
n  (Rotational acceleration)2
n  Integral (angular error)2

Human path planning

[Mombaur, Truong, Laumond, 2009]
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Experimental Setup
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n  Result:
n  Time to destination: 1
n  (Forward acceleration)2 1.2
n  (Sideways acceleration)2 1.7
n  (Rotational acceleration)2 0.7
n  Integral (angular error)2 5.2

Human path planning

[Mombaur, Truong, Laumond, 2009]
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Human path planning
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Human path planning
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Transfer to a Humanoid
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n  Observe partial paths, predict goal.  Goal could be either A, 
B, or C.

n  + HMM-like extension: goal can change (with some 
probability over time).

Goal inference

[Baker, Saxe, Tenenbaum, 2009]
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n  Observe partial paths, predict goal.  Goal could be either A, 
B, or C.

Goal inference

[Baker, Saxe, Tenenbaum, 2009]



82

n  Reward function trades off 25 features.

Quadruped

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]
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n  Demonstrate path across the “training terrain”

n  Run the apprenticeship learning algorithm to find the 
reward function

n  Receive “testing terrain”---height map. 

n  Find the optimal policy with respect to the learned reward 
function for crossing the testing terrain.

Experimental setup
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QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.

Little Dog: CMU Team

Ratliff + al, 2007
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•  How does helicopter dynamics work

•  Autonomous helicopter setup

•  Application of inverse RL to autonomous helicopter flight

Remainder of lecture: extreme helicopter 
flight
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Autonomous helicopter setup

On-Board Inertial 
Measurements 
Unit (IMU) data

Send out 
controls to 
helicopter

1. Kalman filter
2. Feedback controller

Position 
data
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•  4 control inputs:
•  Main rotor collective pitch

•  Main rotor cyclic pitch (roll and pitch)

•  Tail rotor collective pitch

Helicopter dynamics



88

1. Our expert pilot demonstrates the airshow several times.

2.  Learn (by solving a joint optimization problem):

•  Reward function---trajectory.

•  Dynamics model---trajectory-specific local model.

3.  Fly autonomously:
•  Inertial sensing + vision-based position sensing à (extended) 

Kalman filter
•  Receding horizon differential dynamic programming (DDP) 

feedback controller (20Hz)

•  Learning to fly new aerobatics takes < 1 hour

Experimental setup for the helicopter
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Results!

89

QuickTime™ and a
JVT/AVC Coding decompressor
are needed to see this picture.
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What you should know:

  Why is inverse RL useful / better than direct imitation learning?

  Algorithmic Challenges in IRL

  Different methods that use IRL, all are linear in features

  Why maximum margin?

  Why max. entropy?

Summary


